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Mathematical morphology, which is a set theory, provides
means for studying shapes and patterns of grey tone functions. Indeed,
with every function f(x}, x E ~n, one associates its umbra, i.e.'the
set of those points (x,t) E Rn x!R such that t:$ f(x). Here the upper
semi-continuous functions playa role similar to that of the closed
sets in the Euclidean space. The basic operations are the sup and the
inf, corresponding to the set union and intersection respectively.

After having established a few fundamental results, we
first by emphasize the increasing operations, and especially the hm
basic ones [erosion and opening}. An interpretation of the openings in
terms of non linear filtering is developed. Then, we study the exten-
sive transformations whose the thinnings and the thickenings are the
prototype.

Finall~, t'1e notion cf !lumo':o~yorigirlolJ.ydefin2c for sets,
1s generalized to functions.

Basically, Mathematical Morphology is a set theory. In order
to extend it to grey tone images, it suffices to consider the functions
defined in!R2 as a particular class of sets of ~3 (fig. 1), via their
reliefs. lhen all the notions developed in set morphology reappar as
tools for handling functions. Note that to inver-vert tr.e priori.ty
between sets and functions leads us to emphasize the non-linear o~era-
tions of sup and inf to the detriment of addition and subtraction.

Mathematical morphology for grey tone functions has to be
investigated from three different points of view. Each transformation
acts on the functions ths~selves, and also on their hori~ontal cross



sections. and finally has a geometrical interpretation~ Therefore.a
transformation is completely known when we are able to exrress it in
terms of each approach. and to derive the corresponding pr:,perties. We
shall fulfill such a program for all the notions presented below.
After having established a few general results we treat separately
the two main classes of morphological operations. i.e. the increasing
ones and the extensive ones (plus the derivative notions).

Except G. Matheron's pioneer work (1969) on the compacity
of the umbrae, the literature on the subject dates principally from
the second part of the 70's and thinned of its redundancies. reduces

·to the following major contributions. J. Serra (1975) started by
extending the Hit or Miss transformation and the size distributions
from sets to functions by using flat structuring elements. The des-
cription of a function by its watersheds. and the associated algorithms.
are due to Ch. Lantuejoul (1977). Later S. Beucher and Ch. Lantuejoul
(1979) formalized the concept by using geodesic distances. In the
meantime F. Meyer (1977) introduced the top-hat transformation and
fruitfully implemented it in quantitative cytology. A new ~Jave of
generalizations was due to S. Sternberg (1978) who systematically
considered the functions as set in R3. A first survey of the question
appears in V. Goetcharian's thesis (1979). where the author contri-
butes some original notions such as the lower skeleton, and convexity
criteria. In 1981, J. Serra synthetised these various results in a
unique formalism and introduced the concepts of homotopy for function,
of lower and upper thinnings and of a new type of random functions.

The notion of an upper semi continuousfunction (u.s.c.)
defined on the plane corresponrls to that of e cl~sed set. Rem3mber
that fur,ction f(x). x E R2 is u.s.c. when for every x and every
t> f(x) th8re exists a ne"o\:';hborhoodVx of x such that f(y';-- t for
every y E Vx• Accord:'n~ to a cla~;sical topological result lChoquet.
1966]. f(x) is u.s.c. iff its horizontal cross sections are closed
sets :

f(x) U.s.c. ~ Xt(f) '" Ix : f(x) > t} a closed set
(-oo<t< +00)

(fig. i-a). When the context is not ambiguous. the u.s.c. functions
are simply called "function" ; their class 'is denoted quo We call
a picture a positive u.s.c. function f(x) bounded by the value m ~

The class of pictures is denoted S1i• Photographs and images
are modeled by pictures. but we also need functions to perform a sub-
traction. or for certain parametrizations (for example. build a func-
tion from the set X c ~[R2) by addin~ its quench functicn to the
negative of the quench function of XC).



When the point x spans the Euclidean plane ~2. the support
of function f(x) -is the set of points x where f(x) i O. The class of
functions (resp. picturesl with compact support is denoted tj ~u
(resp • .Kil.

By thresholding a function f(x) at successive levels. we
can associate a family of sets with the function. But by acting on
those.sets using methods of mathematical morphology. we can generate
a new set family. Under what conditions to these new sets represent a
function? The following theorem characterizes legitimate set families.

is the set familX generated by thresholding f at level t.
Then. the Xi'S are closed and monotonically decreasing. i.e.

n Xt,t'< t

Conversely. a family Xt(- 00 ~ t ::;+(0) of closed sets
generates a u.s.c. function f(x) if and only if conditions (3) are
satisfied; f(x) is then defined by (4) and satisfies (2).

Figure 1-a - umbra of a u.s.c. function (it looks like paint
that trickled upwards).

b - umbra U(Y) associated with-the set Y.

The notion of an umbra (Sternberg 1978) is the link
betvJ8en the functions f E 5i (Lti2) and the closed set Y E g; ([R3)of the
space. PGint~ of ~3 are par~metrized by their projection x on ~2 and
their a~titude t on an axis perpendicular to ~2. The u~bra U(y).
Y E 1(1R3) is the dilate of Y by the positive axis [0. + ooJ~f the t's.
I.e. since (0. -cx:) is the transposed of [0. +00] :



and closed by the positive .t-axis [0, +001 The class 'IL of the umbrae
of 8' (1R3) plays a fundamental role in the morphological study of the
functions jJ. Each umbra U induces a unique function f(U), whose
value at po~nt x is the sup of the t's such that (x,t) E U. Conversly,
given a function f E 5i , the setu

is by construction an umbra. Finally we have the following implica-
tions

There is a unique umbra and a unique u.S.c. function asso-
ciated with each closed set X of ~3 ; conversly, each u.S.c. function
f corresponds to a unique umbra U(f), but to the infinity to the closed
sets of~3 which possess the same umbra U(f).

The simplest way to provide functions (and pictures) with a
topology suitable for the morphological treatment is to use the topo~
logy induced by the Hit or Miss topology on their umbrae. Indeed the
cJass U of the umbrae in [R3 is a compact part of the closed sets
~(R3). Therefore, one can define on it limits, continuity, semi-conti-
nuity, probabilities, etc ••• Here, we will only quote, as an example,
the following criterion of convergence. .

A. sequence
a) for every x E .fR2,

Ti(xi)-f(x?

b) ond if the set sequence
11m {fi", (Xil<.J) :5;f(x)

{fi}' fiE §u, tends tOl-lardf E~. iff :
there exists a sequence {x.} - x such that~

Note that, ~.r. to this topology, ~he sup is a cGntinuous
operation, but the addition is only semi-continuous.

Elementary transformations
a - Sup. and info Denote the sup (resp. the iof) of f(x) and g(x) by

f V g (resp. f A g) (see fig. 2 a.b). f V g' and fAg turn out to
be the immediate generalization to functions of the set notions of
on union and an intersection. Indeed. we have:

(8! I Xt(f V g) = {x f(x) or g(x) 2':t} = Xt(f) U Xt(g)

X
t
(f A g) = Ix f(x) andg(x)2': t} = Xt(f) n Xt(g)

b ~ Complementation
- for functions defined by syr.metry with respect to the

plane t " O.

(9) [ x~(-f) ]C { x -f ::; t} X ~ (f)..



Figure 2 a,b - sup f V g and inf fAg of functions f and g
c.d - the two modes of complementation for functions

(b) and for pictures ee).

- for gictures : defined by symmetry with respect to the
plane "2 :

[X~(~-f)r '" Ix : m-f::; t} '" { x : f~ m-t} '"Xm_tCfJ •

or
(12)

4>( -f)

tV (m-f)

Dilation and erosion
Let us briefly recall the Minkowski operations for sets. The

Minkowski sum X@ Band differbnce X e B of X by B are defined by the
relations :

X $ B '" U XbbEs

"Denote by B '" LJ (-b) the transposed set of 8 and by 8x the
h~ ~ vtranslate of B by vector Oxv Then X @ 8 is also the dilate of X by B.

1:e. locus of centres x of Bx which hit X and Y.e B is also the eroded
of X by S, i.e. the locus of the centers x of Bx which are included
in X.

x e B '" n. XbbEs

When dealing with umbrae the special role played by the third
dimension (t-axis) leeds us to in!roduce the sy~~etry by reflexion.
Given a set Y. the reflected set Y = ! (x,t) ; (x.-t) E Yl is sy~~e-
trical to Y with respect to the horizontal plane of r~ordinatcs
(FiE. 3). This new trensformation inte,acts with the cle~antary opera-



'" ctions of transposition Y ---t Y. of complementation Y -? Y and of
umbrization Y __ U(Y). according to a few algebraic rules, such that

(13) C~l" = B; (~3J'J =CB{' ; [UC8l]" = U[(B)"] ; U(fJ = [Ur-fl]C

'" 0 (F)·u (~)' \
(6)" 6 :.: \.--A---L\--~----_\
:lv (B)]" : \J (B) I

\,
- - - - - - - - - ~~I - - - - -

, I . V(r)
\ I

\ I

'" "~-~~--; ~

![U(6)] v :

,.. v
Set B, its reflected B, is transposed B. and the
corresponding umbrae.

" -.Iand C8 tl C UCYlx.

B t 11 UCY) ~x.
e} U(B t)'f cX.

v
U(B t)x.

U(Y)

Suppose now that Y itself is an umbra therefore it chtlrac-
teri£es the function f given by the -alation U(f) = Y. Then we definR
tt.e Minkows!n sum f 9 B of fur,ction f by the structuring element
B E ~(R2 x R) via the umbrae. by putting :

It is not possible to introduce the Minkowski subtraction
simply by replacing ~ bye in relation (15) since U(f) e UCS) is
reduced to the point at _0:: • whatever f and B are. Preferably. He will
derive it by duality, by starting from algoritrm (11). This algorithm,
applied to the present case. implies that

The ri8ht hand sid~ of this expression delineates the set
of point (x,t) such that B ~ misses U(-f), by reflection the condi-
tion becomes (B tf C U(f~' and finullyx.
( 16 ) U(f e B) U (f) e B F E :i . B E fiCiR3).

u



The functions f 11) Band f e B belong to :f .u

The two definitions (15) and (16) can immediately be extended
to operations for functions. By taking for B = U(g) the L!r:~~jraof
function f. we obtain

for f. g E • and g \-litha compact support, f $ g and f e ..g
belong to § . The gilation is continuous, increasing with respect to
f and to g a~d extensive with respect to f when g contains the origin.
The erosion is u.s.c., increasing \-lithrespect to f and decreasing
With respect to g (i.e. f~ f'~ f e g~ fIe g ; g~ g':=) feg~fe g')
and extensive with respect to f when g contains O. All the classical
Properties of distr;butivity and iterativity for sets are still valid
for the MinkO\o>lskioperations on functions.

Relations (17). provide not only the definitions of f e g and
f e g, but also the geometrical interpretations in terms of umbrae
thei~ translation in terms of sup and inf results and gives :

l(fED g) = Sup [fey) + g(x-y)]
x y8R2

(f e g)x = ~~2 [Hy) - g(x-y) ]

w1~h f(x) = g(x) = -00 for x ( support of f
(resp. of g)

Dilations of umbrae
Flat structuring element and its umbra

The expression of Xt (f e gJ as a function of the Xt(fJ ·s.and
Xt(gJ's derives from reI (1g), and we can ,~ite :



Xt (f$g) =lJ[Xt(f)G Xt -t(gl]
o. t 0

Xt (f e g) = n [Xt(f) e Xt t (gJJ
o t - 0

We now are able to construct openings and closings by composi-
tion of erosions and dilations. The symbol g (transposed of g) denotes
the function g(x) = g(-x). We define ·the opening fg of f by g from'
their umbrae as follows :

U(f ) = [UCf) e U(al] e U(g)g b

The umbra of fg is the part of the domain of the umbra U(fl
spanned by all~the tr~n~lates of U(g) which are included in U(f). By
noticing that U(g) = U(gl, we can interpret reI. (21) in terms of
functions. and :

"f = (f e g) e g •
g

We shall introduce the notion of a closing f by duality byg

The complement of the umbra of U(fgl is the zone spanned by
all the translates of O(g) which are included in [U(f)]c. The theory
of size distribLtion fer s~ts extends integrally tJ functions via
their umbrae and relations (21) and (22). From the same basis, we
could also generalize gradients, ultimate erosions, conditional
bisectors, etc ... Finally the ~~~roac~ led to a very co~prehensive
class of morphological operations for functions (and pictures).

Flats structuring elements
As a particular, but important case, we now take for a a 2-D

set lying in the horizontal plane t = O. Then, the umbra U(a). is just
the half cylinder of top a (Fig. 4,b). The basic reI. (18) (19) and
(20) become :

1 (f"B), sup {fCy) yE B Jx

{Hy)
'OJ

(f e B) inf y E B Ix x
and

(23) Xt (fe B) X
t
(n 8 B X~(fe B) X

t
(f) e fl

1.



Each level of f e B, and of f e B is obtained by processing
uniquely the same level of f. This simplification makes the computa-
tion of fa B, and f e'B extremely easy by means of set image analy-
sers such as the Texture Analyser. As we can see on fig. (5), f e B
reduces the peaks and enlarges the valleys, and vice versa for f ~ B.

),",
I ,

I -/
I

,/

Figure 5 Erosi~n and dilation of f by the horizontal
'segment B.

For B a compact convex set, the family (fe ,..Ell e AB = fA is
the size distribution of f by openings (for functions and pictur~s).
The geometrical interpretation of the opening fA is given by the two
reciprocal formulae B

IXt (~N3) = Ix
fAB (x) = Sup linf {f(z), z E B}

Y
y E B }

x

At the point x, fAB(x) has the highest value of the infimums of
f taken over all the B's containing x. Equiv<':'18ntly,X E X (fAB) if
and onlY if Off) can be penetrated by a vertical cylinder t(AS) of
section A 8, which hits the point x, and such that all the altitudes of
f within C(AB) are higher than t (fig. 6 a,b).

When dealing with a picture, one often changes its scale of
greys, by analogic or digital means (contrast of a photogr~ph, correc-
tion of a T.V •.camera, cut-off of high values). The most usual trans-
formations of this type are f(x) -+ a f(x) + b (a, b> 0) ; Log {(x) ;
[((x)J2 ; m ; f(x) for f(x)::::;A, A for f(x) ~ A, and their
various combinations. It is essential that we know the interferences
between these grey scale changes and the morphclogical operations.
Define an anamorphosis ~(f) to be an increasin? and continuous
m:"lppingof §u (or 5'il onto S:u. \.Je have, for ~very set Z,



In words: when th,e structuring element B is flat. the
Minkowski operations commute with the anamorphoses.

Example
-Erosions and openings often intervene via differences of func-

tions. as can be shown by the following examples.

a - Gradient
Assume that f is differentiable everywhere in its domain of

definition. except on a set of regular curves S of 82 ; but each
partial derivative has a limit on both sides of S (vertical cliffs).
Then the gradient of f is vectorial measure whose module satisfies
the relationship (S. Beucher. 1978).

= limX_a
digitalized.
derived from
1981).

(f 6) AB) - (f e AB)2 A (B closed unit disk)
Similarly. the rose of directions of
the total diameters of the horizontal

which can easily be
the gradient can be
sections (J. Serra.

b - Rolling ball and top hat transformation
B is a convex. but not necessary. flat structuring element. The

rolling ball transformation is defined by the difference f-fB(Sternberg. 1979). In the case of B a flat set. the same concept f-fBwas already studied by F. Meyer (1977) who called it "top-hat tran~-
formation" (fig. 6.c). Rolling ball and top hat transform extract
peaks and ridges of the function. independently of their altitude.

Figure 6 a.b - Opening and closing of'a function by a compact
convex set

but only according to their degree of "sharpness". Not only do they
lead to size distributions involvi0g the contrast of the image (by
using sequences of similar B's) but they also provide one of the best
types of algorith~s for segmenting the im3zes. since they a~8 insen-
sitive to the low variations of grey tones (fig. 7).



Top-hat transformation used for extracting the
zone Z of coarse chroma tine (a) in a nucleus
(Afterwards. one can measure the DNA content in
Z. or study the size and the shape of the coarse
chromatine by perfcr~ing openin~s and skeletons
on Z and on its complement.



Indeed opening can be interpreted as a 2-D filtering process.
but in a rather special sense. Consider the Fourier expansion of a
function f (in one dimension for simplicity's sake). Let
Ia1} (ai~ 0) be the energies associated I-liththe frequencies. In
Fourier space. a filter Icpd CO ::;epi::::;1) acts by replacing lail with
{Cfi ai}' If we iterate the filtering I-Ieobtain 191 ai I . which is
identical to {qJiai I if and only if cp i = ~ or O. If so, we can see
that the sizing axioms are satisfied for lail ' i.e. satisfied in
the Fourier plane. Such is the case, for example. for the low. pass
filters Uj\ = 0 for i ~ io' cp i = 1 for i < io)' On the other hand.
the opening acts in the plane of definition of f itself. It happens
for example that f is always above fAs (first axiomJ. but can be
below its filtered version obtained by a low pass filter. The second
difference between the two techniques is that the opening is not
linear. but only satisfies the relationship f::; g ~ fS ::;gs v-S-~ J{.
The third. and main difference is not logical but morphological. The
residual f-fS extracts the sharp peaks, ridges and saddles of f. Then
a further morphological treatment can easily separate them from each
other. Nothing equivalent exists with Fourier transformation. Finally
the opening is essentially a digital technique. whose numerical
implementation in ~2 is simpler than the fast Fourier transform. All
the mappings presented in this section Care digitalizable using the
covering representation. defined on the umbra UCfJ. and therefore
are particularly robust. The digital algorithms are formally identi-
cal to the corresponding Euclidean ones. and transforms exhibit the
same number of grey levels as the original pictures.

Thinnings and thickenings are, for sets. very powerful trans-
formations. The definitions 'Jf these transformetionc are tre follO\.ling:
Consider the set x E q[[RL) and the hit-or-miss transform X * T by
the couple T = (T1, T2J

" "X * T = (Xe T 1 ) / (X EDT 2 J Cwhere/denotes the set differen-
ces)

We thin X
by T when \-ieadd

XO T
(28)

X0 T

by T when we substract X T from X. and we thiCKen X
X * T to X. We can write

These two operations are dual each other when related to the
comp18f~entation

*(X0TJc=XOT

Now. we can extend this definition to the functions. Let f te,
a function defin~d on 1K2• and ('1' T2) th'O structurin[ eli:Sents
b 1 . t :JCR3J (con' t \.o,'orrydbout the topolo~ic21 ::;tutL:S of f.e onf.;ln; 0 ,_



T1 and T2• This problem will be examined later). We can apply the
previous definitions to the umbra U(f) of f. and define

f 0 T such'that U(fO T) = U(f)/U(f) * T)

and. ~n the same way :
f0 T such that U(f 0 Tl = U(f) U [U(t) * T]

'I y c
U(f) * T = (U(t) e T1) nW(t) e 12)

U(f) * T is the set of paints of [R3 such that T 1 c: U(f) and
T2 C U(f)c. See figure nO

and
W(f) $ T2)C = [ U(f)c e fz] ,. [U(fJc e U(T 2)] ,. UC(f) e [U(T 2)]V

1\

V(Tz)

~ ~ The p6ints of f * T are those such that U(T1) is below f
and U(T2J above f.
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The umbrae U(T2) et U(T1)

g2' So. we can define the thinning
by a doublet (g1,g2) of ·functions :

characterize two fonctions g and
and the thickening of functIons

U(f 0 gJ ; U(fJ! rUff e g1J!U(f (±)gz)]

U(f 0 g).~ rUff)] U [U(f e g1)!U(f8 g2) ]
with g ~ (g1,gZ)

We did not yet make any assumption concerning the topologi-
cal status of f, g1 and g2' We can show that if f, g1 and gz E ~'
g1 and gz with compact supports. then fOg and f 0 g belong to ~'

In order to transpose the geometrical definition (30) in
terms of algebraic algorithm, we will apply rel,(19) and (20). This
results in the following rules :

~ Tnf [fey) - g1 (y-xJ]
yET 1x

[fey) - g1 (y-x)]Inf
yET 1x

Flat structuring elements
Wh T d T b dd d . rn2 . 1 hen 1 an Z are em e e ln ~ , we slmp y ave

n eXt (f) 0 T ]
tEto

(Xt(f) 0 T), withXt (f 0 g) ~ U
o t>t-0

In that particular case, the relations on sections (or
thresholds) show that we must take into account the intersection of
the thickenings of every section X~(f) below t • to obtain the corres-
ponding section of the thickened f~nction (forOthe thinning, we
perform the union). This is due to the fact that the sequences
{?:t(f)0 TI and !Xt(f)0 TI of sets are not monotone decreasing (see
above). Taking the intersection (or the union) forces the property
(fiEure 9).



• rDTi-
e •
e OT~

The sequence (Xt(f) 0 T) does not fullfil the
inclusion rule counter-example : (a) initial

(b) thinm:.llg

Sequential extensive transformations (digital case)
This section is restricted to digital pictures. We shall

restrict our study to the functions which are indicator functions
of two7dimensionnal sets T1 and T2• Let us come back to the general
case. In ~n. we know that ~f T1 and T2 are not disjoint. then
f 0 T = f 0 T = f. V f. The result is obvious: If the two structuring
elements are not disjoint. it is difficult to find points of ~3 such
that T1 C U(f) and T2C UC(f) : But there exists a more sophisticated
condit~on based on the relative position of T1 and T2 in ~3. which
does not appear in ~2. That is :

,.. ,..
if un2) n U (T1) I if; then f .•T

Or. in terms of functions

"if U(e1) n WeZ) I if; then f .• g



Figure 10 illustrates the condition. To extract points with
the configuration t~ b, U(fJ should present same over-hangs which is
impossible sinc~ f is a function. This condition is not a must, it
simply avoids the choice of ineffective doublets.

2Given the structuring element T =(T1,T?) EtR , each section
Xi (f) is thinned and the ith section of f 0 THE -Pi) is defined
by :

X.Cf 0 n = U [XJo(f) 0 T] ,([;1, maximum)
:L j =i

the thickening ;
i

Xi (f 0 T) = n [ X. (f) 0 T]
j=O J

The efficiency of the thinning and thickening operations lies
in the fact that we can iterate them. Given a sequence of structuring
1 {-i I - IT1 12 Tn ie ements I - I • ,•••, , I-Ie can··def.ine

f 0 ITi} = ((( ••• (fO T1)0 T2) ..•••• J 0 Tn)
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example of 3-0 thinning (a) one step
(b) infinity of steps

For instance, if the digitalizisation grid is hexagonal, a
sequence can be generated by taking the various rotations of one
structuring element :

• • • 0 (;) •
• • 0 • • • • • • • CD•

0 G> • • • •
T4 T5 •.6

T1 T2 T3 I

Figure 12 exampie of sequence

Homotopic thinnings
We shall say that a morphological transformation ~ preserves

the homotopy of functionf when Xt(fl and Xt(~(f)l have the same
homotopy. V t. (by so doing, we restrict a more general definition,
see J. Serra. 1981). It is well known that for the hexagonCll grid.
the basic 2-D structuring elements which preserve the homotopy are
the following



..'

•
o 0

• •
o • • 0

o 0

As an example. consider the action of ILl
repre~ented in fig.(13.a). and in particular the
Xj (i< j).

Since the thinnings (Xi 0 T) and (X. 0 T) preserve the homotopy
for sets. the result of the transformationJproduces one connected
component for Xi 0 T. and two components in the sa~e relative position
for Xj OT. If we denote by c(x) and d(x) the supports of the channels
and the divides respectively. the supports c'(x) and d'(x) of the
thinned function fO T are jointly homotopic to both supports c(x)
and d(x).

on function f
two level Xi and

A crater with a hill in it in the relief f corresponds to a
crater with a hill in it in fO, IL I. and soon •.. regardless of the
exact location of the hill in the crater or of their shapes.

Examples
The invariance of the homotopy characterization makes thinnings

and thickenings suitable tools for constructing "skeletons" of
pictures. For instance the transformation fOIL I leads to the
skeleton of f (figure 14).

Thinnir~s and thickenings provide also ef7icient algorithms
in waterslled detec~ion problems (S. Beucher. Cn. Lantu§joul. 1979).
Figure 15 illustrates the use of these transformations in a contour
detection prob~em : The hc~otopic thinning of the gradient function
emphasizes the edges of the original picture.
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@ Xi(F)

b)

• x"dr: o{L})

~ Xi(Fo\l})

~ IC--·-~-I d'(x)

~{#W: <'(x)

Figure 13 homotopy for functior.s
a) function
b) two thresholds of the function
c) thinned function
d) thresholds after thinning
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a) original picture
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