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This paper presents an application of marker-controlled segmentation in petroleum engineering. The im-
ages to be segmented originate from high resolution conductivity measurements of borehole walls. Tnese mea-
surements reflect the composition and structure of the rock formation through which the well was drilled.)n this
application, we detect and measure small cavities in the walls.These cavities an~called vugs.

We use the tools provided by mathematical morphology. Our strategy is based on gradient image modifi-
cation using markers and on the watershed transformation. First, the vugs are automatically marked,. as well as
the background. These markers together delineate areas of interest in which we know there is one contour per
vug. In order to find the vug contour and perform measurements, we modify the gradient image in such a way
that only a single edge is kept between the vug and the background markers. We perform the final step of edge
detection using the watershed transformation of the modified gradient image. The final result is one closed con-
tour per marked vug.

There exist two basic approaches to image segmentation. The first one is boundary-based and fmds local
changes. The second is region-based and searches for pixel and region similarities18 10. They both attempt to
degrade image data as gracefully as possible to extract tokens to be passed to higher level analyzers.

The most widely used set of tokens is the edge map: objects in images are represented using their edges,
giving a cartoon-like representation of them. There are good reasons to adopt this image representation. From a
computational point of view, an edge map neatly represents image data: it is compact and we may devise power-
ful algorithms to extract and integrate from it higher-level characteristics such as length, curvature and so on.
This representation is also consistent with experimental results from physiology, which tend to cont.rrm the exis-
tence of such mechanism in vision processes12.

In this application, the approach proposed by Marr and Hildreth12 13to obtain a cartoon-likerepresenta-
tion is inoperative as it experiences two implementation problems. The first of these problems originates from
the implementation of the edge fmder. It is not a trivial task and most of the approaches used to achieve this goal
need parameters to be carefully adjusted for a specific application. An example of edge finder is the mresholding
of gradient images1. It is very sensitive to noise and threshold parameters, and gives thick and incomplete edges.



A more sophisticated algorithm uses heuristic searchll 14. It gives better results, but we have to define the
heuristics, cost functiorts, start and stop criteria with care. These heuristics vary from an application to another
and it may be difficult to find good heuristics to make it work. Edge finding using zero-crossings of the second
derivative of images is sensitive to noise and quantification errors. Blurring filters may be used to improve the
SNR and regularize the ill-posed problem of derivationS, but their action is cmtagonist with edge detection.
Moreover. the use of these filters imply an a priori knowledge of object size. In our application. this knowledge
is not available.

In order to give 3I1 answer to the problem of fmding edges in images, Beucher and Lantuejoul6 proposed
the use of the watershed transformation on gradient images. It is a powerful approach,but it experiences difficul-
ties not much different from the second problem of Marr's cartoon-like representation: there are too many edges
and we must fmd a strategy to eliminate them. Figure I shows this over-segmentation problem in a borehole im-
age.

To overcome these problems, a strategy has been recently proposed by Meyer and Beucher 3 15.This
strategy is called marker-controlled segmentation and has been successfully applied on electrophoresis gel char-
acterization2 3, road detection5 and cardiology9. The main idea underlying this approach is that often machine
vision systems "know" roughly from other sources the location of the objects to be segmented.

The way to apply this a"pproachis the following: first. we find properties which will be used to mark the
objects. We call these markers object markers. We do the same for the background, i.e, for portions of the image
where we are sure there is no pixel belonging to any object These markers constitute the background markers.
The remaining of the procedure is straightforward and is the same for all applications: we modify the gradient
image in order to only keep the most significant contours in the areas of interest between the markers. Then, we
perfonn on the modified gradient image final contour search using the watershed transformation. No supervi-
sion, no parameter and no heuristic is needed to perfonn the fmal segmentation. The parameters controlling the
segmentation are concentrated in the marker construction step where it is easier to control and validate them.

We used this approach on a specific application from the oil industry. Sections 2-4 describe the applica-
tion, while section 5 presents the results we obtained from our approach. We expose details on the application
which may seem superfluous in a vision paper. However, these details illustrate how we approached the prob-
lem, and may show how a generalization can be done for other vision tasks.

The images were obtained from a Fonnation MicroScanner™, a tool used in the oil industry to scan bore-
hole walls in order to examine the underlying geological structures7. It works by injecting high frequency cur-
rents into the formation through an array of electrodes scanning the wall. These electrodes are located on pads
which are pressed against the borehole walls by hydraulic devices, as shown on figure 2. Current intensitiesare
acquired, measuring geological formation conductivities. Images are generated by the moving array of elec-
trodes. Pixel grey levels are a representation of the rock fonnation conductivity. and the whole acquisition pro-
cess has to be modelled in order to make quantitative measurements on the images. It is in this way that it is an
unusual vision problem: we had to use knowledge about the tool response instead of the usual assumptions made
for scene analysis12 which are related to the eyelbrain response.

The images are an internal unwrapped view of the borehole walls, the linage x axis being the angle e in a
cylindrical coordinates system. while the z axis is associated with depth. Due to the limited pad width, we do not
have a complete view of the wall. We have instead stripes corresponding to the acquisition pads. Stripe width is
27 pixels. each pixel representing a square of 2.5 x 2.5 mm. Figure 3 shows a typical image obtained with this
tool.
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Figure 2: Acquisition tool principle: on the left, the too}
scans the walls of a well. On the right, schematic closeup
of one pad. Dark circles represent electrodes. (Not to
scale. )

Figure 1 (right) and 3 (left): Watershed transformation of gradient images lead to over-segment.3'ijon as
we see it on this "edge map" put over the typical input image on the left. Height is about 30 cm.

The application is devoted to vug detection in these images. Yugs are small cavities in the rocks :and can
be compared as pores in a sponge, allowing oil and gas to be stored into the formation. During the drillIng pro-
cess, these vugs are filled with conductive mud giving local conductivity ma-xima in the im3ges. Nu,acrical
modelling of the tool response has shown th3t 3 vug boundary corresponds to an inflexion line which l~lay be
detected using gradient maxima. It is seen as a crest line in gradient modulus Images. Further modelling results
show that there is a relationship between conductivity contrast. detected size and 'lug depth. These resuh wIiI
enable us to qualify in terms of depths the vugs we detecL It is also useful for artefact elimination. as;;~'c will
show in section 4. Figure 4 shows a typical image profile.
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Figure 4: Typical image profile caused by a vug. Top: image profile, middle: underlying vug, o.ouom,
gradient profile.



From these criteria, we have to find robust detectors. We describe in this section how we found them. We
then detail the algorithms.

We resort to fJltering in order to generate reliable vug markers. In this application, we use morphological
closing $(f) with a diamond-shaped strucwring element,fbeing the input image.

The preprocessing steps may vary. For example, we could have used linear filters instead of the closing
filter. This is not critical to our application, although morphological closing performed better in our case. There
are no straightforward procedures to fmd good filters yet.

Markers playa central role in the approach we present here. This section describes the .algorithms we
used to get them. In our approach, the markers determine the final segmentation.

Object markers

As we saw in section 2, a vug is seen as a local maximum in conductivity images. The choice among
maxima detection algorithms is not critical, if they fulfil the following requirements: i~

• The marker must be located inside the object.

Mathematical Morphology provides an excellent maxima detector3. A maximum is °a region or a con-
nected component of pixels on an image there is no descending path going rD. The detector is implemented as
follows:

where a is the preprocessed image </>(f), Om the object marker function and recons(a,g) is the morpholog-
ical function reconstruction operator. This operator is implemented this way in the digital case:

(m ffiB) is the dilation of the marker function m by the planar structuring element B which is the digital
disk of diameter 1. The result of each iteration is put back into m. Figure 5 illustrates how the maxima detector
works.



Between vugs, there are valleys in the conductivity images where pixel intensity is lower. These valleys
are not part of the vugs. They fonn contours of the areas of interest isolating each vug. Again, the choice among
manydetectors is not critical, provided the following requirements:

The watershed transformation comes from an analogy of image data with the surface of a landscape, as
shown in 3 and 16.This landscape has peaks, valleys, crestlines and catchment basins. If we let fall -,;vater on this
surface. it will concentrate over the minima of the surface. The surface drained by a minimum is caned a catch-
mentbasin, and the common points between catchment basins are part of a network called the watershed 6.

In practice the algorithms do not work using this definition. They use instead the notion of surface im-
mersion_ We can imagine the surface progressively immersed into water. in the same way as we :dueshold an
image. Water will go up through the minima of the image. making ever-increasing lakes which are labelled from
the start. At a certain time depending on the altitude of the points. lakes can merge. If we build darns in order to
keep the lakes separated. and if we continue flooding the surface, we will end up with lakes separated with darns
covering the surface. These darns are the watershed lines. Soille and VincentI? recently made a very efficient
implementation of the algorithm outlined here. The final segmentation using this algorithm results in compact
regions separated by connected lines one pixel wide.

In our case. as we calculate the watershed on the complementary of the filtered image, we find the
valleys surrounding maxima, or summits, of the image..



Using the markers, we now eliminate the spurious edges in the gradient image. This is achieved again by
morphological function reconstruction. This operation directly manipulates the gradient in such a way that only
the strongest edge between the markers will generate a detectable contoUr for the final search algorithm. This
time, instead of reconstructing the function using a marker under the function to be reconstructed, we use a
marker which is over it, and work on the complementary of the reconstructed function. By duality, instead of
using dilation of the markers followed by intersection with the function to be reconstructed, as in equation (2),
we use erosion of the marker function, followed by union of the result with the function to be reconstructed. This
dual image reconstruction is implemented as:

(m 8 B) being the erosion of the marker function m by the planar structuring element B which is the digi-
tal disk of diameter 1.

g is the gradient image, gmax being the maximum value of the image g. kMfis the indicator function of
~ ~

In the case of the maxima detector, the reconstruction had the effect of clipping peaks. In this case, it fIlls
spurious minima and keeps only pertinent maxima of the function.



Spurious
minimum

Spuriom
minimum

Final
watershed

Final
watershed

t t t
External Vug Extemal
marker marker marker

'\
Figure 6: The gradient modification is controlled by the marker function in order to suppress spurious

minima leading to over-segmentation.

The gradient function being morphologically reconstructed, it is now possible to perform the final con-
tour extraction. The watershed transformation has been proposed by Beucher and Lantuejoul 64 to perform the
task. The most similar approach to track contours on gradient images is from Martelli14 who used heuristic
graph search on the image. The watershed transform has the advantage over the former to be non-parametric:
there is no threshold or parameter to set and no heuristic to implemenL Moreover. it is a global algorithm in-
trinsically giving closed and thin contours.

We experienced a problem while using the maxima detector to mark vugs: homogeneous regions exhibit
smooth bumps which are not vugs. As these bumps do not have as much contrast as real vugs, it is possible to
threshold markers against image background.

The problem is how to evaluate this background. Interpretation geologists have isolated a few criteria
defining the background of conductivity images. The background is associated with large plateaus which are
neither maxima nor minima. These plateaus vary smoothly. Generally. background has a relatively low
intensity.

From these criteria. we constructed a detection algorithm based on morphological filtering. First, we
eliminate image minima smaller than a given size using an closing <1>: we perform a dilation on the image fol-
lowed by morphological dual reconstruction. Then, we eliminate maxima on the resulting image using an open-



ing y. we erode the image and then perform dual morphological reconstruction. The pixels of the image which
have not changed are then considered as belonging to the background. The structuring elements used are rectan-
gles spanning the entire width of the image and 40 pixels deep. Figure 7 shows an example of background pro-
file and how the detection algorithm works. This gives us an adaptive threshold. This will not have any influ-
ence on the detection in the other zones delimited by the background marker. The filter equations are as follows:

){a) = recons«a eR), a))

<jl(a) = drecoilS«a EB R), a)

(9)

(10)

(11)

where '¥ is the morphological fJlter, a the input image, recons and drecons the morphologicaI Teconstruc-
tion operators and R is the rectangular structuring element we used. Figure 8 shows the different steps of the fil-
ter.
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Figure 7: Background detection by fJltering. Plateaus larger than structuring element size are unchanged
and considered as background.



~t .
~

"~

Figure 8: Left: original image, middle: closing with reconstruction, right: opening with re{;onslruction.
The closing eliminate minima smaller than the structuring clement used while the opening eliminatc maxima.

We fIrst tested thc system on lab data obtained from a rock block into which holes of various diameters
and depths have been drilled. Results were excellent. In this paper, we present results obtained from real well
data originating from a carbonate reservoir. Results correlate well with visual det.ection. Some differences ob-
served were caused by incorrect artefact elimination. Some contours were slightly shifted compared to the con-
tours found visually, but there were also differences when different geologists contour the vugs by hand. There
arc twO causes to these inconsistencies: the rust one is a blurring effect caused by the point-spread function of
the acquisition system, which makes a visual ambiguity The second cause is a visualisation artefact: the
dynamic range of the images is too wide for a CRT screen and this generates clipping effects which may shift
visual boundaries.

Figure 9 shows segmentation results. Validation is still under way in order to compare the results ob-
tained with information gathered from other sensors.
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Figure 9:Left: original image, center: vug and background markers over input image, rignt: COntours
found by the system.

A marker is a binary set. It is less complex to process and manipulate than a full grey-level image or a set
of filter parameters.

• The approach is more related to the physical world: marker parameters are usually more goal-oriented
and physically justifiable than parameters such as thresholds or region growing criteria 10 18.

The marker generation modules, gradicnt operators and edge detectors are all independent. The well-
admitted principle of modularity mentioned by Marr12 is respected hcre. This gives to our strategy the
Oexibility segmentation systems badly need.

• The user may even put himself the markers on the image. Often, the tcdious task for human operators is
to measure objects. Recognition is generally not very difficull Image processing algorithms have usually
more problems recognizing objects than measuring them oncc they are recognized. We can use the
strengths of both the operator and the system, letting the operator perform recognition and the ;algorithm
measurements and fine segmenlation.



This strategy is rather different from those who were generally proposed in the literature. such as the pri-
mal sketeh13. Image understanding is done at the fIrst place using simple detectors. It is during this marker gen-
eration step that most of the "graceful degradation"12 is done. Contour extraction only aims at measuring ob-
jects.

We have presented an alternative approach to edge detection and region growing segmentation. With the
use of objects and background markers, it is possible to suppress spurious edges by directly modifying gradient
images before searching for the edges. The boundary is known to be located between the object and background
marker surrounding it The morphological function reconstruction acts as a spurious edge removal transforma-
tion. It leaves only the strongest gradient crest between edge and background markers. Afterwards, any straight-
forward edge follower can be used in order to track the edge left by the reconstruction step. The watershed
transformation by construction gives thin and closed contours.

This segmentation strategy has the advantage of restricting the parameter setting process to the marker
generation step. This makes the overall algorithm more robust and modular. It is then easier to validate, develop
and maintain.
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