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On the use of the geodesic metric in image analysis
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SUMMARY
Let X be a phase in a specimen. Given two arbitrary points x and y of X, let us define the

number dx(x, y) as follows: dx(x, y) is the greatest lower bound of the lengths of the arcs in X
ending at points x and y, if such arcs exist, and + CIJ if not. The function dX is a distance
function, called 'geodesic distance'. Note that if x and y belong to two disjoint connected com-
ponents of X, dx(x, y) = + CIJ. In other words, dx seems to be an appropriate distance function
to deal with connectivity problems.

In the metric space (X, dx), all the classical morphological transformations (dilation, erosion,
skeletonizations, etc.) can be defined. The geodesic distance dx also provides rigourous defini-
tions of topological transformations, which can be performed by automatic image analysers
with the help of iterative algorithms.

All these notions are illustrated with several examples (definition of the length of a fibre;
automatic detection of cells having at least one nucleus, or having exactly a single nucleus;
definitions ofthe geodesic centre and of the ends of a particle without holes, etc.). As an appli-
cation, a general problem of segmentation is treated (automatic separation of balls in a polished
section).

1. INTRODUCTION
Many specimens in image analysis have two phases. The first phase contains the objects

under study (biological cells, stringers in steel, etc.). The second phase is the background.
Two successive steps are usually required in order to obtain measurements from an image:

firstly, an image transformation in order to emphasize the salient features of the initial image;
secondly, the measurements on the transformed image. Most of the time, the transformation
does not affect the whole image, but only a single phase, which depends on the type of measure-
ments to be carried out. For instance, in order to determine the size distribution of stringers in
a sheet of steel, it is sufficient to analyse only the stringers. On the other hand, the determination
of their spatial distribution requires only a study of the background.

It is thus possible to limit the field of study to only one of the phases. This can be very
useful in certain cases to increase the speed of measurements.

Let us return to the particular case of the computation of the stringer size distribution.
It is usually obtained by analysing the stringers individually. In this procedure, all the stringers
are studied one after the other and independently of each other. This procedure is of course
very time consuming, and we may wonder whether it would be possible to study all the stringers
at the same time. In such a case, all of them should nevertheless be analysed independently of
each other. One way to maintain this independence is to introduce a distance function on the
stringers, such that two distinct stringers are considered to be at an infinite distance from each
other.
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It may thus be helpful to in~duce on the field of study a metric which is not the natural
Euclidian one. ~,

In this paper we are especia\l(toncerned with a particular metric: the geodesic distance
function ..Experience has sh9wn tI1at~his metric is well suited to deal with connectivity problems,
and provides rigorous definitions'gf,~opological transformations performed by automatic image
analysers ~apable of maniPula..Jl.'nn'1l",o.iterativealgorith~') (.e.g. reco~struct~on o~ particles from
masks, etc.). It should be notedt~ in a field of study with Its geodesIc metnc, a Simply cOlmected
particle behaves as if it were cdnvex. This fact is very helpful in extending to particles of any
shape the transformations and measurements which are usually defined only for convex particles
(e.g. length of a particle, etc.).

In this paper we have tried to present all these different considerations in an intuitive way.
Some of them raise several mathematical difficulties which are either not presented here or
avoided by the simple assumption that all of the objects under study contain their own boundary.
For more information, see Lantuejoul & Beucher (1979).

2. HOW LONG IS A FIBRE?
In image analysis, many specimens contain long narrow particles (e.g. glass or asbestos

fibres, eutectic alloy lamellae, neuron arms, etc.). Workers concerned with such specimens
usually want to know the distribution function of the length of these particles. But what is the
length of a particle?

Let us consider such a particle. In order to compute its length, we can measure the distance
between its two ends (see Fig. 1-1). This method unfortunately does not work for round or
twisted fibres (see Fig. 1-2).

Fig. 1. The definition of the length of a particle as the length of the segment of line between it two ends
is not always effective.

Another method consists in measuring the length of the skeleton of the particle (Blum,
1973). i'his method is also ineffectiVe in the case where the particle has round ends or a rough
boundary (see Fig. 2).

~-)

It is our aim to define the length of a particle precisely. The two definitions given above
were both rejected because they were not sufficiently general. They are applicable only to a
limited class of particles. We thus arrive at the question of how the class oflong narrow particles
can be defined. Unfortunately, it is impossible to answer such a question, because the descrip-
tion of a particle as long and narrow is quite subjective. At what length/width ratio can a rect-
angle be considered as being elongated? Without information on the shape of the particles
under study, length must be defined regardless of shape, so as to remain applicable to particles
of any shape.



Consider an arbitrarily shaped particle X and let x and y be two points within X. There
exist several paths in X linking x andy (see Fig. 3-1). The shortest one is called 'geodesic are'
(see Fig. 3-2), and its length is denoted by dx(x, y).

Fig. 3. (1) Paths within the particle. (2) Geodesic arc. (3) The length of the particle is defined as the length
of its longest geodesic arc.

We define the length of the particle as the length of the longest geodesic arc within the
particle (see Fig. 3-3).

L(X)= sup dx(x,y)
X,VEX

This definition may seem somewhat arbitrary to the reader. However, it has three big
advantages: (i) this definition is general, as it is applicable to particles of any shape; (ii) this
definition is robust, in the sense that a slight deformation of a particle slightly modifies its
length; (iii) this definition is operational, in so far as a technology exists or can be devised to use
it.

Sometimes particles intersect themselves. A discussion of this is presented in Appendix 1.

3. GEODESIC DISTANCE FUNCTION AND PARTICLE RECONSTRUCTION
Now, let us assume that X is not a single particle, but a population of particles. If the

two points x and y belong to two distinct· particles, there is no path in X linking x and y, and
we can write dx(x, y)= +w.

It can easily be shown that the function dx satisfies all the properties of a distance function:

(i) dx(x, y);:,O and dx(x, y)=O if and only if x=y
(ii) dx(x, y)=dx(y, x)
(iii) dx(x, z)$(,dx(x, y)+dx(y, z)

In the following, the function dx is termed 'geodesic distance function'. The reader can
compare on Figs. 4-1 and 4-2 the discs Bx(x, ,\) and B(z,'\) with centre x and radius '\, with the
geodesic metric dx and with the natural Euclidian metric d of the space fR2 in which X is
embedded. Obviously, d$(,dx. .

In order to have a better understanding of Fig. 4-1, imagine that the particles are a string
of ponds, and that a stone is thrown into one of them. A front of ripples appears, and we observe
them at successive moments.

BXlx.'" "='.2.... Blx.'" "='.2 ....
Fig. 4. (1) Discs with geodesic metric. (2) Discs with Euclidian metric.



From the metric dx, we can define the geodesic distance between a point x of X and a
subset Y of X. dx(x, Y) is the smallest geodesic distance between x and any pointy of Y:

dx(x, Y)= inf dx(x, y)
Y~Y

The main interest in the geodesic distance function lies in that it is perfectly suited to deal
with connectivity problems. An illustration of this is provided by the following example.
Consider two biological images X and Y. X is a population of cells with parts of broken cells,
artefacts, etc. Y is the population of the nuclei. X and Yare obtained using a double staining
technique (see Fig. 5). The only cells that must be studied are the complete cells containing a
nucleus. The other ones are just artefacts and must be disregarded. How can we detect cells of
X having a nucleus?

Let x be a point of a cell that contains a nucleus. There exists a path in the cell linking x and
a point y of the nucleus. In other words, the geodesic distance between x and the nuclei is
finite. Mathematically speaking, the population of cells with a nucleus is:

4. MORPHOLOGICAL TRANSFORMATIONS AND GEODESIC DISTANCE FUNCTION
In the space X with the geodesic metric dx, it is possible to generalize the transformations

commonly used in mat.hematical morphology (Serra, 1980).
(i) if VeX, points at a geodesic distance less than Afrom Y constitute a set called 'A-dilated

set from Y in X' and denoted D,l Y; X) (see Fig. 6).

(ii) the points x of X such that Bx(x, A)is totally included within Y, constitute a set called
'.\-eroded set from Yin X' and denoted EA(Y; X) (see Fig. 7).
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Fig. 7. Geodesic erosion. Y=initial set. E,\(Y; X)='\-eroded set from Y in X.

A point x of X is said to belong to the skeleton by zone of influence of Y with respect to
X if and only if there exist two subscripts p and q such that

dx(x, Y) = dx(x, Kp) = dx(x, Kq) < + CX)

Fig. 8. Geodesic skeletonization by zone of influence. Y= initial set. Y= u Kp• Zp(Y; X) = zone of
influence of Kp in X. S(Y; X)=skeleton by zone of influence of Y in X.

The skeleton S(Y; X) bounds the zones of influence. By definition, the zone of influence of
Kp is a set denoted Zp( Y; X), and made up of points of X at a finite geodesic distance from K,
and geodesically closer to Kp than to any other Kq:

(dx(x, Y)< + CX)
X EZp(Y; X)¢>\

lV q<.n, p=lq=;-.dx(x, Kp)< dx(x, Kq)

It should be noted that the zones of influence and the skeleton do not necessarily partition
X. The reason is that X can have points at an infinite distance from Y.

As an example, let us return to the two populations of cells (X) and nuclei (Y). Cells having
more than one nucleus are overlapping cells and must be disregarded. How can we detect cells
with only one nucleus?

We proceed as follows:
(i) construction of the zones of influence of the nuclei with respect to the cells (see Fig. 9-1)
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Fig. 9. Detection of cells having only one nucleus.

(ii) points of X which do not belong to any zone of-influence, belong either to cells without
nucleus or to the skeleton in cells with strictly more than one nucleus (see Fig. 9-2)

Z=X-Z

(iv) obtaining cells with exactly one nucleus by substraction from the initial population
(see Fig. 9-4)

5. GEODESIC CENTRE AND ENDS OF A PARTICLE WITHOUT HOLES
It is often necessary to mark a particle by a point. In order to increase the speed of subsequent

processing, the point must not be arbitrarily located within the particle. In the following, we
shall associate with. each simply connected particle, a point which is the centre of the circum-
scribed circle when the particle is a triangle with non-obtuse angles.

Let us again imagine that X is a pond. When a stone is thrown into the pond at point x, we
can measure the first time ,\(x) at which all the shores have been reached by the ripples:

'\(x)= sup dx(x,y)
veX

We thus introduce a function ,\ which is represented by the time-level lines on Fig. 10.
It can be shown (see Appendix 2) that the function ,\ is continuous on X and has a single

minimum. The point Xo such that '\(xo) is a minimum is calkd 'geodesic centre.of the particle'.
Clearly, we have Bx[x, '\(xo)]=X if and only if X=Xo.

If the particle is not simply connected, the function ,\ always has several maxima (see Fig.
10). The points x such that '\(x) is a maximum are located on the boundary of X. They are
called the ends of the particle X. In the case where X is a triangle with acute angles, its ends are
the three vertices.



6. AUTOMATIC SEPARATION OF BALLS IN A POLISHED SECTION
In this part we are concerned with a structure which is a polished section of a population of

balls. They may be metallic or ceramic balls at the beginning of a sintering process, spherical
grains of a powder, the granulometry of which has to be computed, etc. Quantitative image
analysis on such a structure is not very easy. Indeed, for mechanical and thermodynamical
reasons, balls are not necessarily isolated. They sometimes touch, or even cake; In order to
perform certain types of measurements, it is essential to separate the balls in sections by drawing
contact lines between them. But ...

6-1. What is a contact line?
At a first approximation, the structure under study can be modelled by a subset X of 1R2,

which is a finite union of discs:
n

X = u B(xp, '\p)
p=l

Let us consider at first two discs B(xp, '\p) and B(xq, ,\q) of the population, and let us denote
as Lpq the radical axis of the two discs, that is, the line which is the set of the points x such that

When the two discs are touching, Lpq is just the line passing through the two points of
intersection of the circumferences (see Fig. 11).

If d2(xp, Xq)> l'\p2- IIp2/, Lpq splits B(xp, lip) U B(xq, ,\q) into two parts Upq and Uqp
containing respectively Xp and Xq. If the two discs are touching, a contact line is generated; by
definition this contact line is the part of Lpq contained within B(xp, lip) U B(xq, IIq) .

•



Let us now consider the whole structure X, and let us assume that the discs do not overlap
too much, in the sense that

Vp,q pi=qd2(xp,Xq)> IAp2_,VI
Thus, every pair of distinct discs B(xp, Ap) and B(xq, Aq) can be split into two parts U pq and

Uqp containing respectively Xp and Xq. Then, with each disc B(xp, Ap) of X, we can associate the
set Up = n U pq . Up is non empty, since Xp belongs to all the U pq, and is equal to B(xp, Ap)

q#p
if and only if this disc is non-connected with any other disc of X. When X is made up of non
disjoint discs, the union of all the Up's is not equal to X. By definition, the set of all the contact

n
lines between the discs of X is X - U Up (see Fig. 12).

p~l

•
Now, this definition can be used if and only if the discs of the population are known. Un-

fortunately, they are not. So, this study entails a preliminary problem which is the identification
of the discs of the population.

6-2. Identification of the discs of the population
Let:14 be a finite family of discs enclosed within X. The discs of:14 are said to span X if their

union is equal to X. They are said to be independent if no disc of ,q,j is included within the union
of the other discs of :14.If:14 is made up of independent discs spanning X, iJJ is called a base
for X. Clearly, a population of discs can have several bases (see Fig. 13), and if :14spans X,
there exists a sub-family :14'of:14 which is a base for X.

Now, let us make the basic assumption that three balls in contact always generate a hole
(see Fig. 14). This assumption is realistic for many applications (in particular, at the beginning
of a sintering process).



With this assumption, some geometric arguments can be used to show that X has one single
base and, furthermore, that the following property holds: any disc within X can be enclosed
within two discs of the base. The uniqueness property make it possible to define the balls in
section as the discs of the base. We denote them as B(xl, AI) .. " B(xn, An) or as Bl, , .. , Bn for
brevity. We have thus:

¥ B(x, A)CX,p, q~n B(x, A)cBp UBq

As an immediate consequence, eroding the whole population in fR2 is exactly the same as
taking the union of all the eroded couples of discs of the base:

EA(X; fR2)= uEA(BpuBq; fR2)
P.q

Assuming again that balls in section do not overlap too much, which was expressed as follows:

it can be easily shown that {xp} is a connected component of EA/X; fR2); and conversely, if{x}
is a connected component of Eq(X; fR2), the disc B(x, A) is a disc of the base. Thus, the centres
of the balls in section are the points which appear as connected components during the suc-
cessive erosions of the population.

If Xp is the centre of a ball in section, the corresponding radius satisfies

Ap=SUP {A>O Ix E EA(X; fR2)}

6- 3. Construction of the contact lines
Let us consider first the case of two balls in section B(xp, Ap)= Bp and B(xq, Aq)= Bq, which

are not necessarily in contact. Since d2(xp, xq) > IAp2 - AI]2/, there exists a positive number of
two disjoint connected components, Furthermore, the line of contact between Bp and Bq



(which is possibly empty) is just the skeleton by zone of influence of these two components in
the union Bp UBq:

Lpq u(Bp U Bq) = S[E,,{Bp U Bq; fR2); Bp \0Bq]

Unfortunately, this formula cannot be immediately generalized to build all the lines of
contact of the whole population at the same time.

Let us denote by LA the points of the contact line which are farther than Afrom the boundary
oX of the population:

Obviously, we have L I' C L,\ if and only if A;::;fL, with the two extremal properties LWJ = 4>
and Lo=L. It can be proved by induction on the A-values (Lantuejoul & Beucher, 1979) that
the following formula holds:

L,\=S[ U (Ep(X; fR2)-LfJ; EA(X; f?2)]
It>J.

This formula can be implemented on an image ana1yser. It has been used on a texture
analyser to study the coalescence of bronze balls at the beginning of a sintering process (Cher-
mant et al., 1981).

It shoul<;l.be noted also that this formula is very general. The fact that the objects under
study are balls does not appear in it. The only property of the objects which is actually used is
that they must remain connected after erosion. Thus, this formula is surely effective in separating
general convex objects in section. .
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AP:>JND IX 1: On tlte length of particles 21ith self-intersections
It sometimes happens that particles present self-intersection (see Fig. 16-1). In such cases,

the general definition of length is applicable, but does. not provide results comformable to
intuition (see Fig. 16-2').

When meeting such particles, the human mind is not content with taking them into account.
It also gives a three-dimensional interpretation of them (see Fig. 17).

Of course, several interpretations are possible. For a given one, aU the arcs within a particle
are not permitted (see Fig. 18). The interpretation of a particle is just the specification of the



family of the permitted arcs of this particle. Starting with this family, we can define exactly,
as previously, the geodesic arcs and then the length of the particle.

AP PEN D I X 2: Proof that the cenrre of the circumscribed disc of a simply connected particle exists and
is umque

In order to establish the proof, we make the following assumptions: (i) X is a simply con-
nected compact set for the metric dx; (ii) for every x EX, it(x) is finite.

These 1\voassumptions are realistic in practice, and avoid pathological sets which could occur
mathemalically. For instance, let X be the hyperbolic spiral of polar equation p= 11fJ, with
fJ E [1,+ :c]; the point whose polar coordinates are (+ co, 0) is at an infinite distance from any
other point of X. X is a compact set in the Euclidian sense, but not in the geodesic sense.
Moreover, X is not geodesicaliy connected.

So, let us assume it < + CD • it is continuous, for Iit(x) - it(y) I ~ dx(x, y). Since X is compact,
it ,1tt2ins its min;mum value at least one point Xo of X. It now remains to see that Xo is unique.

Let x, y and z be three points of X. Suppose that the domain within X that is bounded by
the three geodesic arcs B(x,y), G(y,z) and G(z,x) is simpl connected (which always occurs if
X is itself simply connected). Then for any point t E G(y,z) different framy and z, the following
convexity inequality holds:

dx(t, x) < sup [dx(y, x), dx(z, x)]

Let us now suppose that the function it has two minimal points Xo and Xl. Let x be a point
of the geodesic G(XO,Xl) different from Xo and Xl. There exists a pointy E Y such that it(x)=
dx(x, y). Using the convexity inequality, we obtain:

it(x)=dx(x, y) < sup [dx(xo, y), dx(xr, y)] ~ it(xo)


