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Abstract 
 Binary morphological transformations based on the residues (ultimate erosion, skeleton by 
openings, etc.) are extended to functions by means of the transformation definition  and of  its associated 
function based on the analysis of the residue evolution in every point of the image. This definition allows 
to build the transformed image and its associated function, indicating the value of the residue index for 
which this evolution is the most important. These definitions have the advantage of supplying effective 
tools for shape analysis and of allowing the definition of new residual transforms together with their 
associated functions. Two of these numerical residues will be introduced, called respectively ultimate 
opening and quasi-distance and, through some applications, the interest and efficiency of these 
operators will be illustrated. Finally, this residual approach will be extended to more complex 
operators. 
Keywords 
Image analysis, mathematical morphology, residues, ultimate opening, quasi-distance, image 
segmentation, hierarchy. 
 
1. Introduction 
  In binary morphology some operators are based on the detection of residues of 
parametric transformations. Among these operators, the ultimate erosion or the skeleton by 
maximal balls can be quoted. They can more or less easily be extended  to greytone images. 
These extensions are however of little use because it is difficult to exploit them. This paper 
explains the reasons of this difficulty and proposes a way to obtain interesting information from 
these transformations. It also introduces new residual transformations and illustrates their use in 
applications. 
 
2. Binary residues: reminder of their definition 
  Only operators corresponding to the residues of two primitive transforms will be 
addressed here. A residual operator θ on a set X is defined by means of two families of 
transformations (the primitives) depending on a parameter i (i ∈ Ι), ψi and ζi, with ψi ≥ ζi. The 
residue of size i is the set: 

ζψ iii \=r  
the transformation θ is then defined as: 

∪
Ii

ir
∈

=θ  

 Usually, ψi is an erosion εi. According to the choice of ζi, we get the different following 
operators: 
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- The ultimate erosion [3]; the operator ζi is then the elementary opening by reconstruction of the 
erosion εi: 

( )εγζ irec i =  
- The skeleton by maximal balls; in that case the operator ζi is the elementary opening of the 
erosion of size i: 

( )εγζ ii =  
 Generally a function q, called associated function is linked to these transformations. The 
support of q is the transformed θ(X) itself. This function takes in every point x, the value of 
index i of residue ri containing point x (or more exactly the value i+1, so that this function is 
different from zero for r0). Indeed, in the binary case, if the primitives are correctly chosen, to 
every point x corresponds a unique residue. Then, we get: 

( ) rx :1+ i=xq i∈  
 For the ultimate erosion, this function corresponds to the size of the ultimate components. 
For the skeleton, it is called quench function and corresponds to the size of the maximal ball 
centered in x.  
 
3. Extension to greytone images 
  Although it is common to read or to hear that these operators can be extended without 
any problem to the numerical case (greytone images), this extension is in fact not as 
straightforward as it appears to be, for the transformation θ itself but also and especially for the 
associated function q. 
 
3.1. Definition of the operator θ in the numerical case 
 A "simple" definition of θ can be written: 

( )ζψθ iiIi - sup= ∈  
by using the numerical equivalents of the set union and difference operators. 
  However by doing so, a first problem appears. The subtraction of functions is not really 
equivalent to the set difference. In the binary case, we had, for a sensible choice of the primitive: 

 ∅∩≠∀ =rr:jij i, ji  
In the numerical case, it is not true any more. The residues ri and rj may have a common support, 
which entails that ( ) 0r,r ji ≠inf  (Figure 1). 

 
Figure 1: Superimposed residues appear for various sizes of erosion 

 
 It follows that, in the numerical case, the definition of function q associated to 
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transformation θ is not as evident as in the binary case where every ri  has a different support.  
 
3.2. Definition of a simplified q function 
  Let us define a simplified q function by observing the construction of the transformed 
function θ and the evolution of this construction in every point x of the domain of definition of 
the initial function f. To do so, let us come back to the design of  the transformations in the 
binary case by replacing set X by its indicator function kX and by observing how the indicator 
function ( )xk r i

 of the residues at point x evolves for each transformation step. 
  In the case of an indicator function, this evolution is obvious: all ( )xk r j

 are equal to zero 
except the indicator function of the residue ri  containing x. It can be written: 

( ) ( ) 0xk : 1+i=xq r i
≠  

if we replace the indicator of X by a two-level function (with b<a), 
( )
( ) notif   b=xf

Xx if  a=xf ∈
 

the phenomenon does not change (Figure 2). 

 
Figure 2: Residue and its indicator function 

 
Let us take now the case of a general function f. In that case, there are several values of  index i 
for which the difference ( ) ( ) ( )x-x=xr iii ζψ  at point x is different from zero. 
So, in order to keep the most significant residue, we define an associated function q with a value 
at point x equal to index i for which ri(x) is positive and maximal. 

( ) ( ) 1+-=1+r=q iii ζψmaxmax  
( ) ( ){ }maximaland  0> xr:1+i=xq i  

If this maximum appears for several values of i, only the highest value will be retained: 
( ) ( ) ( ){ }maximaland 0>xr:1+i=xq imax    

The ultimate erosion obtained by applying these definitions is illustrated below (Figure 3). 
 
 Notice that, when the original image is more or less a two-level one, the result is not very 
different from the one obtained by using the binary versions of these operators on a thresholded 
image. The advantage of the approach is to avoid this thresholding step (which in this particular 
case could be problematic). 
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Initial image                        Ultimate erosion                  Associated function 

Figure 3: Greytone ultimate erosion for a greytone image 
 
   Obviously, it is not possible any more to entirely reconstruct the initial image 
from its skeleton and the associated function as it was in the binary case. One can however 
define a partial reconstruction ρ(f) of the initial function f as follows: 

( ) ( ) ( )( )xq
Ex

Bxf ⊕=
∈

θρ sup  

At every point x a cylinder is implanted, its base being a disc with a radius equal to the value of 
the associated function in this point and its height being given by the value of the residue at the 
same point (Figure 4). 

 
Figure 4: Image reconstructed from the numerical skeleton by openings 

 
4. New operators 
  All previous residues are residues of differences of erosions and openings. However 
many other operators can be defined in binary as well as in numerical cases from different 
primitive transformations ψ i  and ζ i . Indeed it is enough that they depend on a parameter i and 
that they verify the relation ζψ ii ≥  to be “eligible”. However, many of these transformations 
seem to be of low interest because the results obtained are either too simple, or available by 
simpler means. Nevertheless, some operators are really interesting. Some, indeed, provide 
self-evident residues but are far from being uninteresting when the associated function is 
considered. Others, while presenting low interest in binary, become very useful for greytone 
images. To illustrate this, let us introduce two new residual operators named respectively 
ultimate opening and quasi-distance. 
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4.1. Ultimate opening 
  Let us consider the residual operator v where the primitives ψ i  and ζ i  are respectively 
an opening by balls of size i and an opening by balls of size i+1: 

γψ ii =  
γζ 1+i i =  

( )1sup +
∈

−= ii
Ii

γγν  

  The operator ν does not present any interest in the binary domain. Indeed, in that case, it 
is easy to show that it is equal to the identity. In the numerical domain, it replaces the initial 
image by a union of the most significant cylinders included in the sub-graph of the initial 
function. 
 A significant cylinder is the biggest and highest cylinder included in the sub-graph of the 
initial function. It is the biggest cylinder covering every point of the image. 
  This operator does not provide the same result as the reconstruction described 
previously. It emphasizes the size of the significant cylinders as illustrated in Figure 5.  
  The associated function s, even in the binary case, presents a higher interest. In every 
point x, s(x) is equal to the size of the biggest disk covering this point x (binary case) or to the 
radius of the biggest significant cylinder of the partial reconstruction covering (numerical case). 
Function s is called granulometric function. 

 
                  Initial image                       Ultimate opening             Granulometric function 

Figure 5: Ultimate opening and granulometric function 
 
4.2. Quasi-distance 
  In the previous definition, openings can be replaced by erosions. A new residual operator 
τ is then defined; its interest also lies in its associated function. 

εψ ii =  
εζ 1+i i =  

( )1sup +
∈

−= ii
Ii

εετ  

  In the binary case, this operator is of no interest because it is equal to the identity and its 
associated function d is nothing else than the distance function. 
  In the numerical case, the physical interpretation of the residue itself is not very explicit. 
The associated function d is more interesting: it is very close to a distance function calculated on 
the significant flat or almost flat zones of the initial function. By significant, one means a zone 
corresponding to an important variation of the erosion. 
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Figure 6:  Quasi-distance (right) of the initial image (left) 

 
  Figure 6 shows this transformation applied to an almost two-level image. Even on this 
relatively simple image, in certain places the appearance of rather high values of this 
quasi-distance can be noticed. These values come from the erosion of relatively flat zones which 
appear when zones above have been eroded and have disappeared (Figure 7). They correspond to 
“hung up” distance functions. When the initial function is arranged in terraces (flat zones which 
are not extrema), its quasi-distance is not symmetric on the flat zones which do not correspond to 
maxima. 

 
Figure 7: Multi-level function and its quasi distance 

 
  Different strategies can be used to correct this phenomenon. One promising technique 
consists in looking for the zones where the quasi-distance is not 1-lipschitzian and to correct 
these zones by an iterative approach, as shown next. 
 
4.3. Corrected quasi-distance 
  A classical distance function d is 1-lipschitzian. It means that, given two points x and 
y, the following relation holds: 

( ) ( ) yxyd-xd −≤  
  In particular, when x and y are two adjacent digital points, their distance is at the most 
equal to 1. It is obviously not the case for the quasi-distance due to the “hung up” distances and 
to the non symmetric distances on some plateaus. It is however possible to force this 
quasi-distance to be 1-lipschitzian by means of an iterative procedure of “descent of hung-up 
distances”. It consists in subtracting from the function d distances larger than 1 between a point 
and its neighbours (ε denotes the unit erosion). 
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• For any point x where  ( )[ ]( ) 1>xd-d ε , do ( ) ( )( ) 1+xd=xd ε  
• The procedure is iterated until idempotence. 
 

 
Figure 8: Quasi-distance before and after correction.  

 
5. Applications 
  In the same way as the residues were used in set segmentation, their numerical versions as 
well as the new residues described above constitute remarkable tools of granulometric 
description and of markers generation for segmentation. To illustrate the potentialities of these 
transformations, let us present three applications in  greytone segmentation. 
 
5.1. Critical disks 
 In this first application, the ultimate opening and its associated function are used to extract 
the critical disks of a binary set X. 
 The notion of critical disk (or ball) was introduced in [8] and [5]. Our purpose, then, was to 
enhance the segmentation of binary particles when they were too intricated to be separated by 
ultimate erosions. The skeleton by maximal disks of a set X corresponds to the centers of the 
maximal disks included in X. A maximal disk is a disk which is not included in any other disk 
contained in X. It is known also that the set X can be totally reconstructed by means of its 
maximal disks. However, this set of maximal disks is redundant for the reconstruction. In many 
cases, a subset of the maximal disks is sufficient to reconstruct the initial set. The maximal disks 
belonging to this subset are called critical disks. A maximal disk is critical when it cannot be 
covered with any combination of the other maximal disks. 
 In Rn, one can show easily that, if we consider euclidean disks (balls), the set of critical 
disks of X is unique. However, if the disks are polyedra ((hexagons for example in R2 or in 
digital spaces), this uniqueness is not verified. In that case, several covering solutions may 
appear. It is due to the fact that the union of maximal polyedral disks of same size may generate 
new maximal disks of same size (Figure 9).  
 Indeed, the skeleton of a set is generally a bad shape descriptor, due to the occurrence of 
these non critical redundant disks. Many solutions have been proposed to define minimal 
skeletons [7, 10]. The multiple possibilities of covering induced by multiple choices of critical 
disks explain the complexity of the problem. 
 However, the use of the function associated to the ultimate opening together with a restricted 
definition of a critical disk allows to filter some maximal disks and to produce a skeleton which 
is not minimal but nevertheless leads to a better separation of deeply intricated particles.  
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 In the digital case, a restricted definition of a critical disk is given by: 
{ } ∪

Jj
jikN1, i BBthatsuchij:j....,j=Jexistnotdoesit:criticalB

∈

⊂≠  

 A digital maximal disk Bi of size i is critical if there is no combination of maximal disks Bj, 
the size j of Bj  being different of the size i of Bi,  which covers Bi. 

     
Figure 9: On the left, the inside disk is not critical. On the right, two coverings 

of the initial set by different "critical" hexagons 
 
 The function associated to the ultimate opening is, in the binary case, a first filter which 
eliminates some non critical disks. Indeed, given that only the biggest disks appear in this 
associated function, every maximal disk covered with disks of bigger size is suppressed. 
Furthermore, only the parts uncovered with disks of bigger size are visible in those disks that 
were preserved. So, a second filter can be applied on this associated function. It consists in 
detecting lower size disks which are able to cover what was uncompletely covered with higher 
size disks.  
The procedure is as follows (Figure 10): 

• Starting from the skeleton quench function q and from the granulometric function s 
associated with the ultimate opening, for every level i, it is verified that the centers of the 
maximal disks of size i are covered. By considering ( ){ }i=xq:x=Z i , the centers of the 
maximal disks of size i-1 and ( ){ }i=ys:y=Y i , the set of the points of these uncovered 
disks, the intersection ( )YZ iii δ∩  (δ i  is a dilation of size i) provides the centers of the 
potentially critical disks of size i-1. 

• The second step consists in verifying if the potentially critical disks selected by the first 
step cover or not some potentially critical disks of bigger size. For this, we calculate the 
infimum between the granulometric function and every cylinder of size i and of height 
i+1 implanted in every centre of potentially critical disk of radius i obtained during the 
first stage. The grey levels of the resulting function mark uncovered disks by sets of 
bigger or/and smaller disks, in other words the critical disks. The centers of these disks 
can be then built by the same procedure as the one used in the first stage. 
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(a)                                          (b) 

 
(c)                                          (d) 

 
(e)                                              (f) 

Figure 10: The various stages of the selection of the critical disks 
(a) Initial set, ( b ) centers of maximal disks, ( c ) granulometric function 

(d) centers of maximal disks not covered with bigger disks 
(e) centers of critical disks and ( f ) of non critical disks 

 
 Starting from the critical disks, a new granulometric function can be defined by performing 
the union of the cylinders associated to these critical disks. This function can itself be used to 
generate markers. For example, the significant critical disks can be extracted i.e, those that are 
sufficiently uncovered. From these first markers, one selects the centers of the corresponding 
critical disks which can be used as second markers (Figure 11). 
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Figure 11: : Selection of the most salient critical disks (in fact hexagons) of the image 

 
5.2. Size distribution and segmentation of blocks 
  An application of granulometric functions consists in defining real size distributions of 
objects in an image without the necessity of extracting them beforehand. Furthermore, this size 
distribution is always closer to the real size distribution of the analyzed objects than the one 
obtained by successive openings of the image. 

 
(a)                                                         (b) 

Figure 12: Blocks of rocks  (a)( © CGES/ENSMP) and associated granulometric function (b) 

 

 
Figure 13: Size distribution of blocks (histogram of the granulometric image) 

 Figure 12a represents a heap of rocks. A granulometric function can be built, associated to 
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the ultimate opening (Figure 12b, openings are isotropic). As the value of every pixel 
corresponds to the size of the biggest opening containing this pixel, the histogram of the 
granulometric function (Figure 13) produces a size distribution curve very close to the real size 
distribution of blocks (at least in 2D). 

 
Figure 14: Blocks marking and segmentation  

 
  Granulometric functions can also be used to mark blocks. Then, markers can be counted or 
used to perform segmentations of the image by watersheds. The generation of these markers is 
made by performing on every threshold of the granulometric function an erosion of a size 
proportional to the threshold value. Figure 14 illustrates these algorithms On the left, markers of 
the blocks of rocks have been defined by this size-controlled erosion. On the right, the result of 
the marker-controlled gradient watershed of the initial image (upper view) is shown (lower 
view).  
 
5.3. Image segmentation 
  The third application will use quasi-distances. This application is only a sketch of the 
possibilities offered by this type of tool. 
  One saw previously that the quasi-distance allows to build a distance function for the 
relatively flat and relevant zones of a greytone image. This property is used here to exhibit the 
markers of these regions. Then these markers can be used to control the watershed 
transformation of the quasi-distance in order to segment the homogeneous regions of the image. 
The various steps of the algorithm are the following (Figure 15): 

• Computation of the quasi-distance of the initial image f. 
• Image inversion and computation of the quasi-distance of fc. 
• Supremum of the two quasi-distances. 
• A threshold of this new function at a given level i allows the extraction of homogeneous 

regions of the image of size larger than i. 
• Computation of the watershed transform of the supremum controlled by the previous 
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markers. 
  
 The calculation of the quasi-distance of the inverted image is compulsory to exhibit the dark 
regions which can correspond to minima of the image. One saw previously that, in that case, 
quasi-distances are either equal to zero or “hung up”. The calculation of this quasi-distance after 
inversion allows to take into account the real sizes of these structures. Notice also that this 
segmentation does not use the image gradient. 
 

 
Figure 15: Use of quasi-distances in image segmentation 

 
6. Extending the concept of residues 
 It is very common, in mathematical morphology, to use parametric transforms. However, the 
value of these parameters (size of a filter, level of a hierarchy, threshold value, etc.) is sometimes 
difficult to determine. The best value may vary from image to image and even inside a given 
image. 
 The notion of residue, by indicating the parameter value corresponding to the strongest effect 
of a parametric transformation, can be very efficient in the process of selecting these best values. 
In fact, this capability has already been illustrated in the block marking and segmentation 
example: the size of the erosion applied for extracting the markers is locally determined 
according to the granulometic function. 
 Residues can be derived from many initial transformations ψ i  and ζ i . It is not compulsory 
that these transformations are simple. In order to illustrate the efficiency of this notion of 
residues, let us apply this concept to define a new morphological hierarchical segmentation tool. 
 The waterfall transformation is often used to produce various levels of hierarchical 
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segmentation from an initial watershed transform [1, 6, 9]. Starting from a greytone image f, we 
compute its gradient g, then the valued watershed of g, denoted w0. By means of a dual geodesic 
reconstruction of w0, we get a new image, called hierarchical image. The watershed of this 
hierarchical image gives a new segmentation where the less significant contours have been 
removed. The process can be iterated from this new watershed to produce successive levels of 
hierarchy. This sequence of waterfall transformations, although very efficient in some cases, 
presents various drawbacks. Firstly, it is impossible to determine which level of hierarchy 
corresponds to the best segmentation. Secondly, this best segmentation does not occur for the 
same level of hierarchy everywhere in the image. However, these two problems can be solved by 
means of a residual approach. 
 Let us define iteratively the transformation ψ i  from the previous transform ψ 1-i . Let mi-1 be 
the minima of ψ 1-i . Let us build a new function ξ 1-i  equal toψ 1-i  everywhere except for those 
points belonging to the minima where ∞+=1-i ξ  (in practice, ξ 1-i  takes the maximal possible 
grey value of the image). Then, we can define ψ i  as the dual geodesic reconstruction R* of ψ 1-i  
using ξ 1-i  as marker: 

( )ψψ ς 1-i i i
R= *

1−
 

By definition w= 00ψ . 

 
Figure 16: Hierarchical segmentation from residues of pilings 

(a) Initial watershed, (b) construction of ψ1, (c) first residues, (d) construction of ψ2 (in grey) 
and residues r2 (dark grey), (e) supremum of r1 and r2, (f) the various piles and their order of 

appearance, (g) final θ function (supremum of all residues) 
  Figure 16 illustrates the transformation. This operator fills in the catchment basins 
associated to the minima mi with successive pilings. We define now the residue ri  as follows: 

( )ψψ 1-i ii -=r  
 Each residue corresponds in fact to the new piles which have been added to fill in the 
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catchment basins of the initial watershed transform. Then, we define the two functions θ and q 
from the residues: 

( )ψψθ 1-i iIi - sup= ∈  
( ) ( )ψψ 1-i ii -=r=q maxargmaxarg  

 
 The function θ, by removing the contours which are covered by thicker piles, preserves 
regions in the image surrounded by significant contours. A contour is significant when the 
contrast of all the contours inside the enclosed region is less than half the contrast of the 
significant contour. It is interesting to note that this approach works even when the significant 
region does not present internal contours (this is not true with the waterfall algorithm). The 
contours which remain in θ (hollow contours) correspond to the best hierarchy of segmentation. 
 The associated function q is an indicator of the homogeneity or complexity of each preserved 
region. The lower the value of q, the smoother the corresponding region. Figure 17 shows the 
efficiency of this operator on a real image. 
 

 
(a)                                            (b)                                          (c) 

 
(d)                                            (e)                                          (f) 

Figure 17: Initial image (a), valued watershed of gradient (b), supremum of pilings θ (c) 
Associated function q (d), initial contours (e), preserved contours after piling process (f)  

7. Conclusions 
  Not only does the definition of numerical transformations based on residues provide 
extensions of efficient tools in binary and numerical morphology but, furthermore, allows to 
introduce new operators whose potentialities are enormous. The importance of the doublet 
constituted by the transformation and by its associated function has also been emphasized, this 
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last one being sometimes more interesting in numerical morphology than in binary one. 
 The extension of these notions and especially the definition of a simplified associated 
function was possible by changing our point of view: rather than focusing on the neighborhood 
relationships between the image points, we point out the modifications which occur vertically in 
a point as we “unwind” the transformation, the most significant changes and especially the 
moment when they occur constituting the core of information provided by these operators.  
 The applications presented as illustrations of the potentialities of the granulometric functions 
and of the quasi-distances still deserve additional developments. However, the efficiency of these 
operators can already be verified and a large number of tracks of future applications can be 
considered. 
 The granulometric function is a powerful segmentation and filtering tool. By associating 
every point of the image to the size of the highest cylinder included in the sub-graph, it allows 
ipso facto to adapt the size of the filters which are applied in each of its thresholds. It is also 
possible to eliminate too deeply covered components or, on the contrary, to extract non covered 
blocks. This capability is interesting in numerous applications where objects appear in heap and 
where random sets models (“dead leaves” models notably) are used. The topology of every 
threshold of the granulometric function and in particular the presence of holes is very important. 
These holes indicate generally the presence of superimposed structures. This constitutes an 
important tool for describing stacked structures. 
  The quasi-distance is the missing link between sets distance functions and a tool allowing the 
direct extraction of dimensional information on the homogeneous regions in greytone images. 
The efficiency of the distance function to generate segmentation markers is well known in the 
binary case [4]. Quasi-distance allows to extend this capability to greytone images. In fact, this 
operator performs many tasks at the same time: it is a filter which equalizes the homogeneous 
regions of the image; it quantifies the size of these homogeneous regions and finally, it enhances 
the most contrasted regions in the image, in a similar way a waterfalls algorithm acts. It is not so 
surprising that segmentations obtained with this operator are very close to those provided by the 
hierarchical segmentation by waterfalls. However, while the waterfalls algorithm proceeds by 
grouping regions, the use of quasi-distance leads directly to a similar result. One can say that, 
whereas the approach by waterfalls is a “bottom-up” approach, quasi-distance supplies at once a 
“top-down” hierarchical organization [2]. 
 Finally, the extension of the notion of residue is relatively easy. Any transformation 
depending on a parameter can be used to generate residues as it has been shown for the 
hierarchical segmentation from piles. The residues can themselves be organized into a hierarchy, 
by selecting the residues of second, third order. This change of point of view brought with the 
residues is extremely fruitful.  
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