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1. Introduction

The purpose of this note is to clarify the notidnhemaximum (or h-minimum) which is
introduced in the course devoted to geodesic toamsf as an extension or generalization of
maxima (or minima) of a function [5]. Indeed, itp@ars that this concept is misleading.
Therefore, it may lead to false interpretationsisita matter of fact that the result of the
h-maximum (or h-minimum) operator is not easy tarelsterize. Generally, this result is
linked to the height of the maxima (or the depthh&f minima). However, this notion (height
or depth) is ambiguous.

Therefore, these operators will be revisited hArether definition of maxima and minima
will be used and extended to h-maxima and h-mintimzs allowing to characterize the result
provided by these operators. Then, other operatifirbe described. These operators allow to
sort the different extrema according to a speaifeasure called dynamics.

Finally, the use of these extrema in relation Viitiering and segmentation operators will be
discussed.

These various operators have been implemented thttMAMBA image library [1]. The
scripts are available in the appendix.

This note can be considered as a complement afilnse on geodesic transforms [5].

2. Maxima (minima) of a function

In the sequel, only digital images taking integalues will be considered. Let f be a digital
image defined in a digital space E . The graph Gi®inmade of all the points (x, f(xX)},€ E
For a 2D image, this graph corresponds to the aigdpographic surface drawn by the
function. Let us start by defining a paih,,, zo ( is #tarting pointz, is the end point) on
the graphC,,,, is a sequen@, ...,z, ...,zn) of points of the graphvith:

Zp = (Xo, f(xo0))

Zn = (Xn, f(Xn))
where (Xo, ...,Xi, ....Xn) iS a corresponding sequence of pairwisehbeigpoints on the
support E of f. The point; amnxl,s  are neighbors loa digital grid defined in E.
(Xo, ...,Xi, ...,Xn) draws a patlayx, Which is the projection on E ofghthC,,, . We suppose
also thatvi,j, xi #%; (there is no loop in the path).
A non descending path,,,, is a path where:

Vxi, X, 1 <j,f(x;) < f(x;)

Such a path starting a8  is never descending ditsrgpurse towards,
The height h of a non descending path (NBR), ismivy:



h(Czozn) = f(xn) - f(XO)
Let us come back to the definition of a maximunit & given in [2].
A maximum of f (sometimes called regional maximuim)a summit of the topographic
surface G, that is a connected region (but notsseedy reduced to an single point) where it
is not possible, starting from any point of thigiom to reach a higher point (if it exists) of the
topographic surface by means of a non descendiing(pay. 1).

Maxima

Figure 1. Point x belongs to a maximum because, starting from this point, it is impossible
to reach a higher point as y by following a non descending Path. C,, is not a non
descending path. On the contrary, z does not belong to a maximum because the path C4
joining zto a higher point t is non descending.

A thresholdX;(f) at level i of a function f defined Bris made of the points of E such that:
Xi(f) ={xeE:f(x)>i}

The geodesic reconstructiétx(Y) of a set X by a maskeY ¥ < X ) is made of all the

connected components of X which are marked by Y.

The maxima of a function f can be obtained by me#ng geodesic reconstruction. Let us

consider the various thresholds of f. A maximunthaf function at altitude i (if it exists) will

be a connected component of the thresho(é) of fanoing no connected component of

any thresholdX;(f) wherg>i . Indeed, suppose that ibistmue. Therefore, there exists a

path connecting any point of the aforementionecheoted component ofi(f) to any point

of the connected component Xf(f) contained in theipus one (Fig. 2). Let us take

] =i+ 1. Then patlt,, is the projection of a non descengaity on the graph G of f. So, x

cannot belong to a maximum, which proves the pntipos

So, a maximum at altitude i corresponds to a caedecomponent oX;(f) which cannot be
rebuilt byX;.1(f) and the set M (f) of all the maximafafan be defined as:
M(F) = ULXi DRy [ X1 (D] ]
Let us write this formula differently. We know that
Rx.(n[Xi+1(f)] = Ry [Xi(F = 1)] = Xi[Re(f - 1)]
whereRs(f - 1) is the geodesic reconstruction of the fonctiby (f-1).
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That is:
M(f) = UIXi(f) N XF(Ri(f - 1))]
This can be written as (see [4]):
M(f) = Xi[f - Re(f - 1)]
Maxima of f are made of points of E whdreRi(f—1) is #lyipositive [2]. This function
taking only two values O or 1 is also the indicdtorctionky(f) of the maxima of f.
Minima m(f) of f can be obtained in a similar way byply using the dual reconstructiét
We get:
km(f) = R?(f + 1) —-f

Xi+ 1 (f)

-

X, (1)

Figure 2: Theright connected component of X; isa maximum as it cannot be rebuilt by any
connected component of X.1 (it does not contain such a component).

3. Algorithmic definition of a h-maximum

The implementation of this operator in the MAMBAage library is straightforward (see the
appendix). Moreover, this implementation has bedergled by introducing a parameter h
for the constant value which is subtracted froWhen this parameter is set to 1 (its default
value), we obtain the classical maxima of f. Butewh is greater than 1, the connected
components of the set resulting of the operatiercalled h-maxima.

However, characterizing the points which belonghis set is not easy. In fact, this operator
is misleading as it does not produce any maximuireajht h as its name would suggest.

To better understand this general operator, itnteresting to change the definition of a
maximum. This new definition is the following:

A point z of the graph of f belongs to a maximunarnid only if any non descending p&b
starting from z has a maximum height equal to 0.

The only non descending paths which can be defome@l maximum are horizontal ones.



This definition is interesting because, contrarnthe previous one, there is no need to look
for all the points at a higher altitude to checkéy are reachable or not by a non descending
path.

This definition allows also to simply characteribe points which belong to the set obtained
by the h-maximum operator.

A point z of the graph of f belongs to a h-maximiirand only if any non descending path
Cx starting from z has a maximum height equal to)(h-1

Zy

Figure 3: Two maxima M; and M, are contained in Zy. But the height of M, islarger than
h, whilst the height of M» islower than h. In both cases, z; and z; are at a vertical distance
lower than h from these respective maxima.

In other words, the maxima operator in the MAMBAage library provides a s&;, made of
all the points x of E for which the correspondingjrps z = (x,f(x)) on the graph G are at a
vertical distance less than h to a maximum of fweer, this seZ, does not mark the
maxima of f with a height lower than h. On the cant, as it can be shown in Fig. 3, some
detected domes of the graph G of f correspond tamaaof height larger than h, whilst other
correspond to maxima of height lower than h. Moepwhen h increases, the sét
increases too. The operator is extensive:
h<h'=Z,cZy

So, the domes of f tend to merge when h increases.
Let us denote byn(f) the operatef{f—h) . An interestingoerty of this operator is its
distributivity with respect to addition. Indeed, w&n show that:

My, (F) = iy (Pn (F)) = 1, (F) o 1 ()
This can be proved by using the thresholdséf) .Usetonsider a threshok{(rn(f)) at
level i of the functiorr,(f) . Each connected comporfertt in brief) ofXi(ri(f)) is obtained
by a geodesic reconstruction from at least a mam@ae of a c.c. oK+ (f) . Each c.c. of
Xi(rn(f)) is also equal to the c.c. ¥§(f)  which contains trerkar. Let us prove that(f)
can be iterated. For this, we just need to proae ¢lach c.c. oKi(rn, orp,) is also a c.c. of
Xi(rn,+h,) then, that each c.c. ¥(rn+n,) is ac.cXlrn, orn,)
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Each c.c. oKi(rp, orn,) is marked by a c.c.Xfn,(rn,) . This c.dtsislf marked by a c.c. of
Xi+n,+h, (). Therefore, as this latter c.c. marks a c.céfn +,) we have:
Xi(rn, o rny) < Xi(rn,+h,)
Each c.c. oKi(rn,+h,) is marked by a c.c.Xfn+n,(f) . But this marks a c.c. 0Kin,(rn,) .
And this c.c. marks a c.c. ¥§(rn, orn,) . Therefore, we have:
Xi(rn,+h,) < Xi(rn, orr), Q.E.D.

4. Height of a maximum (depth of a minimum)

In the sequel, the notion of altitude will be uskd introducing some definitions and

algorithms. It is important to not mix up these teancepts: altitude and height. The altitude
of a point z(x, f(x)) of the graph of f is simplh& value f(x). The height of z (which is

supposed to belong to a maximum) is, as it has Bbewn previously, a more complex

notion which will be discussed in this section.

As the operatory is unable to provide a satisfgati@finition of the height of a maximum,
other solutions must be explored. The first onddbe to define the height of a maximum as
the minimal vertical distance one must go downtisiga from this maximum to reach another
maximum (Fig. 4a). If there exists no other maximfiirhas a unique maximum), the height
of this maximum is simply equal to the differenceteeen the maximum and minimum
values of f.

(a) (b)
Figure 4: The height h of the maximum M1 corresponds to the minimal vertical distance

one must go down to reach any other maximum (M2 in this example) (a). Applied to
minima, this definition corresponds to the depth of the corresponding lower catchment
basin, which is far from being satisfactory for minimum ms (b).

Applied to minima, this definition of the depth @iminimum corresponds to the height of the
lower catchment basin associated to this minimuin\W& know how to obtain these lower
catchment basins by means of a geodesic dual regotisn using the watershed transform.
However, this definition is again not satisfactdrydeed, as it is illustrated in Fig. 4b, this



depth is almost the same for all the minima ofdhewn structure, which is far from being
appropriate for the deepest minimum.

Mj

M,

M, .
Zy
(d)
M,
M,
/Tﬂ
(e) (f)

Figure 5: Evolution of the function ry(f) of the initial function f (a) when h increases and
relationships between its maxima and the maxima Z, of ri (b). hy is the dynamics of M1
(©), h the dynamics of M (€). Finally, hs is the dynamics of M. It also corresponds to the
dynamics of f (f).



A better definition of the height of a maximum daa obtained by observing the evolution of
thery function when h increases and especially l®gling its maxima. Let us consider the
function f in Fig. 5a, which shows three maxirivy, M, andM3; . Successive, transforms
can be applied to f with increasing values of ht le also extract the maxima of eagh
transform. We can see in Fig. 5b that, at the @ all the maxima of f are included in
maxima ofrn . Then, when h is equal he , the firstximaim M; of f is not included
anymore in a maximum ok, (Fig. 5c). If we increas®l, andM3 continue to be marked
by maxima ofr, . For a higher value ofM;  is agasrked by a maximum aof, (the same
maximum also includelsl, , Fig. 5d).

Then, when his equal t  (Fig. 5e), the maximdm eases to be included in a maximum
of rn, (this is also the case fdd; , although it is tiog first time this event occurs). The
valuesh; andh, associated to the maxikia Bhd regplgct{Fig. 5f) are named
dynamics of these maxima [6]. It can be shown thatdynamics of a maximum M of a
function f is equal to the minimal vertical distenone must go down, starting from this
maximum to reach a maximum at a higher altitude tdaWhen M is the highest maximum,
its dynamics is equal to the difference betweermt&mum and minimum values of f. This
value is sometimes defined as the dynamics ofrttege (it is also called oscillation of the
function f).

So, a small change in the definition (consideringhigher maximum instead of any
maximum) leads to a much better definition of tlegght of a maximum as illustrated in Fig.
5f.

Therefore, it is more natural to define the heigh& maximum as the value of its dynamics.
The same notion can obviously be defined for theimm of an image: the dynamics of a
minimum is equal to its depth.

The dynamics of a maximum is not a local attribwt@ch can be determined simply by
exploring its surroundings as the maximum whictedatnes the value of the dynamics may
be far from the first maximum. Therefore, calcuigtrapidly the dynamics of all the maxima
of an image is not simple. There exists, howeveringplementation based on hierarchical
gueues (described in [6]). Fortunately, in mostesast is not necessary to calculate the
dynamics of all the maxima. We just need to exttlhose maxima with a height or dynamics
higher than or equal to a given value h.

Obtaining those maxima with a dynamics larger tffan 1) is very easy. They are produced
by a simple threshold at level h of the functferr(f)

We shall not give the proof of this here (it carftnend in [6]), but we can intuitively see why
it is true by looking at Fig. 5c. As a matter ofttavhen a maximum ceases to be marked, the
corresponding part of the functida-r,(f)  also ceasdsdmase and its maximal value is
lower than h. Even if the maximum is marked agaterl on (Fig. 5d), there is a gap in the
increase of —ry(f) which will never be filled in.

These operators (for maxima and minima) are defimethe appendix (they are named
maxDynamics and minDynamics). Note the tiny difference between these operato the
maxima/minima operators (level of the final threshold).
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5. Robustness of the dynamics

The major drawback of the dynamics lies in its greensitivity to noise and to small
variations of grey levels. One particular drawbhek been discussed in [6] and is illustrated
in Fig. 6a. When two or more relatively closed maxiare at the same altitude, their
dynamics is the same and may be quite high. Howegerind that the maxima or minima
are widely used to provide markers for the watatsgegmentation. Therefore, using extrema
of high dynamics to provide these markers may teadultiple markings of the same salient
regions and then to over-segmentations.

M, M, | M, M, |

(a) (b)
Figure 6: The two maxima M; and M, have the same altitude and their dynamics are also
equal and higher than h. Selecting these maxima as markers leads to a double marking of
the corresponding salient dome (a). Using the maxima of ry(f) instead produces a single
marker (b).

There exists solutions to overcome this problere (6¢). Among them, one of the simplest
ones consists in using the maxima of the functid¢f) as markers (or the minima of(f) ).
Each maximum contains at least one maximum of mit@li function f with a dynamics
higher than h. But all the maxima of f which arentzined in a single maximum of(f)
correspond to the maxima which were wrongly sepdrat the previous example (Fig. 6b).
Therefore, using the maxima of(f)  (or the minimadf) prévents over-segmentations in
the watershed transform

These operators have also been added to the aggbighiMaxima, deepMinima).

6. Use of extrema in geodesic reconstructions

To end up this review, let us recall a well-knowogerty of the maxima (or minima) of an
image f. If M is the set of all the maxima of fewan define the valued indicator function of
these maxima as the function m equal to:

m(x) = max(f) if xe M
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m(x) = min(f) if x ¢ M
max(f) andmin(f) been respectively the maximal and minimalestaken by f (usely 255
and O if f is a 8-bit grey scale image).
Theng=mAf is the function where each maximum belonginiy! is valued by its altitude.
We know that:

f = Ry(f)

It is very easy to prove this equality. The samepprty holds with the minima of f and the
dual reconstruction.
Now, it is possible to obtain partial reconstruotmf f by selecting any subset M’ of M. We
have:

m'(x) = max(f) if xe M’

m'(x) = min(f) if x ¢ M’
The partial reconstruction operatég, (f)  is equal to:

W (f) = Rvae(f)

It is also possible to define partial reconstrutsidoy using the dual reconstruction operator
and by selecting a specific subset among the mioiiniae initial image f.
These operators can be useful for designing spdditers (Fig. 7), for a better detection of
differences between similar images.

|

(b) (©)
Figure 7: Theinitial image (a) isrebuilt by taking only those maxima which are outside the
marker set (b). Theresult is shown in (c).

A general implementation of these operators cafobed in the appendix. They are named
maxPartialBuild andminPartialBuild. They both use a binary set which acts as a ntsly.
maxima (or minima) which fall inside the mask ased for reconstructions.
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8. Appendix

This appendix contains the MAMBA source code foe thperators described in this

document. The first two operators (maxima and ma)irare already contained in the

geodesy.py module. The others are gathered in amaule, extrema.py, available at:
http://cmm.ensmp.fr/~beucher/Mamba/extrema.py

||||||

This module provides a set of operators dealing with maxima and minima of a function.
New operators linked to the notion od dynamics are provided. This module uses Mamba
functions available in geodesy.py.

it works with imageMb instances as defined in mamba.

||||||

# Contributor: Serge BEUCHER

import mamba
import mambaComposed as mC

def minima(imin, imOut, h=1, grid=mamba.DEFAULT_GRID):

||||||

Computes the h-minima of 'imin’ using a dual build operation and puts the
result in 'imOut'. When ‘h’ is equal to 1 (default value), the operator provides
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the minima of ‘imin’.
Grid used by the dual build operation can be specified by ‘grid'.

Only works with greyscale images as input. 'imOut’ must be binary.

nnn

imWrk = mamba.imageMb(imin)

mamba.addConst(imlin, h, imWrk)

mC.dualBuild(imln, imWrk, grid=grid)

mamba.sub(imWrk, imin, imWrk)

mamba.threshold(imWrk, imOut, 1, mamba.computeMaxRange(imIn)[1])

def maxima(imin, imOut, h=1, grid=mamba.DEFAULT_GRID):
Computes the h-maxima of 'imIn’ using a build operation and puts the result in
ImOut’. When ‘h’ is equal to 1 (default value), the operator provides the minima
of ‘imin’.

Grid used by the build operation can be specified by 'grid'.

Only works with greyscale images as input. 'imOut’ must be binary.

nnn

imWrk = mamba.imageMb(imin)

mamba.subConst(imin, h, imWrk)

mC.build(imIn, imWrk, grid=grid)

mamba.sub(imin, imWrk, imWrk)

mamba.threshold(imWrk, imOut, 1, mamba.computeMaxRange(imin)[1])

def minDynamics(imin, imOut, h, grid=mamba.DEFAULT_GRID):

nnn

Extracts the minima of 'imIn" with a dynamics higher or equal to 'h' and puts
the result in 'imOut’'.

Grid used by the dual build operation can be specified by ‘grid'.

Only works with greyscale images as input. 'imOut’ must be binary.

nnn

imWrk = mamba.imageMb(imin)

mamba.addConst(imlin, h, imWrk)

mC.dualBuild(imln, imWrk, grid=grid)

mamba.sub(imWrk, imin, imWrk)

mamba.threshold(imWrk, imOut, h, mamba.computeMaxRange(imin)[1])

def maxDynamics(imin, imOut, h, grid=mamba.DEFAULT_GRID):

nnn

Extracts the maxima of 'imIn' with a dynamics higher or equal to 'h' and puts
the result in 'imOut'.

Grid used by the dual build operation can be specified by ‘grid'.
Only works with greyscale images as input. 'imOut’ must be binary.
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nnn

imWrk = mamba.imageMb(imin)

mamba.subConst(imin, h, imWrk)

mC.build(imIn, imWrk, grid=grid)

mamba.sub(imin, imWrk, imWrk)

mamba.threshold(imWrk, imOut, h, mamba.computeMaxRange(imIn)[1])

def deepMinima(imin, imOut, h, grid=mamba.DEFAULT_GRID):
Computes the minima of the dual reconstruction of image 'imin* by imin + h
and puts the result in 'imOut'.

Grid used by the dual build operation can be specified by ‘grid'.

Only works with greyscale images as input. 'imOut’ must be binary.

nnn

imWrk = mamba.imageMb(imin)
mamba.addConst(imlin, h, imWrk)
mC.dualBuild(imln, imWrk, grid=grid)
mC.minima(imWrk, imOut, 1, grid=grid)

def highMaxima(imIn, imOut, h, grid=mamba.DEFAULT_GRID):
Computes the maxima of the reconstruction of image 'imin' by imin + h
and puts the result in 'imOut'.

Grid used by the build operation can be specified by 'grid'.

Only works with greyscale images as input. 'imOut’ must be binary.

nnn

imWrk = mamba.imageMb(imin)
mamba.subConst(imin, h, imWrk)
mC.build(imIn, imWrk, grid=grid)

mC. maxima(imWrk, imOut, 1, grid=grid)

def maxPartialBuild(imlIn, imMask, imOut, grid=mamba.DEFAULT_GRID):
Performs the partial reconstruction of ‘imiIn' with its maxima which are
contained in the binary mask 'imMask’. The result is put in 'imOut'.

'imIn* and 'imOut’ must be different and greyscale images.

nnn

imWrk = mamba.imageMb(imin, 1)

mC.maxima(imin, imWrk, 1, grid=grid)

mamba.logic(imMask, imWrk, imWrk, "inf")

mamba.convertByMask(imWrk, imOut, 0, mamba.computeMaxRange(imin)[1])
mamba.logic(imin, imOut, imOut, "inf")

mC.build(imIn, imOut)

def minPartialBuild(imIn, imMask, imOut, grid=mamba.DEFAULT_GRID):
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nnn

Performs the partial reconstruction of ‘imin’ with its minima which are
contained in the binary mask 'imMask’. The result is put in 'imOut'.

'imIn* and 'imOut’ must be different and greyscale images.

nnn

imWrk = mamba.imageMb(imin, 1)

mC.minima(imin, imWrk, 1, grid=grid)

mamba.logic(imMask, imWrk, imWrk, "inf")

mamba.convertByMask(imWrk, imOut, mamba.computeMaxRange(imin)[1], 0)
mamba.logic(imln, imOut, imOut, "sup")

mC.dualBuild(imln, imOut)
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