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ABSTRACT

A non-parametric method is developped for contour :
extraction in a grey image. This method relies in defining
the contours as the watersheds of the variation function (gradient
modulus) of the light function (considered as a relief surface).
Two application examples are described : bubble detection in a
radiographic plate, and facet detection in fractures in steel,

I - INTRODUCTION

Two traditional methods are generally used in contours
detection : The first one consists of detecting the strong valueé
of the gradient in an image. This method requires the choice of
a threshold value of the gradient modulus. Depending upon this
value, the contours are, either thin but not closed, or on the
contrary, well closed but too thick, therefore lacking in precision.
The second method lies in image segmentation starting from the
grey levels histogram. It is based upon the idea that the phases
of interest correspond to the most frequent grey values. Unfortu-
nately, this method requires a more or less important smoothing
of the histogram and is particularly inoperative when dealing with
a great number of phases,

In this paper, we propose a non-parametric contour
detection method (the advantage being that no threshold value
is used). Giving to its principle,; this method gives closed
contours, Two examples will illustrate it : bubbles detection in
a radiographic plate, and display of facets in a metallic fracture.
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ITI -~ DESCRIPTION OF THE METHOD

II-1) The tools

II-1-1) Gradient modulus

let f be the grey function of an image, supposed
to be continuous.

We shall denote the variation of f at point x(u,v)
of R2 by the function f defined by :

g(x) = lim SupB(x,s)[f] - InfB(x,E)[f]
£-0 e

with

SupB(x E)[f] maximum value of the function f in the ball of
’
radius € centered in x.

InfB(x,E)[f] minimum value of f in B(x,e)

If £ is continously differentiable, it is easy to
show that the variation of f is nothing other than the gradient
modulus :

1/2
g(x) = |grad £(x)| = [§)? + &5)2)

II-1-2) Thresholds

Thresholding f at levelA defines two sets :
the set, denoted Ay, of all points x of R° such that f(x) is
less than or equal to A

X, = {x € R° : £(x) < A}

and the set, denoted Yy» of all points x of R® such that f(x)
is strictly less than A.

¥, = {x € R® 1 £(x) < A}

Notice that the family {Xl} for 0 < A perfectly defines
the function f;indeed, we have

¥ x € R, f(x)= Inf(Alx ¢ X, )



I1-1-3) Zones of influence

Let X be a part of R2, not necessarily connected.
It is possible to define the distance between two points x and
y of X as the smallest length of the arcs, if they exist, enclosed
in X and joining x to y. If there exists no such arc, the distance
is conventionally equal to infinity (Figure 1)

1€

dX(X’Z) =+ ®

dX (y,x)

Figure 1 : Geodesic distance

This distance is called the geodesic distance.
Given a point x of X and a subset Y of X, the geodesic distance

between x and Y is :

dX(x,Y) = Inf dX(x,y)
yet

Iet Y be a subset of X consisting of n set K1,...,Kn,
and disjoined pairwise:

n
pL:J1p L ¥pAa, K,NK =9
A zone of influence Ip(Y;X), consisting of the set of
all points of X at a finite aistance from Kp and closer to Kp than
to any other Kq (with respect to the geodesic distance), can be
associated to every Kp (Figure 2).
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Figure 2 : Zones of influence

The points of X which do not belong to any zone of
influence are either points of X at an infinite distance from Y
or points equidistant from two different connected components
of Y. The set of these latter points is called the "Skeleton
by zone of influence® of Y with respect to X. It is denoted by
S(Y ; X), and it is possible to prove that it is locally a finite
union of simple arcs,

II-2) Use of the tools

1I<2-1) Minima of a function

Let £ be a function defined in R and [X,] be its
corresponding family of sets. The function f is said to have at
point X a minimum of height A (with A= f(x)) if

Xm(x,YA) = 4 00

(see Pigure 3)
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Figure 3 : Minima of a function

We denote by M(f) the set of the minima of the
function f.

I1I-2-2) Notions of catchment basins and watersheds

These two terms are derived from geography. For better
understanding, we shall use geographic vocabulary in this section.

The graph of a function f can be regarded as a topo-
graphic surface. f(x) is the height at point x.

Iet us consider a drop of water on this topographic
surface. The water streams down,reaches a minimum of height and
stops there. The set of all points of the surface which the drops
of water reaching this minimum can come from can be associated
with each minimum. Such a set of points is a catchment basin of
the surface. Notice that several catchment basins can overlap.
Their common points form the watersheds.



In a more formal way, let Z be the set of the
watersheds, and Z) the subset of Z of those points which are
at height A. Obviausly, we have :

Z::UZ :
l x

Suppose that we know Z“, for every p strictly less
than A. We shall try to determine'ZA.

A
less than A, and belonging to one, and only one, catchment basin,
Iet x be a point at height A. If dy (I’YA - U Zp) < + %9, apir
A A

(Y,- U Z,) is the set of points whose height is
A

if this distance is the same for two different connected components

of (YA - U Zu), X appears to be qquidistant from two different

p<A
catchment basins, and consequently, must be considered as g point
of Z. In other words, we define :

Zy = S(Y, - U Z 3 X,)
A A <A ) A
This definition gives a mode of operation for building
catchment basins and watersheds,

IIT - AFPLICATION TO CONTOUR DETECTION

In a picture, we define as contours the watersheds of
the variation function g.

This definition seems to be Somewhat arbitrary. It has,
however, three major advantages :

- it gives a rigorous mathematical definition of the
objects under study,

= 1t furnishes a mode of operation
- the result is visually satisfactory,.

As a matter of fact, every object in a picture corresponds to a
minimum of the grey variation function.
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IV) EXAMPLES OF USE

IV-1) Contour detection in a micrography of fractures in steel

The fractures under study are cleavage fractures.
The facets of cleavage (see Figure 4) do not present homogeneous

grey values.

Figure : Cleavage fractures in steel

Figure 5 shows the result of this procedure of contour

detection applied to the previous picture.

Figure 5 : Result of contour detection
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IV-2) Bubbles detection in a radiography

The difficulty here lies in the fact that the bubbles
are surrounded by diffraction halos which make them appear larger
than they are, and therefore show very fuzzy contours (Figure 6)

Figure 6 : Bubbles ina radiographic plate

The set Z of contours is constructed using the method
previously described (Figure 7).

Figure 7 : Result of segmentation



As can be seen, the image is over-segmented. It is
easy to suppress the unnecessary contours. For that, we call a
bubble every connected component of the partition defined by the
contours which contains a minimum of the light function f.

Figure ¢ Minima of the function f.

Hence, we keep only those points x of the contours
picture for which :

d , (x,M) < 4
R™=Z
Where Z is the contours set, and M, the minima -of the
function £ (Figure 8).

Figure 9 show the final result.

Figure 9 : Final result of the detection of bubbles
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