
An efficient hardware architecture without line
memories for morphological image processing

Christophe Clienti, Michel Bilodeau and Serge Beucher

MINES Paristech
CMM - Centre de morphologie mathmatique, Mathmatiques et Systèmes

35 rue Saint Honoré - 77305 Fontainebleau cedex, France.

Abstract. In this paper, we present a novel hardware architecture to
achieve erosion and dilation with a large structuring element. We are
proposing a modification of HGW algorithm with a block mirroring
scheme to ease the propagation and memory access and to minimize
memory consumption. It allows to suppress the needs for backward scan-
ning and gives the possibility for hardware architecture to process very
large lines with a low latency. It compares well with the Lemonnier’s
architecture in terms of ASIC gates area and shows the interest of our
solution by dividing the circuit area by an average of 10.

1 Introduction

For more than 40 years, the use of Mathematical Morphology for image pro-
cessing has been constantly growing in many domains such as medical imaging,
computer vision multimedia application or security [1].

Real-time image processing with large images and big kernels or structuring
elements could be very time-consuming. A possibility to reduce the computa-
tional power required by architectures is to use the well-known kernel decompo-
sition. For example, if we consider an erosion with a N ×N structuring element,
the complexity in terms of min operations to find the minimum in a kernel will be
O(N2). Now, if we apply N/2 times a 3× 3 structuring element, the complexity
will be O(N) to get the same result.

When using simple structuring elements such as rectangles, rhombuses or
octagons, the decomposition will be done by using a segment structuring element
successively applied on images with a neighborhood operation (an erosion for
instance). Figure 1 shows an example of a decomposition using three segments
to produce an hexagon, a pixels access for 2D or 3D images must be done using
the Bresenham coordinate generation [2]. This type of decomposition used with
recursive implementation of erosions or dilations allows to approximate many
types of 2D structuring elements [3]. Applications are numerous and we can cite
an algorithm using segment structuring elements to estimate the skew angle of
scanned documents [4].

The Interest of segment structuring elements no longer needs to be proved,
so it could be useful to design fast morphological operators to take advantage of



Fig. 1. Structuring element composition example

decompositions. The first part of the paper is dedicated to existing algorithms
designed to work with segment structuring elements, the second part shows
our modifications to reduce memory requirements and latency, the third part
presents our architecture and a comparison in terms of memory consumption is
made between our dedicated architecture and the existing ones.

2 Existing algorithms description

Two main recursive algorithms exist to compute erosion or dilation along the
discrete lines of an image with centered segment structuring elements. Both use
pixels min/max propagations in a forward and backward way. These algorithms
are often described in the literature and only a brief description will be made
here.

In both approaches we consider an image line f of size M , with an orientation
θ and a centered segment structuring element of size k.

2.1 Lemonnier’s Algorithm

This algorithm described in [5] works for dilation only, but erosion could be
achieved using the duality property between erosion and dilation.

Two scans are needed to process one line. Firstly, a recursive forward scan
on f is performed considering maxima propagation every k pixels to produce
the line h. Secondly, a recursive backward scan on h is made to spread maxima
in the other direction to get a centered structuring element.

The Lemonnier’s algorithm is interesting because only two max operators
are used for processing each pixel, but the high number of if statements must
be taken into account and an implementation on SIMD processors would not
be well-suited. Lemonnier’s algorithm could be mapped to data flow dedicated
architectures as described in figure 2.

Both passes of the algorithm are synthesized in two pipeline stages with two
line memories in between. The latter are needed to store first stage pixels of
line hn in a forward way in the first memory, and at the same time to read
pixels of line hn−1 of the second line memory in a backward way by the second
stage. When the processes terminate on each stage, line memories are swapped
to store the result of line hn+1 of the first stage and to read line hn by the second
stage. However, the double buffering principle introduces one line latency which
could be problematic for hard real-time systems. Moreover output lines are re-
verted due to a backward scan of the second stage which raises a synchronization
constraint with other systems.



Fig. 2. Functional view of Lemonnier’s architecture

2.2 Van Herk - Gil - Werman’s Algorithm

This algorithm, described by M. van Herk [6] and by Gil - Werman [7] in different
papers, operates in three stages. Firstly a propagation of f in a forward way is
done using equation 1. We notice that the number of maximum operations does
not depend on the value of k (odd). We will focus on dilation but the erosion
case can be processed simply by replacing maxima with minima.

g(x) =

{
f(x) if x mod k = 0
max(g(x− 1), f(x)) otherwise

, x = 0, 1, · · · ,M − 1 (1)

Secondly a propagation of f in a backward way is done using equation 2.

h(x) =

{
f(x) if x mod (k − 1) = 0
max(h(x + 1), f(x)) otherwise

, x = M − 1, · · · , 1, 0 (2)

Finally, the dilation is performed by merging g and h using equation 3. This
algorithm uses only three maximum operations per pixel to dilate a line with
any size of segment structuring elements.

δf (x)) = max

(
g

(
x +

k

2

)
, h

(
x− k

2

))
, x = 0, 1, · · · ,M − 1 (3)

These equations do not take into account two major padding problems. The
first one is the access from outside of line f in equation 3. The second one, and
maybe the most important, is to compute equations 1 and 2 when M is not a
multiple of k. One possibility is to add padding before and after f to satisfy
access outside of f and to get a line size multiple of k. Such a solution would
not be feasible because it adds stall cycles.

Figure 3 presents an example of padding for a line of size 19 and a centered
structuring element of size 7. The A padding is added to obtain a line size
multiple of k, and the B padding is added to prevent outside access. The left
B padding size must be equal to bk/2c and the right B padding added to A



padding must also be equal to bk/2c. The A padding size (PSA) is defined by
the following equation:

PSA = (k − (M − 1) mod k)− 1

Fig. 3. Padding example needed to merge first and second pass of HGW algorithm

Obviously equations 2 and 3 must be rewritten in order to emulate the dif-
ferent types of padding.

h(x) =


f(x) if x mod (k − 1) = 0
f(x) if x = M − 1
max(h(x + 1), f(x)) otherwise

(4)

δf (x) =


g(x + k

2 ) if x− k
2 < 0

max(g(M − 1), h(x− k
2 )) if M ≤ x + k

2 < M + PSA
h(x− k

2 ) if x + k
2 ≥ M + PSA

max
(
g

(
x + k

2

)
, h

(
x− k

2

))
otherwise

(5)

The complete HGW algorithm including padding emulation management is
described in algorithm 1.

Even if the number of cases in equations 4 and 5 grows up due to padding em-
ulation, this is not an obstacle for a SIMD implementation. Contrary to Lemon-
nier’s algorithm, cases do not depend on line values, but only on array indexes.
In this way, these equations could be implemented using multiple loop instead
of using if statement inside a larger loop.

Designing a dedicated architecture using this algorithm without modifica-
tions is not efficient because of multiples line memories to use (twice more than
Lemonnier’s algorithm design). Figure 4 shows a functional diagram of such an
architecture. We notice that we need to revert f to compute h, but we have
to reverse also g because of synchronization constraints in the merge unit. The
latter also embed a memory of size k to merge properly g and h. So a naive
design for this algorithm uses four memories of size M and one memory of size k
which is not optimal comparing to the Lemonnier’s algorithm design. Moreover,
this implementation suffers also from mirrored output lines, and from a one line
latency.



Algorithm 1 Dilation using HGW algorithm

Require: f, k, M
Ensure: δf

PSA:=(k-(M-1) mod k)-1

for x from 0 to M-1 do
if x mod k=0 then
g[x]:=f[x]

else
g[x]:=max(g[x-1],f[x])

end if
end for

for x from M-1 downto 0 do
if x=M-1 then
h[x]:=f[x]

else if (x+1) mod k =0 then
h[x]:=f[x]

else

h[x]:=max(h[x+1],f[x])
end if

end for

for x from 0 to M-1 do
if x-k/2<0 then

δf[x]:=g[x+k/2]
else if x+k/2 ≥ M then
if x+k/2 < M+PSA then

δf[x]:=max(g[M-1],h[x-
k
2
])

else
δf[x]:=h[x-

k
2
]

end if
else

δf[x]:=max(g[x+
k
2
],h[x- k

2
])

end if
end for

Fig. 4. Functional view of HGW architecture



3 Algorithm proposition

3.1 HGW modification

We notice that propagations to produce g and h in HGW algorithm are almost
the same even if the scan way is opposite.

We define a block as a group of pixels of size equal to k. If we mirror each
block of f to produce f ′ we can construct h′ using g propagation equation (1)
with the same scan way. To reconstruct original h, we just need to mirror each
h′ block. Figure 5 shows how to mirror f to produce f ′ regarding a specific
structuring element of size 7.

Fig. 5. Block mirroring to produce f ′ using size 7 structuring element

The benefits of this modification mainly affect dedicated architecture because
we use only memories of size k instead of memory of size M . An implementation
using a general purpose processor does not really make sense here because image
lines could be completely stored in cache memory, so block mirroring is not
useful.

Figure 6 proposes a functional view of a data flow dedicated architecture
using the principle of block mirroring to compute HGW algorithm.

Fig. 6. Block mirroring to produce f ′ using size 8 structuring element

The proposed modification gives the opportunity to remove the need of two
propagation policies to compute g and h. We use only equation 1 in both cases.



3.2 Block Mirroring Unit

If we consider the line size as a multiple of the structuring element size, the data
flow block mirroring could be realized using two memories of size k, one to write
a block b in a forward way and one to read the block b − 1 in a backward way.
Memories are swapped every time a pixel arrives from a new block.

But considering only blocks of size k is not satisfactory because it is necessary
to introduce padding when the last block has not got the same size as others.
We need a specific management of the last block mirroring not to introduce stall
cycles in the data flow architecture.

The principle is to use read-first memories and reverted address counters
to store and load pixels of the last blocks while freezing the memory swap.
Figure 7 shows for an image composed of two lines, how pixel memories are
managed to implement block mirroring considering the last block size inferior
to the structuring element size. The two first states have already been described
and the figure presents only the key part of the specific last block management.
It is worth mentioning that the memory state 3 is guaranteed thanks to the use
of read first memories.

Fig. 7. Block mirroring memory management



3.3 Merge Unit

The merge unit is the same as the one used in the original HGW algorithm
hardware implementation. This unit is in charge of delaying g pixel flow and
compute the maximum with h. The delay line used is needed to perform access to
pixels g(x+k/2) and h(x+k/2) before computing the maximum. The functional
view of the architecture shows us that pixels from h arrive two blocks after pixels
from g, so we only need to delay g with one delay line of size k. Moreover the
unit also takes care of the double padding policy described in HGW algorithm
equation 5. Figure 8 presents the data flow used and produced by the merge unit
considering a line of size 19 and a structuring element of size 5.

Fig. 8. Delay unit data flow

3.4 Performances

The system was synthesized on a FPGA Virtex 4LX60. The design was optimized
to reach a 200 Mhz frequency and the system uses 3 BlockRam of 18Kbits and
700 Slices. The maximum structuring element size could be 1023 with a line
length of 65535 pixels. The processing time with 512×512 images is 1.3 ms
for a horizontal segment centered structuring element of size k. The latency is
proportional regarding k and is defined as follows:

Latency = 3 · k

2
· Tclk where Tclk is the system period

The latency reduction permits to get results faster, which is important if
many operators are pipelined or if many passes are necessary to process an
application.

Memories represent a large part of the design, if knowledge on the structur-
ing element maximum size is known, memories size could be reduced because
the design is image size independent in terms of memory consumption. This is
a key point of this architecture allowing dramatic reduction of the ASIC sur-
face. For example the size of a circuit could be divided by an order of magnitude



compared to Lemonnier’s algorithm implementation or the standard HGW algo-
rithm implementation. Figure 9 shows for different sizes of maximum allowable
structuring elements the circuit area in terms of gates. The circuit area is obtain
using post place and route synthesis results.

Fig. 9. Number of gates versus the maximum allowable structuring element

A benchmark is proposed between our solution and two different SSE2 soft-
ware implementations running on an AMD Opteron 280. The first software im-
plementation use the classical approach to compute HGW algorithm because
our block mirroring scheme is only related to hardware implementation. The
SSE2 version is optimized to process vertical structuring elements, so horizontal
structuring elements must be computed by doing 90 degrees rotations of images
using SSE2 instructions. The second software implementation uses a logarithmic
decomposition[8].

The figure 10 shows timing results for different sizes of segment structuring
elements. Performances of our hardware solution is similar to a SSE2 software
implementation of the HGW algorithm on a generic purpose processor running
at a clock frequency twelve times faster than our prototype clock frequency. If
needed by applications, multiple instances of our architecture could be gener-
ated to process multiple lines in parallel, thus improving drastically the process-
ing time. The Logarithmic decomposition is interesting but could not be easily
ported to hardware because of numerous line scans depending of the decomposi-
tion step. It is necessary to expect a high number of stages using block mirroring
scheme and embedding memory which size corresponds to maximum structuring
element size. Moreover some stages could not be used because the decomposition
could be smaller than the number of stages, on the contrary the decomposition
could not be fitted entirely into the number of stages, imposing to do multiple
passes in the architecture.

4 Conclusion and future work

Our architecture is really efficient for small embedded SoC systems which need
to compute image processing algorithms using mathematical morphology with



Fig. 10. Processing time versus structuring element width

cost and power consumption constraints. In the past, architectures based on
Lemonnier’s algorithm were the most efficient to compute erosion and dilation
with line structuring elements in a recursive way. We propose a new approach
based on a modification of the HGW algorithm which produces an architecture
without line memories and have a low latency. Line size has almost no impact on
the size of the circuit and the architecture could change the size of the structur-
ing element between two lines without introducing stall cycles which gives the
opportunity to take into account perspective problems. Our present work aims
to build a criterion to automatically change the size of the structuring element
between lines.

References

1. Soille, P.: Morphological Image Analysis: Principles and Applications. Springer-
Verlag New York, Inc. 2003.

2. Bresenham, J.: Algorithm for computer control of digital plotter. IBM System Jour-
nal, 4:25–30, 1965.

3. Soille, P., Breen, Edmond J. and Jones, R.: Recursive Implementation of Erosions
and Dilations Along Discrete Lines at Arbitrary Angles. IEEE Trans. Pattern Anal.
Mach. Intell. 1996, Vol 18, Number 5, 562–567.

4. Najman L.: Using mathematical morphology for document skew estimation. SPIE,
5296,182–191, 2003.

5. Lemonnier, Fabrice and Klein, Jean-Claude: Fast dilation by large 1D structuring
elements, IEEE Workshop on Nonlinear Signal and Image Processing, Neos Mar-
maras, Halkidiki, Greece, June 20–22, 1995, 479–482, 5229.

6. Van Herk, M.: A fast algorithm for local minimum and maximum filters on rectan-
gular and octagonal kernels. Pattern Recognition Letters, 1992, Vol 13, Number 7,
517–521.

7. J. Gil and M. Werman: Computing 2-D Min, Median, and Max Filters, IEEE Trans.
Pattern Anal. Mach. Intell.,1993, Vol 15, Number 5, 504–507.

8. R. van den Boomgaard and D.A. Wester: Logarithmic shape decomposition, in
Aspects of Visual Form Processing, C. Arcelli, L.P. Cordella, and G. Sanniti di Baja
(Eds.), World Scientific Publishing Co.: Singapore, Capri, Italy, 1994, pp. 552-561.


