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1. Introduction

The purpose of this note is to clarify the notion of h-maximum (or h-minimum) which is
introduced in the course devoted to geodesic transforms as an extension or generalization of
maxima (or minima) of a function [5]. Indeed, it appears that this concept is misleading.
Therefore, it may lead to false interpretations. It is a matter of fact that the result of the
h-maximum (or h-minimum) operator is not easy to characterize. Generally, this result is
linked to the height of the maxima (or the depth of the minima). However, this notion (height
or depth) is ambiguous.
Therefore, these operators will be revisited here. Another definition of  maxima and minima
will be used and extended to h-maxima and h-minima, thus allowing to characterize the result
provided by these operators. Then, other operators will be described. These operators allow to
sort the different extrema according to a specific measure called dynamics.
Finally, the use of these extrema in relation with filtering and segmentation operators will be
discussed.
These various operators have been implemented with the MAMBA image library [1]. The
scripts are available in the appendix.
This note can be considered as a complement of the course on geodesic transforms [5].

2. Maxima (minima) of a function

In the sequel, only digital images taking integer values will be considered. Let f be a digital
image defined in a digital space E . The graph G of f is made of all the points (x, f(x)), .x c E
For a 2D image, this graph corresponds to the digital topographic surface drawn by the
function. Let us start by defining a path  (  is the starting point,  is the end point) onCz0zn z0 zn

the graph.  is a sequence  of points of the graph of f with:Cz0zn
(z0, ...,z i, ...,zn )

z0 = (x0, f(x0))

 zn = (xn, f(xn ))

where  is a corresponding sequence of pairwise neighbor points on the(x0, ...,x i, ...,xn )

support E of f. The points  and  are neighbors on the digital grid defined in E.x i x i+1

 draws a path  which is the projection on E of the path . We suppose(x0, ...,x i, ...,xn ) cx0xn Cz0zn

also that   (there is no loop in the path).≤i, j, x i ! x j

A non descending path  is a path where:Cz0zn

≤x i,x j, i < j, f(x i ) [ f(x j )

Such a path starting at  is never descending during its course towards .z0 zn

The height h of a non descending path (NDP)  is given by:Cz0zn
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h(Cz0zn
) = f(xn ) − f(x0)

Let us come back to the definition of a maximum as it is given in [2].
A maximum of f (sometimes called regional maximum) is a summit of the topographic
surface G, that is a connected region (but not necessarily reduced to an single point) where it
is not possible, starting from any point of this region to reach a higher point (if it exists) of the
topographic surface by means of a non descending path (Fig. 1).

Figure 1: Point x belongs to a maximum because, starting from this point, it is impossible
to reach a higher point as y by following a non descending Path.  is not a nonCxy

descending path. On the contrary, z does not belong to a maximum because the path Czt

joining z to a higher point t is non descending.

A threshold  at level i of a function f defined on E is made of the points of E such that:X i(f)

X i(f) = x c E : f(x) m i
The geodesic reconstruction   of a set X by a marker set Y (  ) is made of all theRX(Y) Y _ X
connected components of X which are marked by Y.
The maxima of a function f can be obtained by means of a geodesic reconstruction. Let us
consider the various thresholds of f. A maximum of the function at altitude i (if it exists) will
be a connected component of the threshold  of f containing no connected component ofX i(f)

any threshold  where . Indeed, suppose that it is not true. Therefore, there exists aX j(f) j > i
path connecting any point of the aforementioned connected component of  to any pointX i(f)
of the connected component of  contained in the previous one (Fig. 2). Let us take X j(f)

. Then path  is the projection of a non descending path on the graph G of f. So, xj = i + 1 cxy

cannot belong to a maximum, which proves the proposition.

So, a maximum at altitude i corresponds to a connected component of  which cannot beX i(f)

rebuilt by   and the set M (f) of all the maxima of f can be defined as:X i+1(f)

M(f) = 4
i

Xi(f)\RXi(f)
[Xi+1(f)]

Let us write this formula differently. We know that:
RXi(f)

[X i+1(f)] = RXi(f)
[X i(f − 1)] = X i[R f(f − 1)]

where  is the geodesic reconstruction of the function f by (f-1).R f(f − 1)
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That is:
M(f) = 4

i
[Xi(f) 3 Xi

c(R f(f − 1))]

This can be written as (see [4]):
M(f) = Xi[f − R f(f − 1)]

Maxima of f are made of points of E where  is strictly positive [2]. This functionf − R f(f − 1)

taking only two values 0 or 1 is also the indicator function  of the maxima of f.kM(f)

Minima  of f can be obtained in a similar way by simply using the dual reconstruction .m(f) R&

We get:
km(f) = Rf

&(f + 1) − f

Figure 2: The right connected component of  is a maximum as it cannot be rebuilt by anyX i

connected component of  (it does not contain such a component).X i+1

3. Algorithmic definition of a h-maximum

The implementation of this operator in the MAMBA image library is straightforward (see the
appendix). Moreover, this implementation has been extended by introducing a parameter h
for the constant value which is subtracted from f. When this parameter is set to 1 (its default
value), we obtain the classical maxima of f. But when h is greater than 1, the connected
components of the set resulting of the operation are called h-maxima.

However, characterizing the points which belong to this set is not easy. In fact, this operator
is misleading as it does not produce any maximum of height h as its name would suggest.

To better understand this general operator, it is interesting to change the definition of a
maximum. This new definition is the following:
A point z of the graph of f belongs to a maximum if and only if any non descending path Czz∏

starting from z has a maximum height equal to 0.
The only non descending paths which can be defined on a maximum are horizontal ones.
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This definition is interesting because, contrary to the previous one, there is no need to look
for all the points at a higher altitude to check if they are reachable or not by a non descending
path.  
This definition allows also to simply characterize the points which belong to the set obtained
by the h-maximum operator.
 A point z of the graph of f belongs to a h-maximum if and only if any non descending path 

 starting from z has a maximum height equal to (h-1).Czz∏

Figure 3: Two maxima  and  are contained in . But the height of  is larger thanM1 M2 Zh M1

h, whilst the height of  is lower than h. In both cases,  and  are at a vertical distanceM2 z1 z2

lower than h from these respective maxima.

In other words, the maxima operator in the MAMBA image library provides a set  made ofZh

all the points x of E for which the corresponding points  on the graph G are at az = (x, f(x))

vertical distance less than h to a maximum of f. However, this set  does not mark theZh

maxima of f with a height lower than h. On the contrary, as it can be shown in Fig. 3, some
detected domes of the graph G of f correspond to maxima of height larger than h, whilst other
correspond to maxima of height lower than h. Moreover, when h increases, the set Zh

increases too. The operator is extensive:
h < h ∏u Zh _ Zh∏

So, the domes of f tend to merge when h increases.
Let us denote by  the operator . An interesting property of this operator is itsrh(f) R f(f − h)

distributivity with respect to addition. Indeed, we can show that:
rh1+h2

(f) = rh2
(rh1

(f)) = rh2
(f) ) rh1

(f)

This can be proved by using the thresholds of . Let us consider a threshold  atrh(f) X i(rh(f))

level i of the function .  Each connected component (c.c. in brief) of  is obtainedrh(f) X i(rh(f))

by a geodesic reconstruction from at least a marker made of a c.c. of . Each c.c. of X i+h(f)

 is also equal to the c.c. of  which contains the marker. Let us prove that X i(rh(f)) X i(f) rh(f)

can be iterated. For this, we just need to prove that each c.c. of  is also a c.c. of X i(rh2 ) rh1
)

 then, that each c.c. of  is a c.c. of .X i(rh1+h2
) X i(rh1+h2

) X i(rh2 ) rh1
)
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Each c.c. of  is marked by a c.c. of . This c.c. is itself marked by a c.c. ofX i(rh2 ) rh1
) X i+h2

(rh1
)

. Therefore, as this latter c.c. marks a c.c. of , we have:X i+h1+h2
(f) X i(rh1+h2

)

X i(rh2 ) rh1
) _ Xi(rh1+h2

)

Each c.c. of  is marked by a c.c. of . But this c.c. marks a c.c. of .X i(rh1+h2
) X i+h1+h2

(f) X i+h2
(rh1

)

And this c.c. marks a c.c. of . Therefore, we have:X i(rh2 ) rh1
)

, Q.E.D.X i(rh1+h2
) _ Xi(rh2 ) rh1)

4. Height of a maximum (depth of a minimum)

In the sequel, the notion of altitude will be used for introducing some definitions and
algorithms. It is important to not mix up these two concepts: altitude and height. The altitude
of a point z(x, f(x)) of the graph of f is simply the value f(x). The height of z (which is
supposed to belong to a maximum) is, as it has been shown previously, a more complex
notion which will be discussed in this section.

As the operator  is unable to provide a satisfactory definition of the height of a maximum,rh

other solutions must be explored. The first one could be to define the height of a maximum as
the minimal vertical distance one must go down, starting from this maximum to reach another
maximum (Fig. 4a). If there exists no other maximum (f has a unique maximum), the height
of this maximum is simply equal to the difference between the maximum and minimum
values of f.

Figure 4: The height h of the maximum  corresponds to the minimal vertical distanceM1

one must go down to reach any other maximum (  in this example) (a). Applied toM2

minima, this definition corresponds to the depth of the corresponding lower catchment
basin, which is far from being satisfactory for minimum  (b).m3

(b)(a)

Applied to minima, this definition of the depth of a minimum corresponds to the height of the
lower catchment basin associated to this minimum [3]. We know how to obtain these lower
catchment basins by means of a geodesic dual reconstruction using the watershed transform.
However, this definition is again not satisfactory. Indeed, as it is illustrated in Fig. 4b, this
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depth is almost the same for all the minima of the drawn structure, which is far from being
appropriate for the deepest minimum.

Figure 5: Evolution of the function  of the initial function f (a) when h increases andrh(f)

relationships between its maxima and the maxima  of  (b).  is the dynamics of Zh rh h1 M1

(c),  the dynamics of  (e). Finally,  is the dynamics of . It also corresponds to theh2 M2 h3 M3

dynamics of f (f).

(f)(e)

(d)(c)

(b)(a)
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A better definition of the height of a maximum can be obtained by observing the evolution of
the  function when h increases and especially by observing its maxima. Let us consider therh

function f in Fig. 5a, which shows three maxima, ,  and . Successive  transformsM1 M2 M3 rh

can be applied to f with increasing values of h. Let us also extract the maxima of each rh

transform. We can see in Fig. 5b that, at the beginning, all the maxima of f are included in
maxima of . Then, when h is equal to , the first maximum  of f is not includedrh h1 M1

anymore in a maximum of  (Fig. 5c). If we increase h,  and  continue to be markedrh1 M2 M3

by maxima of . For a higher value of h,  is again marked by a maximum of  (the samerh M1 rh

maximum also includes , Fig. 5d).M2

Then, when h is equal to  (Fig. 5e), the maximum  ceases to be included in a maximumh2 M2

of  (this is also the case for , although it is not the first time this event occurs). Therh2 M1

values  and  associated to the maxima  and  respectively (Fig. 5f) are namedh1 h2 M1 M2

dynamics of these maxima [6]. It can be shown that the dynamics of a maximum M of a
function f is equal to the minimal vertical distance one must go down, starting from this
maximum to reach a maximum at a higher altitude than M. When M is the highest maximum,
its dynamics is equal to the difference between the maximum and minimum values of f. This
value is sometimes defined as the dynamics of the image (it is also called oscillation of the
function f ).

So, a small change in the definition (considering a higher maximum instead of any
maximum) leads to a much better definition of the height of a maximum as illustrated in Fig.
5f.

Therefore, it is more natural to define the height of a maximum as the value of its dynamics.
The same notion can obviously be defined for the minima of an image: the dynamics of a
minimum is equal to its depth.
The dynamics of a maximum is not a local attribute which can be determined simply by
exploring its surroundings as the maximum which determines the value of the dynamics may
be far from the first maximum. Therefore, calculating rapidly the dynamics of all the maxima
of an image is not simple. There exists, however, an implementation based on hierarchical
queues (described in [6]). Fortunately, in most cases, it is not necessary to calculate the
dynamics of all the maxima. We just need to extract those maxima with a height or dynamics
higher than or equal to a given value h.
Obtaining those maxima with a dynamics larger than (h - 1) is very easy. They are produced
by a simple threshold at level h of the function .f − rh(f)
We shall not give the proof of this here (it can be found in [6]), but we can intuitively see why
it is true by looking at Fig. 5c. As a matter of fact, when a maximum ceases to be marked, the
corresponding part of the function  also ceases to increase and its maximal value isf − rh(f)

lower than h. Even if the maximum is marked again later on (Fig. 5d), there is a gap in the
increase of  which will never be filled in.f − rh(f)

These operators (for maxima and minima) are defined in the appendix (they are named
maxDynamics and minDynamics). Note the tiny difference between these operators and the
maxima/minima operators (level of the final threshold).
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5. Robustness of the dynamics

The major drawback of the dynamics lies in its great sensitivity to noise and to small
variations of grey levels. One particular drawback has been discussed in [6] and is illustrated
in Fig. 6a. When two or more relatively closed maxima are at the same altitude, their
dynamics is the same and may be quite high. However, remind that the maxima or minima
are widely used to provide markers for the watershed segmentation. Therefore, using extrema
of high dynamics to provide these markers may lead to multiple markings of the same salient
regions and then to over-segmentations.

Figure 6: The two maxima  and  have the same altitude and their dynamics are alsoM1 M2

equal and higher than h. Selecting these maxima as markers leads to a double marking of
the corresponding salient dome (a). Using the maxima of  instead produces a singlerh(f)
marker (b).

(a)                                                          (b)

There exists solutions to overcome this problem (see [6]). Among them, one of the simplest
ones consists in using the maxima of the function  as markers (or the minima of ).rh(f) rh

&(f)

Each maximum contains at least one maximum of the initial function f with a dynamics
higher than h. But all the maxima of f which are contained in a single maximum of rh(f)

correspond to the maxima which were wrongly separated in the previous example (Fig. 6b).
Therefore, using the maxima of  (or the minima of ) prevents over-segmentations inrh(f) rh

&(f)

the watershed transform 
These operators have also been added to the appendix (highMaxima, deepMinima).

6. Use of extrema in geodesic reconstructions

To end up this review, let us recall a well-known property of the maxima (or minima) of an
image  f. If M is the set of all the maxima of f, we can define the valued indicator function of
these maxima as the function m equal to:

m(x) = max(f) if x c M
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 m(x) = min(f) if x "M
 and   been respectively the maximal and minimal values taken by f (usely 255max(f) min(f)

and 0 if f is a 8-bit grey scale image).
Then  is the function where each maximum belonging to M is valued by its altitude.g = m . f
We know that:

f = Rg(f)

It is very easy to prove this equality. The same property holds with the minima of f and the
dual reconstruction.
Now, it is possible to obtain partial reconstructions of f by selecting any subset M’ of M. We
have:

m ∏(x) = max(f) if x cM ∏

m ∏(x) = min(f) if x "M ∏

The partial reconstruction operator  is equal to:☞M∏ (f)

☞M∏ (f) = Rm ∏.f(f)

It is also possible to define partial reconstructions by using the dual reconstruction operator
and by selecting a specific subset among the minima of the initial image f.
These operators can be useful for designing specific filters (Fig. 7), for a better detection of
differences between similar images.

Figure 7: The initial image (a) is rebuilt by taking only those maxima which are outside the
marker set (b). The result is shown in (c).

(c)(b)(a)

A general implementation of these operators can be found in the appendix. They are named
maxPartialBuild and minPartialBuild. They both use a binary set which acts as a mask. Only
maxima (or minima) which fall inside the mask are used for reconstructions.
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8. Appendix

This appendix contains the MAMBA source code for the operators described in this
document. The first two operators (maxima and minima) are already contained in the
geodesy.py module. The others are gathered in a new module, extrema.py, available at:

http://cmm.ensmp.fr/~beucher/Mamba/extrema.py

"""
This module provides a set of operators dealing with maxima and minima of a function.
New operators linked to the notion od dynamics are provided. This module uses Mamba
functions available in geodesy.py.

it works with imageMb instances as defined in mamba.
"""

# Contributor: Serge BEUCHER

import mamba
import mambaComposed as mC

def minima(imIn, imOut, h=1, grid=mamba.DEFAULT_GRID):
    """
    Computes the h-minima of 'imIn' using a dual build operation and puts the 
    result in 'imOut'. When ‘h’ is equal to 1 (default value), the operator provides
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    the minima of ‘imIn’.
    
    Grid used by the dual build operation can be specified by 'grid'.
    
    Only works with greyscale images as input. 'imOut' must be binary.
    """
    
    imWrk = mamba.imageMb(imIn)
    mamba.addConst(imIn, h, imWrk)
    mC.dualBuild(imIn, imWrk, grid=grid)
    mamba.sub(imWrk, imIn, imWrk)
    mamba.threshold(imWrk, imOut, 1, mamba.computeMaxRange(imIn)[1])

def maxima(imIn, imOut, h=1, grid=mamba.DEFAULT_GRID):
    """
    Computes the h-maxima of 'imIn' using a build operation and puts the result in
    'ImOut'. When ‘h’ is equal to 1 (default value), the operator provides the minima
    of ‘imIn’.

    Grid used by the build operation can be specified by 'grid'.
    
    Only works with greyscale images as input. 'imOut' must be binary.
    """
    
    imWrk = mamba.imageMb(imIn)
    mamba.subConst(imIn, h, imWrk)
    mC.build(imIn, imWrk, grid=grid)
    mamba.sub(imIn, imWrk, imWrk)
    mamba.threshold(imWrk, imOut, 1, mamba.computeMaxRange(imIn)[1])

def minDynamics(imIn, imOut, h, grid=mamba.DEFAULT_GRID):
    """
    Extracts the minima of 'imIn' with a dynamics higher or equal to 'h' and puts
    the result in 'imOut'.
    
    Grid used by the dual build operation can be specified by 'grid'.
    
    Only works with greyscale images as input. 'imOut' must be binary.
    """
    
    imWrk = mamba.imageMb(imIn)
    mamba.addConst(imIn, h, imWrk)
    mC.dualBuild(imIn, imWrk, grid=grid)
    mamba.sub(imWrk, imIn, imWrk)
    mamba.threshold(imWrk, imOut, h, mamba.computeMaxRange(imIn)[1])
    
def maxDynamics(imIn, imOut, h, grid=mamba.DEFAULT_GRID):
    """
    Extracts the maxima of 'imIn' with a dynamics higher or equal to 'h' and puts
    the result in 'imOut'.
    
    Grid used by the dual build operation can be specified by 'grid'.
    
    Only works with greyscale images as input. 'imOut' must be binary.
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    """
    
    imWrk = mamba.imageMb(imIn)
    mamba.subConst(imIn, h, imWrk)
    mC.build(imIn, imWrk, grid=grid)
    mamba.sub(imIn, imWrk, imWrk)
    mamba.threshold(imWrk, imOut, h, mamba.computeMaxRange(imIn)[1])

def deepMinima(imIn, imOut, h, grid=mamba.DEFAULT_GRID):
    """
    Computes the minima of the dual reconstruction of  image 'imIn' by imin + h
    and puts the  result in 'imOut'.
    
    Grid used by the dual build operation can be specified by 'grid'.
    
    Only works with greyscale images as input. 'imOut' must be binary.
    """
    
    imWrk = mamba.imageMb(imIn)
    mamba.addConst(imIn, h, imWrk)
    mC.dualBuild(imIn, imWrk, grid=grid)
    mC.minima(imWrk, imOut, 1, grid=grid)

def highMaxima(imIn, imOut, h, grid=mamba.DEFAULT_GRID):
    """
    Computes the maxima of the reconstruction of  image 'imIn' by imin + h
    and puts the  result in 'imOut'.

    Grid used by the build operation can be specified by 'grid'.
    
    Only works with greyscale images as input. 'imOut' must be binary.
    """
    
    imWrk = mamba.imageMb(imIn)
    mamba.subConst(imIn, h, imWrk)
    mC.build(imIn, imWrk, grid=grid)
    mC. maxima(imWrk, imOut, 1, grid=grid)
    
def maxPartialBuild(imIn, imMask, imOut, grid=mamba.DEFAULT_GRID):
    """
    Performs the partial reconstruction of 'imIn' with its maxima which are
    contained in the binary mask 'imMask'. The result is put in 'imOut'.
    
    'imIn' and 'imOut' must be different and greyscale images.
    """
    
    imWrk = mamba.imageMb(imIn, 1)
    mC.maxima(imIn, imWrk, 1, grid=grid)
    mamba.logic(imMask, imWrk, imWrk, "inf")
    mamba.convertByMask(imWrk, imOut, 0, mamba.computeMaxRange(imIn)[1])
    mamba.logic(imIn, imOut, imOut, "inf")
    mC.build(imIn, imOut)

def minPartialBuild(imIn, imMask, imOut, grid=mamba.DEFAULT_GRID):
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    """
    Performs the partial reconstruction of 'imIn' with its minima which are
    contained in the binary mask 'imMask'. The result is put in 'imOut'.
    
    'imIn' and 'imOut' must be different and greyscale images.
    """
    
    imWrk = mamba.imageMb(imIn, 1)
    mC.minima(imIn, imWrk, 1, grid=grid)
    mamba.logic(imMask, imWrk, imWrk, "inf")
    mamba.convertByMask(imWrk, imOut, mamba.computeMaxRange(imIn)[1], 0)
    mamba.logic(imIn, imOut, imOut, "sup")
    mC.dualBuild(imIn, imOut)
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