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Abstract
A major drawback when using the watershed transformation as a segmenta-

tion tool comes from the over-segmentation of the image. Over-segmentation is
produced by the great number of minima embedded in the image or in its gradi-
ent. A powerful technique has been designed to suppress over-segmentation by a
primary selection of markers pointing out the regions or objects to be segmented
in the image. However, this approach can be used only if we are able to compute
the marker set before applying the watershed transformation. But, in many cases
and especially for complex scenes, this is not possible and an alternative tech-
nique must be used to reduce the over-segmentation. This technique is based
on mosaic images and on the computation of a watershed transform on a valued
graph derived from the mosaic images. This approach leads to a hierarchical
segmentation of the image and considerably reduces over-segmentation.

Then, this hierarchical segmentation is redefined by means of a new algo-
rithm called the waterfall algorithm. This algorithm allows the selection of min-
ima and of catchment basins of higher significance compared to their neighbor-
hood. A very powerful implementation of this algorithm using geodesic recon-
struction of functions is also presented.

Finally, this approach is compared to another powerful tool introduced by M.
Grimaud for selecting significant extrema in an image: the dynamics.
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1. Introduction

Image segmentation based on the use of the watershed transformation has
proved to be an efficient method provided that the main drawback of this tech-
nique is suppressed. This drawback consists in the over-segmentation pro-
duced by the watershed transformation if applied directly on the images to be
segmented. A solution for preventing this over-segmentation is well known



2

and has been widely used in various examples [1, 2]. It consists in a prior se-
lection of the objects or regions to be extracted in the image. This selection
gives a collection of markers which are introduced in the watershed algorithm
allowing the segmentation of the selected regions exclusively. Unfortunately,
because of the complexity of the regions in a real scene, this marking is often
difficult and sometimes even impossible. It is not always simple to associate
obvious geometric or photometric characteristics with the objects to be seg-
mented.

This paper deals with another approach for eliminating the over-segmentation
problem. This approach is based on a hierarchical segmentation of the image
aiming at merging the catchment basins of the watershed image belonging to
almost homogeneous regions. This technique leads to various algorithms. The
most efficient however, still uses the watershed transformation and the image
reconstruction. Both tools are already used in the traditional process of seg-
mentation in mathematical morphology.

The hierarchical segmentation will be described first (Sec. 2). It uses a
simplified image called mosaic image. Then another algorithm, called the wa-
terfall algorithm, will be presented (Sec. 3). The relationship between this
algorithm and the hierarchical segmentation will also be emphasized. Finally,
a comparison between these techniques and another transformation called dy-
namics will be made (Sec. 4).

2. The hierarchical segmentation

The best introduction of the hierarchical segmentation can be made by means
of an image simplification process producing, from the original image f , a new
image called the mosaic image or partition image [1].

2.1 Mosaic image: definition and building

Let f be a grey tone image and g be its morphological gradient. Let W (g)
be the watershed transformation of g. This watershed produces many catch-
ment basins. Each catchment basin CBi is associated with a minimum mi

of the gradient g. Let us calculate the average value fi of the function f in
the minimum mi. In fact, in many cases, the minimum mi corresponds to
a zero-valued gradient and therefore f is constant and equal to fi in mi. A
new function f ′ can then be defined by extending the value fi to the entire
catchment basin CBi. This new function is called the mosaic image of f .

In practice, the watershed line Cij separating two adjacent catchment basins
CBi and CBj is given either the value fi or the value fj . This enables the
definition of the mosaic image on the whole space and has no consequence on
the following use of this simplified image. We notice that the watershed of this
new image f is equal to the watershed of the initial image f .
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2.2 Gradient of the mosaic image

Let us consider again two adjacent catchment basins CBi and CBj with
respective values fi and fj . We define the gradient of the mosaic image h on
every arc Cij separating CBi and CBj by h (Cij) = |fj − fi|.

2.3 Hierarchy and suppression of the over-segmentation

Starting from the mosaic image f ′ and from its gradient h, let us introduce
a hierarchical process able to suppress the over-segmentation.

When we look at a picture, the distinction between more or less homo-
geneous regions is quite obvious despite the fact that these regions may be
over-segmented by the watershed transformation. This over-segmentation is
produced by low contrast variations inside these homogeneous regions. If we
consider the arcs of the watershed inside the homogeneous regions, the value
of the gradient of the mosaic image is lower than the values corresponding to
the arcs separating different homogeneous regions. A solution for eliminating
these arcs would consist in thresholding the watershed lines. However this so-
lution is difficult to implement, because, on the one hand, a suitable threshold
value must be chosen and on the other hand, it is not sure that such a value
exists. This is why the criterion used in the hierarchy is not a threshold but
simply the fact that the gradient values are lower on the inside arcs than on
the surrounding arcs. Consider Fig. 1a, representing the gradient of the mosaic
image of a very simple homogeneous region split by a unique inside arc. The
gradient value of this inside arc is lower than the gradient values of the arcs
which contour the homogeneous region. If the over-segmentation of the ho-
mogeneous region was more severe, the resulting aspect of the gradient image
would be the same: no inside arc greater than the surrounding ones or at least,
no closed curve made of inside arcs all of them greater than the surrounding
ones.

Let us define then a graph on the gradient of the mosaic image. Each arc
Cij of the watershed lines corresponds to a vertex of the graph. Then each
vertex of this graph is the neighbor of another vertex if the arcs corresponding
to these vertices surround the same catchment basin of the watershed (Fig. 1b).
This graph is not a planar graph. However, each vertex can be valued with
the gradient of the mosaic image (on each arc, it is a constant). The watershed
transformation can be performed on this valued graph. The flooding starts from
the arcs with a minimum valuation (the inside arcs, Fig. 1c) and propagates to-
wards the other arcs. Finally, the watershed lines are made of those arcs which
surround the homogeneous regions. This transformation produces exactly the
desired result. The new catchment basins are made of all the inside arcs which
are connected in the graph defined above. These arcs can be removed and
the catchment basins of the primary watershed separated by these arcs can be
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Figure 1. a) 3D representation of the gradient of a simple mosaic b) associated graph c)
minimal arcs and their correspondence on the graph d) planar 6 representation of the above
graph.

merged. The result is a new segmented image where the over-segmentation of
the homogeneous regions has been suppressed.

2.4 Hierarchical algorithms

The preceding graph is not easy to handle because it is not a planar graph.
Although the watershed transformation can be extended in a straightforward
way to 3D structures, in this particular case, it is possible to transform this
non planar graph into a planar one by adding vertices corresponding to the
primary catchment basins (Fig. 1d). These new vertices provide an interme-
diary connection between the neighboring vertices of the non planar graph.
These vertices, however must be valued. Their valuation v(CBi) is given by
v (CBi) = infj (h (Cij)). This valuation corresponds to the value of the low-
est arc contouring the basin CBi. Finally, this new representation leads to a
third one which has the form of an image h′, given by h′ (x) = h (Cij) iff
x ∈ Cij and h′ (x) = v (CBi) iff x ∈ CBi.

This image h′ is called the hierarchical image. The hierarchical process
can then be performed on this image, in a very simple way, by performing the
watershed transformation of h′. The only precaution consists here in replacing
the watershed lines which do not belong to the initial watershed transform of
g (they are inside an initial catchment basin) by the watershed lines which
contour this catchment basin.
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Figure 2. a) initial road scene b) over-segmented watershed of the gradient image c) hierar-
chical segmentation, most of the over-segmentation has been removed.

2.5 Example

Figs. 2a to 2c illustrate the efficiency of the hierarchical segmentation for
reducing the over-segmentation. In this example, the road is a rather homoge-
neous object, but it appears nonetheless to be over-segmented (Fig. 2b). After
the hierarchical processing depicted above, this over-segmentation has been
removed and the road corresponds to a unique catchment basin which can be
considered as the road marker in further processings.

3. Waterfall algorithm

Let us describe another hierarchical algorithm. This algorithm does not use
the mosaic image but directly the initial function f .

3.1 The waterfall algorithm principle

Consider a function f as illustrated at Fig. 3.
Although the function used in this example is one dimensional, the notion

introduced in the following is general and can be applied to any function.
Among the various minima of the function f , three of them m1 , m2 and m3

are interesting because they mark regions of higher importance in the image.
If f is a gradient image for instance, m1 could be the marker of an object to
be segmented and m2 and m3 could be the outside markers. The other min-
ima could be produced by noise. The watershed transformation of f produces
as many catchment basins as there are minima (Fig. 3a). On the contrary, if
only m1, m2 and m3 are used by the watershed transform, only three catch-
ment basins will appear (Fig. 3b). Two questions then arise. The first one is to
characterize the minima m1, m2 and m3. The second one is to find a way to
determine automatically the catchment basin associated with the minimum m1

for instance, without any a priori knowledge or construction of the primary wa-
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Figure 3. a) primary watershed of the function f b) significant minima and the corresponding
watersheds c) selection of a minimum and waterfalls towards the significant marker d) symmet-
rical waterfalls between adjacent catchment basins.

tershed transformation. These two questions are answered through the notion
of waterfall [1].

Significant markers characterization. One could think that the significant
minima correspond to locally deepest minima of the function f . However,
consider (Fig. 3c) a given minimum m. If we flood the catchment basin as-
sociated with this minimum, an overflow occurs when the lowest saddle point
separating this catchment basin from an adjacent catchment basin is reached.
This new catchment basin, then, is flooded and overflows either towards the
preceding catchment basin or towards a new one. In the former case, the first
minimum is a significant minimum. In the latter case, the first minimum is
not significant. More generally, a minimum is said to be significant if the wa-
terfall coming from its corresponding catchment basin pours in an adjacent
catchment basin which, in turn, when flooded, overflows towards the first min-
imum. In fact, and for obvious reasons of symmetry, a significant minimum is
not unique, and the minima linked by symmetrical waterfalls are equally sig-
nificant. Moreover, it is equivalent to consider as a significant marker the arc
of the primary watershed line separating the catchment basins linked by sym-
metrical overflows. This significant marker is an arc of minimum height of the
primary watershed.

Determining the catchment basin corresponding to a significant marker
set. A similar procedure based on waterfalls can be used to determine the
entire catchment basin corresponding to a significant marker, made of primary
catchment basins linked by symmetrical waterfalls. Consider the function f

and a marker set made of at least two catchment basins CB1 and CB2 (see
Fig. 3d). The arc C12 separating these catchment basins can be equivalently
considered as the significant marker. Let us flood these two catchment basins.
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The water will pour into the basin CB3. But if we flood CB3, the water will
pour into CB1 ∩CB2 . So, because of the appearance of symmetric waterfalls
over the arc C13, this arc is removed and the three basins are merged. Let us
continue our flooding process. The water coming from CB1∪CB2∪CB3 will
pour into CB5. Finally all the catchment basins CB1 to CB6 will be merged
because the waterfalls from a given basin to another one are symmetrical versus
the arcs which separate them. On the contrary, the watershed line between CB6

and CB8 will not be removed because, if CB1 ∪ . . . ∪ CB6 pours into CB8,
CB8 pours into CB9 first. At the end, the remaining watershed lines contour
the catchment basin associated with the significant marker.

3.2 An efficient algorithm based on reconstruction

The main drawback of the previous algorithm comes from the fact that the
waterfalls must be checked individually for every minimum or catchment basin
of the primary watershed. This leads to a very slow and boring process. Fortu-
nately, there exists a faster procedure based on image reconstruction.

Image reconstruction. Consider two functions f and g, with f ≥ g . The
reconstruction [1] by geodesic erosions R∗(f, g) of f from g is defined by:

R∗ (f, g) = E∞

f (g) = lim
n→∞

(Ef ◦ ... ◦ Ef ) (g)

with Ef (g) = sup (g 	 B, f).

Reconstruction of a function by its watershed. Let f be a positive and
bounded function (0 ≤ f ≤ m) and let W (f) be its watershed transform.
W (f) is the set of the watershed lines of f . Let us build a new function g with
W (f):

g (x) = f (x) iff x ∈ W (f) and g (x) = m iff x ∈ W c (f) .

This function g is obviously greater than f . Let us now reconstruct f from
g. It is easy to see that the minima of the resulting image correspond to the
significant markers of the original image f (see Fig. 4).

In fact, the reconstruction fills in (partially) each catchment basin with a
plateau at a height equal to the minimum height of the watershed line sur-
rounding this catchment basin. Therefore, if there exists an adjacent catchment
basin where the corresponding height is lower than the previous one, the wa-
terfalls will not be symmetrical and the plateau generated in the basin will not
be a minimum. Moreover, the watershed transform of R∗(f, g) produces the
catchment basins associated with these significant markers.
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Figure 4. Reconstruction from watershed lines and detection of the significant markers.

Figure 5. The significant minima in an image are used as markers in the gradient watershed
image.

4. Comparisons between these hierarchical segmentations

4.1 Waterfalls and mosaic images

When the initial image is the gradient of the mosaic image, the hierarchy set-
tled by the waterfalls is identical to the hierarchy performed by the watershed
applied to the graph defined by the gradient of the mosaic image. However,
the waterfall is more general and can be applied to any image. This approach
is particularly useful for detecting blobs in an image.

The following example (Fig. 5) illustrates this technique. The vehicles on
the road are characterized by a front or rear dark region which can be detected
by reconstructing the primary image with its watershed and by using the signif-
icant minima as markers in the segmentation. The watershed transform of the
reconstructed image delineates the extension of the blobs. Then, by using both
the significant minima and the watershed lines of this reconstructed image as
markers in the watershed of the gradient image, we obtain the final result given
at Fig. 5c. Further filtering of the blobs can be made based on their depth.
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Figure 6. Comparizon betweeen the dynamics and the waterfall algorithm

4.2 Waterfalls and dynamics

The notion of dynamics of a minimum has been introduced by M. Grimaud
[3]. The dynamics of a minimum is equal to the height we must climb before
reaching any point in the function at a lower altitude than the minimum. If we
compare the dynamics and the significant minima of the function at Fig. 6a ,
we observe a strong similarity between the dynamics and the waterfalls, be-
cause the significant minima also correspond, in this example, to minima with
high dynamics. This similarity, however, is misleading, as depicted in Fig. 6b.
In fact, the two notions are based on two different characteristics: the dynam-
ics is controlled by the relative altitudes of the minima. The waterfalls, on the
contrary, are related to the relative heights of the watershed lines. Moreover,
the dynamics is more difficult to handle because, in most cases, a threshold is
needed to extract the minima with high dynamics. When applied to a gradient
image, too, the dynamics give unsatisfactory results because most of the min-
ima of the gradient are at level zero. Therefore, the definition of their dynamics
is not simple.

5. Conclusion

In this paper, we have shown that the watershed transformation and the re-
construction of functions can be successfully used in hierarchical segmentation
processes. The methodology described here for reducing the over-segmentation
is rather simple, it is independent of scale and does not require the setting of
any parameter. The final result provides almost homogeneous regions in the
image. Further image processing applied on these regions allows us to filter
them according to geometrical criteria and enables their possible selection as
markers in more complex image segmentations.
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