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ABSTRACT

Mathematical morphology, which is a set theory, provides
means for studying shapes and patterns of grey tone functions. Indeed,
with every function f(x}, x € R", one assocciates its umbra, i.e.- the
set of those points (x,t} € R® x R such that t < f(x). Here the upper
semi-continuous functions play a role similar to that of the closed
sets in the Euclidean space. The basic operations are the sup and the
inf, corresponding to the set union and intersection respectively.

After having established a few fundamental results, we
first by emphasize the increasing operations, and especially the two
basic ones (erosion and ocpening). An interpretation of the openings in
terms of non linear filtering is developed. Then, we study the exten-
sive transformations whose the thinnings and the thickenings are the
prototype.

Fipally, the notion cf houmo:opy originally definac for sets,
is generalized to functions.

INTRODUCTION

Basically, Mathematical Morphology is a set theory. In order
to extend it_to grey tone images, it suffices to consider the functions
defined inRZ as a particular class of sets of &3 (fig. 1), via their
reliefs. Then all the notions developed in set morphology reappar as
tools for handling functions. Note that tc inververt the priority
between sets and functions leads us to emphasize the non-linear apera-
tions of sup and inf to the detriment of edditlcn and subtraction.

Mathematical morphology for grey tone functions has to be
investigated from three different points of view. Each transformation

[

acts on the functions themselves, and also on their horizontel Cross
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sectlons, and finally has a geometrical interpretation. Therefore a
transformation is completely known when we are able to express it in
terms of each approach. and to derive the corresponding properties. We
shall fulfill such a program for all the notions presented below.
After having established & few general results we treat separately
the two main classes of marphological operations, i.e. the increasing
ones and the extensive ones (plus the derivative notions).

Except G. Matheron's pioneer werk (1969} on the compacity
of the umbrae, the literature on the subject dates principally from
the second part of the 70's and thinned of its redundancies, reduces
‘to the following major contributions. J. Serra (13875) started by
extending the Hit or Miss transformation and the size distributions
from sets to functions by using flat structuring elemsnts. The des-
cription of a function by its watersheds, and the asscciated algorithms,
are due to Ch. Lantugjoul (41877). Later S. Beucher and Ch. Lantuédjoul
(1879) formalized the concept by using geodesic distances. In the
meantime F. Meyer (1877) introduced the top-hat transformation and
fruitfully implemented it in quantitative cytology. A new wave of
generalizations was due to S. Sternberg (1978) who systematically
Considered the functions as set in R3. A first survey of ths question
appears in V. Goetcharian’s thesis [1979), where the author contri-
butes some original notions such as the lower skeleton, and convexity
eriterie. In 1881, J. Serra synthetised these various results in a
unigue formalism and introduced the concepts of homotopy for functien,
of lower and upper thinnings and of a new type of random functions.

GENERAL RESULTS . h

Semi-cantinuous functions and their thresholdings

The notion of an upper semi contingousfunction {u.s.c.)
defined on the piane corresponds to that aof & clased set. Remezmber
that furction f(x)., x € RZ is u.s.c. when for every x and every
t> f(x) there exists a neighborhood Vg of x such that f{y > t for
every y€ Vy. According to a classical topological result (Choquet,
4868), T(x) is u.s.c. iff its horizontal cross secticns are closed
sets

fix) u.seee @ X (] = {x : f{x] >t} a closed set
(-0 <t +™}

(fig. 1-al. When the context is not ambiguous, the u.s.c. functions
are simply called "function” ; their class is denoted %Fu. Ve call
a picture a positive u.s.c. function f{x) bounded by the value m ¢

(1) Fi{x] picture e 0 =< flx) Sm

The class of pictures is denoted fpi. Photographs and images
@re modeled by pictures, but we also need functions to perform a sub-
traction, or for certain paremetrizations (for example, build a func-
tion from the set X € F(R2) by adding its quench functicn to the,
negative of the quench function of xC).
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When the point x spans the Euclidean plane RQ, the support
of function f(x) -is the set of points x where f(x) # 0. The class of
functions (resp. pictures) with compact support is denotaed Ly Xy
(resp. XiJ. '

By thresholding a function f(x) at successive levels, we
can assoclate a family of sets with the function. But by acting on
those sets using methods of mathematical morphologzy, we can generate
a new set family. Under what conditions to these new sets represent a
function ? The follgwing theorem characterizes legitimate set families.

Theorem 1 - Let f be a u.s.c. functiaon defined in ®Z2, and

(23 Xt(f1={x;f£x)_>. t} ~KS f S 00

is the set family generated by thresholding f at level t.
Then, the X;'s are closed and monotonically decreasing, i.e.

. | _
(3) t'<t X, DX and X = Lim ¥ X, N x

t’Tt t'< t t

and we have
{4} f{x{ =Sup {t : x € Xt}
Conversely, a family X, (-® <t < +%) of closed sets

generates a u.s.c. function f(x] if and only if conditions (3] are
satisfied ; f(x} is then defined by (4) and satisfies (2].

Figure 1-a - umbra of a u.s.c. function (it looks like paint
that trickled upwards).

3 F(x)

b - umbra U{Y] associated with-the set Y.

Umbrae

The notion of an_umbra (Sternberg 1978) is the link
between the functions f € & (®R?) and the closed set Y€ § ®3) of the
space. Pcints of R3 are pargmetrized by their projection x on ®? and
their aititude t on an axis perpendicular to R2. The umbra U(Y),
Y € gkﬂ3] is the dilate of Y by the positive axis [O, +‘”]bf the t's,
i.e. since (0, -« is the transposed of [O, +°°]:

(5) uty) = ve [0, ~o]s {Goth) s 8 €Y s b St

Note that U(Y) is morphologically open by the negative t-axis [0, -“3]
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and closed by the positive .t-axis [U, *‘”l The class Y of the umbrae
of F®3) plays a fundamental role in the morphological study of the
functions & . Each umbra U induces a unique function f(U), whose
value at pognt x is the sup of the t's such that (x,t) € U. Conversly,
given a function £ € Sﬁf the set :

(6) UGF) = {(x,t) : FxI= t  x€R%, tER

1s by construction an umbra. Finally we have the follawing implica-
tions :

£7) x €5R% = uix) € UR? x Iz £y € o

There is a unigque umbra and a unique u.s.c. function asso-
ciated with each closed set X of R3 ; conversly, each u.s.c. function
¥ corresponds to a unique umbra U(f), but to the infinity to the closed
sets of R3 which possess the same umbra U(F).

The simplest way to provide functions (and pictures} with a
topology suitaeble for the morphological treatment is to use the topa-
logy induced by the Hit or Miss topology on their umbras. Indeed the
g}ass 1 of the umbrae in R3 is & compact part of the closed sets

(R3). Therefore, one can define on it limits, cantinuity, semi-conti-
nuity, probabilities, etc... Here, we will only guote, as an example,
the following criterion of convergence.

Theorem 2
A sequence {fi}, fy € F, . tends toward f E,gi, iff ¢

a) for every x.Eij, there exists a sequence {xi}** x such that

b} and if the set sequence {xiky* %, there {fi (x; 1} satisfies
= kK "2k
1im ﬁik[xik]} =< Fx)

Note that, w.r. to this topology, the sup is & continuous
cperation, but the addition is only semi-continuous.

Elementary transformations

@ - Sup. and inf. Denote the sup (resp. the inf) of f(x) and g(x) by
fvg (resp. ¥ Ag) (see fig. 2 a,b). £V g and fA g turn out to
be the immediate generalization to functions of the set notions of

on union and an intersection. Indeed, vie have :

(8} X (f v g) fx: Flx) or glx) =t} = % FIU X (g)
X (FA g) = fx @ fix) and glx)= t} = X (F) N x, (g)

b - Complementation

- for functions : defined by symmetry with respect to the
plane t = 0.

&

(9) (-1 = {x: -5 t] = x_ 0
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Figure 2 a,b - sup ¥ Vg and inf ¥ A g of functions f and g

c,d - the two modes of complementation for functions
(b} and for pictures {c).

- for pictures : defined by symmetry with respect to the
median plane-i : '
- : c —- - -— -
(0} [X m-F)]" = {x s mF< £} = {x 2 owet] =X L 0F) .
In photography for example, this latter operation corresponds
to teking the negative of a photograph. Note that in both cases, the

sets X associated with the l.s.c. functions-f and pictures m-f,
are open.

¢ - duality. Two function (resp. picture) transformations ¢ and Q*
are seid to be dual of each other w.r. to the complementation
when :

* )
-&(F) for functions

!}

{11 di-f)
or *

(12) © g (m—f) ) for pictures

n

DILATIONS, EROSIONS AND DERIVED NOTIONS
Dilation and erosion

Let us briefly recall the Minkowski aperations for sets. The
PMiinkowski sum X @ B and difference X © 8 of X by B are defined by the
relations :

xe>8=uxb xes=n,xb
LB bEB

Dencte by B L){ -b) the transposed set of B and by Bx the

translate of B by vec%or Dx, Then X ® B is also the dilate of X by B
I/e. locys of centres x of Bx which hit X and % © B is also the eroded
of X by B. i.e. the locus of the centers x of B which are included

in X.

When dealing with umbrae the special role played by the third
dimension (t-axis) leads us to introduce the symmetry by reflexiocn.
Given a set Y, the reflected set Y = {({x,t) ; (x,-t) € Y} is symme-
trical to Y with respect to the horizontal plane of cqordlnaups
{Fig. 3). This new transformatiacn interacts with the elementary opera-
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. v
tions of transposition Y Y, of complementation Y-—aYc and of
umbrization Y — U(Y)}, according to a few algebraic rules, such that :

(13 B =B B = [im] = uldY]) s 0o = -0 ]°

. ey
(B)A B H [
J Y I
&. A 3
SIOIME ARV I

A v
Figure 3 : Set B, its reflected B. is transposed B. and the
corresponding umbrae.

Concerning the dilation and ths erosion, the equivalences :

'3 ﬁ A4 ﬁ
B, hum e Ui, 0 fu
M 2 Lad V4
and (B ] C Uyl « U(B ) < Uiyl
X;t x;t
imply that
(14] UYI @ B = UCY)® UB) ; ULY) © B = U(Y) © Ls).

Suppose now that Y itself is an umbra ; therefore it charac-
terizes the function f given by the —alation U(f) = Y. Then we define
the Minkowski sum £ © B of function f by the structucing element
B € X(r2 x R) via the umbree. by putting :

(15) UG @ B] = U(F) @8 FES,BE %(r3)

It is not possible to introduce the Minkowski subtraction
simply by replacing ® by © in relation {15) since U(f) © U(B) is
reduced to the point at -, whatever ¥ and B are. Preferably, we will
derive it by duality, by starting from algorithm {11). This algorithm,
applied to the present case, implies that

trem = u-p @8 .

The right hand sidg of this expression delineates the set
of point (x,t) such that B, misses U(-f), by reflection the condi-
tion becomes [éx tf<: U(£¥’ 8nd finally

»

(16) U(f© B) = U(f) ©B Fe 5U', B € AR,
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The functions f@® B and f © B belong to 3’1“

The two definitions {15) and (18] can immediately be extended
to operations for functions. By taking for B = Ulgl the urira of
function ¥, we obtain :

it

uif) @8

1
Hi

f& g ~UF ®@¢g) u(fl @ u(B) Uuif) ® ulgl

7)) fog wufO g = Uf) @86 = utk) e Ue) = utf) o Ug)

L
it
]

with - [f©¢g)l = (-f1 @ ¢

For ¥, g € , and g with a compact support, 9 gand 9 .g
belong to & . The dilation is continuous, increasing with respect ta
£ and to g and extensive with respect to f when g contalns the origin.
The erosion is u.s.c., increasing with respect to f and decreasing
with respect to g (i.e. = f'= fO© g< £'© g ; g< g'= fOg=2f0g")
and extensive with respect to f when g contains 0. All the classical
Properties of distributivity and iterativity for sets are still valid
for the Minkowski operations on functions.

Relations {17). provide not only the definitions of f ® g and
f © g, but also the geometrical interpretations in terms of umbrae :

their translation in terms of sup and inf results and gilves :

(f@ gl =sup_ [fly) » glx-y}]

2
(18) ¥R
O = Inf
.( glx yrjmz [f(y) - g(x~y)]
with £(x) = gi{x) = - for xf{ support of F
{resp. of gl
DICY
_(F_E;S.)x,:‘t
° B
g
V)
, \ 4
a) b)

Figure 4~a : Dilations of umbrae
-b : Flat structuring element and its umbra

The expression of X¢ (f @ g) as a function of the X (f]'s and
Xt (g)'s derives from rel (181, and we can write :
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(19) SR RIRAVIENCE R ]
By duality, we get for the erosion
(203 Xeo (£ © g1 = 0 [x 1@ %, (e ]

We now are able to construct openings and closings by composi-
tion of erosions and dilations. The symbol Z (trensposed of gl denotes
the function gix) = gl-x). We define -the opening Fg of £ by g from ~
their umbrae as follows :

(21) ues,) - Lutsy © Utel] @ ute)

The umbra of fg is the part of the domain of the umbra U(F)
spanned by all the tr§n§1ates of U{g) which are included in U[f). By
noticing that U(g) = U(g), we cen interpret rel. (21) in terms of
functions, and :

fg=tfe§)@g.

We shall introduce the notion of a closing f_ by duality by
writing &

£8 = ~(-f) g @ 8 = (£2 ) O¢
The relation between umbrae derives immediately, and we have :
v
(22 usB) = [utsr @ vl e Ute)

The complement of the umbra of U(f8) is the zone spanned by
all the translates of ((g) which are included in [U(¥)]C. The theary
of size distribution fer sets extends integrally to functions via
their umbrae and relations (21} end (22). From the same basis, we
could also generalize gradients, ultimate erosions, conditional
pisectors, etc... Finally the approsch led to a very corprehensive
class of morphological operaticns Tor functions (and pictures].

Flats structuring elements

As a particular, but important cass, we now take for B a 2-D
set lying in the horizontal plane t = 0. Then, the umbra U(B).1s just
the half cylinder of top B (Fig. 4,b). The basic rel. (18} (19} and
(20) become :

— e h
{f E)B)x = sup {fly) 5 vy Bx}
~
{f ea}x = inf {fly) s y € Bx}
and
(23) X (FO B) = X, (i B X, (0 8) = X (F1e 8
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Each level of f® B, and of f© B is obtained by processing
uniquely the same level of f. This simplification makes the computa-
tion of ® B, and f © B extremely easy by means of set image analy-
sers such as the Texture Analyser. As we can see on fig. (5}, f© B
reduces the peaks and enlarges the valleys, and vice versa for ¥ 3 B.

Figure 5 : Erosion and dilation of f by the horizontal
-segment B.

For B a compact convex set, the family (f© M) @ AB = fag I8
the size distribution of ¥ by openings (for functions and pictures).
The geometrical interpretation of the opening {?\B is given by the two
reciprocal formulae

oy X (Fag) = {x = 83 x , and ¥V z €B f(z) = t }
- f}\BExJ = sup finf {f(2), z € By} : y € BX}

At the point x, f3_,(x]) has the highest value of the infimums of
f taken over all the B's containing x. Equivelently, x € X CFI\B) if
and oniy if D{f) can be penetrated by a vertical cylinder E(?\B) of
sectienA B, which hits the point x, and such that all the altitudes of

f within C(AB] are higher than t (fig. 6 a,b).

When dealing with a picture, one often changes its scale of
greys, by analogic or digital means (contrast of a photograph, correc-
tion of a T.V..cemera, cut-off of high values). The most usual trans-
formations of this type are f{x] - a flx) + b (a, b> 0} ; Log f(x)} ;
[f0x3]%2 s VTTXT 5 #(x) for £(x) = A, A for £(x) = A, and their
variocus combinations. It 1is essential that we know the interferences
betwean thesz grey scale changes and the morphciogical operations.
Define en anamorphosis Y (f) to be an increasine and cantinuous
mapping of Sy {or fi) onta Fu. We have, for every set Z,

: Sup {¥(F(x)) ; x €2}] = ¥{(sup {F(x) ; x € Z}),

H

therefore :

(25) Y(§28) - Y(F)®Band Y(§0 8] - Y(f)O5 vob ER



52 S BEUCHER ET AL: SHAPES AND PATTERNS

In words ¢ when the structuring elément B is flat, the
Minkowski operations ¢commute with the anamorphoses.

Example

- Erosions and apenings often intervene via differences of func-
tiaons, as can be shown by the following examples.

a - Gradient

Assume that f is differentiable everywhere in_its domain of
definition, except on a set of regular curves S of R? ; but each
partial derivative has a limit on both sides of S (verticel cliffs].
Then the gradient of f is vectorial measure whose module satisfies
the relationship (S. Beucher, 1978].

28) _ s F@AB) - (£ AB) o it s
p (dx) ﬂig CPN (8 closed unit disk]

which can easily be digitalized. Similarly, the rose of directions of
the gradient can be derived from the total diameters af tha2 horizontal
sectigns (J. Serra, 1981).

b - Rolling ball and top hat transformation

B is a convex, but not necessary, flat structuring element. The
rolling ball transformation is defined by the difference f-fg
(Sternberg, 1979). In the case of B a flat set, the same concept f-fy
was already studied by F. Meyer (1877} who called it "top-hat trans-
farmation” (fig. 6,c). Rolling ball and top hat transform extract
peaks and ridges of the function, independently of the=ir altitude,

x x
o F

B . [ﬁ\?/; .

- ; (F /r§ ?‘{.‘ 15 F-FB
S h T T AL

P A%l /&( .
% =
&) LY Y

Figure 6 a,b - Opening and closing of’ a function by a compact
convex set

¢ - Difference f - fB betwzen ¥ and its opsning

but only according to their degree of "sharpness”. Not only do they
lead to size distributions involving the contrast of the image (by
using segquences of similar B's) but they also provide one of the best
types of algorithms for segmenting the images, since they are insen-
sitive to the low variations of grey tones (fig. 7}.
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Figure 7 : Top-hat transformation used for extracting the
zone Z of coarse chromatine (a) in a nucleus
(Afterwards, one can measure the DNA content in
Z, or study the size and the shape of the coarse
chromatine by performing openings and skeletons
on Z and on its complement.
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Indeed opening can be interpreted as a 2-D filtering process,
but in a rather special sense. Consider the Fourier expansion of a
function f (in one dimensicn for simplicity‘®s sake). Let
fa;} tay= 0) be the energies associated with the freguencies. In
Fourier space, a filter {¢;} (0 @3 = 1) acts by _replacing {aj} with
{qg ai}f If we iterate the filtering we obtain{q>i ai} » which is

identical to [p; a;} if and only if @3 = *or 0. If so, we can see
that the sizing axioms are satisfied for {ai} , i.e. satisfied in

the Fourier plane. Such is the case, for example, for the low pass
filters (¢; = O for i Z 35,94 =1 for i <iy). On the ather hand,
the opening acts in the plane of definition of f itself. It happens
for example that f is always above fj g (first axiom), but can be
below its filtered version obtained by a low pass filter. The second
difference between the two techniques is that the opening is not
linear, but only satisfies the relationship f= geo fpg = 245 ¥ B e H.
The third, and main difference is not logical but morphological. The
residual f-fg extracts the sharp peaks, ridges and saddles of f. Then
a further morphological treatment can easily separate them from each
other. Nothing equivalent exists with Fourier transformation. Finally
the opening is essentially a digital technigue, whose numerical
implementation in RZ is simpler than the fast Fourier transform. All
the mappings presented in this section C ere digitalizable using the
covering representation, defined on the umbra U{f), and therefore

are particularly robust. The digital algorithms are formally identi-
cal to the corresponding Euclidean ones, and transforms exhibit the
same number of grey levels as the original pictures.

EXTENSIVE TRANSFORMATIONS AND THEIR DERIVATIONS

Thinnings and Thickenings for functions

Thinnings and thickenings are, for sets, very powerful trens-
formations. The definitions of these transformetions ere the following:
Consider the set x € Pm2) and the hit-or-miss transform X * T by
the couple T = (Ti' 121

v v
(27) X¥ 7 =(XO T1J/(X [45] T2] {where/denotes the set differen-
ces)

We thin X by T when we substract X T from X, and we thicken X
by T when we add X ¥ T to X. We can write :

XOT

it

X/(X* T) , Thinning
(28)

XO T = XU (X* T) , Thickening

These two operations are dual each other when related to the
complemantation

c * *
{29} (XO© 7)7 =X OT , where T = (T, )
Now, we cen extend this definition to‘tha functions. Let f ta.

a function definsd on R?, and (T4, T5) two structuring elements
belonging to $13) (don't worry about the topolozicel status cf 1,
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T, and TZ' This problem will be examined later). We can apply the
previous definitions to the umbra U(Ff]) of f, and define :

f£O T such that UCFO T) = ULFI/UCF) * T)

and, in the same way :
fO© T such that U(f© T)

ue Yy [uesr * 1]
The hit-or-miss transformation cen be written as following :
v v c
Ulfl * 7 = (ULF) S T1) Nwi e T2]

U{f) ¥ T is the set of points of R such that T‘l C_U[ﬂ and
T, C u(FIC. See figure n°

tsing the formula of reflection, and the notion of umbra,
we have :

uLF) @ ¥1 = utf) e UCT,)

and .
wen o 7)° =[un®e %’Z] - [um®eud] - v¥eme [La 1Y

tet us try to explain these formulae (figure 8]

Figure 8 : processing of a thinning

~ ~ The points of f * T are those such that U(T1] is below f
and U(TZ) above f.
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. n

The umbrae U(T_} et U(T,) characterize tws fonctions g and
g,+ So, we can define the thinning and the thickening of functions
by a doublet (g1{g2] of functicns :

(30} UF O g) = LA/ [UtF @ g /Ul @¢,)]

utFo g = [utd] U ucr e g, /UF O g)) ]
with g = (g1,g2]

We did not yet make any assumption concerning the topologi-
cal status of §, &4 and g,. We can show that if ¥, g, and g € 5:,
By and g with compact supports, then f O g and £ © g belon§ to 3%.

In order to transpose the geometrical definition (30} in
terms of algebraic algorithm, we will apply rel.{18) and (20). This
results in the following rules :

when Sup [f[z) + ngz-x]] < f{x) = Inf [f[y] - g,i(y-xl] » then
z€1’2x yEqu ;

, (fogllx) = Inf [fly) - g, (y-x)]
(33} : y&€Tq,
‘when not : (fO© g} (x] = f(x)

Flat structuring elements

When T1 and T2 are embedded in RZ. we simply have :
g1px) = B,.Vx € Tﬁ ;s and gztx] =0, ¥V x¢€ T2

The formulae giving Xto[f © g} and Xto[f O g) are instruc-
tive.

We find :

Xx (fogl= n [xflorT] and
© tet,  °©
- £ O T), with T = (T,.T.)
XtD[f O gl ﬁ;i (X, (1 O 7)), wi 1Ty
'O

In that particular case, the relations on sections (or
threstolds) show that we must take into account the interssction of
the thickenings of every section X, (f) below t_, tc obtain the corres-
ponding section of the thickened function (for the thinning, we
perform the union). This is due to thes fact that the sequences
{Xe () O T} end X (F)© T} of sets are not monotone decreasing (see
abovel. Taking the intersecticn (or the union) forces the property
(figure 9J.
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Figure 8 : The sequence (X¢{f) O T) does not fullfil the
inclusion rule counter-example : (a) initial
(b} thinning

Sequential extensive transformations (digital case}

This section is restricted to digital pictures. We shalil
restrict our study to the functions which are indicator functions
of two-dimensionnal sets T, and T,. Let us come back to the general
case. InR", we know that if T4 and T, are not disjoint, then
fOT=+F+OT = f, V¥V f. The result is obvious : If the two structuring
elements are not disjoint. it is difficult to find points of RS such
that T, € U(f} and T,© US({f} ! But there exists & more sophisticated
conditicn based on the relative position of T1 and T2 in R3, which
does not appear in RZ., That is :

if ﬁ.(?z)nu(T1J # P then F*¥T =0, V+

Or, in terms of functions

N
i ulgdNUlg,) # @ then

—h

*
L]
1

® (figure 19)
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Gfﬁ)

1G]

O

T4

U(my)

Figure 10

Figure 10 illustrates the condition. To extract points with
the configuration in b, ULf]} should present same over-hangs which is
impossible since 1 is a function. This condition is not a must, it
simply avoids the choice of ineffective doublets.

Given the structuring element T =(T ,T7] e[Rz. each section
X;(f) is thinned and the ith soction of fO7T (f€ ;) is defined
by :

m
(34) X;(FOT = U [xjm O 7T] .(m, maximum)
=1
and similarly, for the thickening
: i
(35) X, (fOT) = N [ x.(6) ©T]
j=0

The efficiency of the thinning and thickening operations lies
in the fact that we Cag iterate them. Given a seguence of structuring
elements {T1} = {T1, T¢ vaes T7}, we can'define

ol - (G..r0 THo T yo 1™
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»-—-Fo{T}

® Removed peints

Figure 11 : example of 3-D thinning.(a) one step
{h infinity of steps

For instance, if the digitalizisation grid is hexagonal, a
sequence can be generated by taking the variocus rotations of one
structuring element @

e © R . e o - - © ® -
. ¢ - - ®© © © & & - & - s ¢ - & © ©
. ® - - & e © e - -
10 3 4 TS 1E.b
y 2 T T

Figure 12 : example of sequence

Homotopic thinnings

We shall say that a morphological transformation ¥ preserves
the homatopy of functionf when X (f} end Xtiﬂlifll have the same
homotopy., V t. (by so doing, we restrict a more general definition,
see J. Serra, 1881). It is well known that fer the hexagonal grid,
the basic 2-0 structuring elements which preserve the homotopy are
the following :
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As an example, consider the ection of {L}] on function f
represented in fig.(43,a), and in particular the twc leval Xi and
XJ (i< jl.

Since the thinnings (X; O T) and (X, O T) preserve the homotopy
for sets, the result of the transformation produces on2 connected
camponent for X; OT, and two components in the same relative position
for Xj OT. If we denote by ci{x) and d{x) the supports of the channels
and the divides respectively, the supports c’(x) and d*{x) of the
thinned function fO T are jointly homotopic to both supports c{x)
and dix].

A crater with & hill in it in the relief ¥ corresp
crater with a hill in it in fO_{L}, and so on... regardless of the
exact location of the hill in the crater or of their

Examples

The invariance of the homotopy characterization makes thinnings
and thickenings suitable tools for constructing "skelstons” of
pictures. For instance the transformation £ O {L } leads to the
skeleton of f (figure 14)}.

Thinnirgs and thickenings provide also efficisn algarithms
in watershed detection preblems (S. Beucher, Cn. Lentu Joul, 4979}.
Figure 15 illustrates the use of these transformations in a contour
detection problem : The hcmotopic thinning of the gredient function
emphasizes the edges of the original picture.

t
g
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hill

o b
a Xi(f o{L])

%D

Fo{L}

Figure 13 : homotopy for functicns
a) function
bl two thresholds of the function
c) thinned function
d] thresholds after thinning
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Figure 14 : &) picture f with three levels
bl fO L
c) levels of the skeleton
d) skeleton function fO {t}

PATTERNS
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Figure 45 : a) original picturs -
b) edge detection by thinnings ({grad £ lO {Lis



64 . S BEUCHER ET AL: SHAPES AND PATTERNS

S. BEUCHER, F. MEYER - Methodes d'analyse de contraste & 1'analyseur
de textures, Reconnaissance des Formes et intelligence artificielile,
1° Congras AFCET/IRIA, Chatenay-Malabry (1877)

S. BEUCHER, C. LANTUEJOUL - Use of wetersheds in contour ~:i=action,
International workshop on, image processing. Real time Edge and Motiaon
detection/estimation, Rennes, France (September 1979).

H. DIGABEL, C. LANTUEJOUL - Tterative Algorithms, ISS Second European
Symposium, Quentitative analysis of microstructures in Material
Science, Bioclogy and Medicine, Caen, France (1877)

V. GOETCHARIAN (1980} - Parallel image process and real-time texture
analysis. Thesis Doctor of Philasophy. University college London.

€. LANTUEJQUL, S. BEUCHER - On the Use of the geodosic metric in
image analysis, Journal of Microscopy, Vol. 121, part 1 (Jan. 18981)

G. MATHERON - Random Sets and Integral Geometry, Wiley (N.Y.) (4975)

F. MEYER - Cytologie Quantitative et Morphologie Mathématique. Thése
Docteqr-Ingénieur, Ecole des Mines de Paris (1879].

S.R. STERNBERG - Cellular Computer and blomedical imege processing.
Lectures notes in bio-mathematics, Springer Verlag (1980).

J. SERRA : Image Analysis and Mathematical Morphology. Academic Press
£1981) to be published.





