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Abstract – Despite modern technologies (immunophenotyping, molecular probing, etc.) cytomorphologic examination of stained 
peripheral blood smears by microscopy remains the main way of diagnosis in a large variety of diseases (e.g. leukaemic 
disorders). Using tools from mathematical morphology for processing peripheral blood colour images, we have developed an 
image-based approach, to provide an objective and understandable description of lymphocyte populations according to a 
specifically designed ontology. This ontology-based framework needs a conceptualisation of the problem from a morphological 
viewpoint, the introduction of an adapted language, the generation of representative image databases, the development of image 
processing and data classification algorithms to automate the procedure and the validation of the system by human expertise. In 
this paper we present the main concepts, algorithms and some results to illustrate the high-performance of the approach. The aim 
of our work is to reconcile the automatisation with the medical expertise, so that they can reinforce each other. 
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INTRODUCTION 
Despite modern technologies (immunopheno-

typing, molecular probing, etc) cytomorphologic 
examination of stained peripheral blood smears by 
microscopy remains the main way of diagnosis in a 
large variety of diseases (e.g. lymphoprolipherative 
disorders like leukaemia, lymphoma, etc.) (13,33). 

Automated flow cytometry-based systems for 
leukocyte recognition are currently available in the 
market and are used in clinical laboratory routines. 
These devices are limited to identifying normally 
circulating leukocytes and flagging abnormal 
circulating cells, without being able to classify the 
abnormal cells (16,8). 

The desirable qualities of a blood film depend on 
two factors: the quality of the smearing (sufficient 
working area) and the quality and reproducibility of 
the staining procedure. Both have been previously 
studied (6,7). The currently available commercial 
automated devices for performing blood film and 
staining lead to reproducible preparations. In 
addition, other technological advances in image 
processing, robotised microscopy, computer 
technology and networking motivate us to work on a 
new generation of automated systems to assist 
diagnosis in haematological cytology. 

 
 
 
 
 
 

 
 

 
 

Developing reproducible parameters / measure-
ments to describe the blood cells has been the aim of 
many research projects during the last thirty years; 
systems have indeed been developed for an automatic 
classification of the lymphocytes/erythrocytes. There 
are typically two ways to tackle the problem and 
organize the image processing tasks. 

The first one focuses on a single morphological 
characteristic, disregarding all others (24,22). The 
corresponding system will be able to discriminate or 
calibrate one particular population with respect to this 
parameter. A good example is the measurement of the 
DNA distribution of a particular cell population. Such 
methods are limited in their scope and unable to 
describe the cellular morphology in its totality. The 
second type of approaches address the question in a 
more global way: after the extraction of a large 
number of measurements and parameters describing 
all the interesting morphological characteristics, an 
advanced pattern recognition system provides an 
automatic classification of the cells in the different 
categories (20,10,17). The problem with these last 
techniques is the difficulty to interpret the results 
intuitively and hence the inability to validate the 
system by expert-observers.  
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The features often have no natural morphological 
meaning and cannot be interpreted by the medical 
doctors. The complete system behaves like a black 
box. 

Using tools from mathematical morphology for 
processing peripheral blood colour images, we have 
developed an image-based approach to provide an 
objective and understandable description of 
lymphocyte populations, according to a specifically 
designed ontology, in order to provide a more 
objective and accurate estimation of the blood 
leukocyte morphology than that estimated by the 
standard microscopy analysis. The main aim is to 
reconcile automatisation with human medical 
expertise examination of the blood films. 

At this stage of our knowledge the first 
application is to give a more reproducible 
observation of individual cells and to prepare their 
study at the level of cell population, in order to 
search in the future correlation with other biological 
parameters and/or with clinical and prognostic data. 

This ontology-based framework needs a 
conceptualisation of the problem from a 
morphological viewpoint, the introduction of an 
adapted language, the generation of representative 
image databases, the development of image 
processing and data classification algorithms to 
automate the procedure and finally, the validation of 
the system by human expertise. 

In our works, mathematical morphology results 
are compared with the experience of a panel of 5 
expert morpho-haematologists who defend a logical 
decision tree and a descriptive language to base their 
description of cells and diagnosis. We present in this 
paper the main concepts, algorithms and some 
examples of results to illustrate the high-
performance of the approach.  

Mathematical morphology is a non-linear image 
processing approach which is based on the 
application of lattice theory to spatial structures 
(28). This technique is proven to be a very powerful 
tool in microscopic image analysis, as shown in this 
work. 

The rest of the paper is organised as follows. In 
section 2 an overview to the approach is given, 
laying particular emphasis on the originality of our 
methodology. Then, section 3 presents the different 
image processing algorithms to study a lymphocyte 
population, illustrating the descriptions with several 
examples. The results are analysed and discussed in 
section 4. Finally, conclusions and perspectives are 
considered in section 5. 

APPROACH OVERVIEW 
 

Ontology-based methodology 
Here we propose a new approach based on 

the experience of expert morpho-hemato-logists: 
their logical decision trees and even their 
descriptive language on which they base their 
description of cells and diagnosis will be 
converted to an automatic classification and 
decision. 

This methodology is based on the definition 
of an ad-hoc lymphocyte description ontology, 
which contains the whole morphological 
information of the lymphocyte. The structured 
and hierarchical ontology is composed of all the 
significant morphological characteristics, 
considered in an individual way. For each 
characteristic (e.g. nuclear size), it is necessary 
to fix the qualitative values of the categories so 
that one could assign to this characteristic (e.g. 
very small, small, medium or large). The 
morphological characteristics and its values 
must be interpretable and “measurable” 
intuitively, so that the ontology is valid for 
automatic and manual morphological studies. 

To accomplish this objective it was necessary 
to develop a multidisciplinary approach in 
several steps: 1st- to retain the characteristics 
studied and to define the possible categories; 
2nd- to constitute databases with examples of 
lymphocyte populations for each characteristic 
and its categories (used for training the system, 
then to validate it); 3rd- to develop automated 
algorithms of quantification as well as 
classification, to go from the measurements/ 
parameters to the values of the characteristics; 
4th- to validate the system by manual review of 
results according to a panel of experts. 

 
Lymphocyte ontology 
Consequently, in order to characterise a 

lymphocyte we propose the following descriptor 
composed of ten relevant morpho-
logical/colorimetric criteria, and each criterion 
is declined into several categories (each 
category is illustrated with an example of 
lymphocyte)  

This ontology constitutes an evolution with 
respect to the classical previous semiological 
works in the field(9,8).
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Consensus between the experts and consistence of 
data/results 

This lymphocyte ontology and the associated 
databases are the result of a protocol between a panel 

of experts in the field, which guarantees the 
soundness and the consistency of the structure 
terminology and of the reference images. Typically, 
the protocol needs several iterations until stability of 
results to reach the consensus. 

Fig. 1 shows the Web GUI developed for aiding in 
the manual reading of cells. The lymphocyte to be 
described is the image on the top part and the user 
must choose the corresponding category for each 
feature. The image on the bottom allows the 
visualization of the examples for the different 
categories. These kinds of tools are used during the 
constitution of the reference databases and also 
during the validation of the system. Each expert 
makes a different lecture, and then the coordinator 
proposes a consensual lecture according to the 
previous ones, which is finally validated by the other 
experts. 

 

 
 

Fig. 1 Web GUI developed fo r manual reading of cells (see text). 
 

System architecture 
The architecture of the morphological image 

processing software is decomposed into several 
modules associated to the different steps; see the 
diagram depicted in Fig. 2. Two successive phases 
are involved in the system: blood image production 
and blood image analysis. 

A motorised microscope allows the automated 
production of digital blood colour image fields. The 
microscopic images are acquired for storing, 
transmitting and processing. 

The classical solution is the concept of image 
folder (including a few representative images) which 
has the lack of slide representativeness, limiting some 
applications. The virtual slide is currently proposed 
as an alternative solution: a high resolution image at 
diagnostic magnification of each slide, composition 
of hundredth of fields (21). We have also previously 
developed a module which implements a technique to 
automatically detect the working area of peripheral 
blood smears stained with May-Grünwuald Giemsa. 
The optimal area is defined as the well spread part of 
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the smear. This zone starts when the erythrocytes 
stop overlapping (on the body film side) and 
finishes when the erythrocytes start losing their 
clear central zone (on the feather edge side). The 
approach yields a quick detection of this area in 
images scanned under low magnifying power 
(typically immersion objective ×25 or ×16). See 
details in (1). When the best area is detected, the 
magnifying power is increased (typically ×100) 
and the folder of images or the virtual slide 
images are produced using a routine motorised 
microscope and a dedicated software. 
 

 
Fig. 2 Automated morphometric analysis of peripheral 
blood smear cells. (a) Colour image production, (b) integrated 
image analysis, pattern recognition and content-based indexing 
system. 

 
The automated analysis of blood cell images is 

decomposed into several phases. The leukocytes 
are detected and the lymphocytes identified and 
extracted, to generate a lymphocyte population. 
Each lymphocyte is segmented into two regions: 
nucleus and cytoplasm. From the nucleus and 
cytoplasm colour images, a set of quantitative 
parameters are calculated. These measurements 
yield a classification of each morpho-logical 
feature into a category. The set of morphological 
feature values constitutes the lymphocyte 
descriptor, and by extension, the population 
descriptor. The morpho-logical description 
provides objective information which may be 
indexed into a database together with the initial 
images and/or used for (tele) diagnosis procedures 
and research protocols. 

MORPHOLOGICAL IMAGE 
PROCESSING ALGORITHMS 

Let fblood be the original colour image (“small” image 
from a folder or “large” image from a virtual slide because 
the algorithms are valid for both kinds of images). 
 
Colour blood segmentation 

In a system using digital image processing methods for 
automation of quantitative cytology, the segmentation 
appears to be the most crucial part: errors in the 
segmentation process may propagate to the feature 
extraction and to the classification and finally result in an 
erroneous biomedical interpretation. The blood smear image 
segmentation has been studied using different approaches, 
based on different techniques: hierarchical thresholding (32) 
(adding geometric corrections (11)), colour clustering (12), 
region growing (19,18), watershed transformation (15), 
colour snakes (35). 

The aim of the colour blood segmentation is to separate 
the cells entities. The segmentation module is divided into 
two algorithms. Firstly, a step for erythrocyte segmentation 
and leukocyte detection/extraction into subimages, followed 
by a precise lymphocyte segmentation of nucleus and 
cytoplasm. 
Erythrocyte segmentation and leukocyte extraction – In this 
preliminary and fast step, the green component of the colour 
image has shown to be sufficient for segmenting the 
erythrocytes and leukocytes from the background. The 
algorithm involves mainly two parts: automatic thresholding 
and binary filtering; see fig. 3(a). 
 

 
Fig. 3 (a) Algorithm for segmenting the red blood 
cells and extracting the leucocytes. (b) Procedure to 
segment a lymphocyte. See the text for full details. 
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In every blood image, four regions may be observed which 
are, namely, the background (the plasma), the erythrocytes and 
the nucleus/cytoplasm of the leukocytes. We have previously 
developed a morphological thresholding procedure, based on 
the analysis of the dynamics of histogram peaks, see (1), to 
robustly extract a binary image corresponding to the nuclear 
regions and a binary image with the erythrocytes and 
cytomplasmic regions (fig. 3(a2) and (a5) respectively). 
Important mistakes are observed and therefore these binary 
images have to be filtered using classical morphological 
operators (28,1). 

For the nucleus image, we sequentially execute the “Close-
Holes” operator, the “Extract-Edge-Particles” operator (we are 
interested only in whole leukocytes not touching the border) 
and the “Size and Close-Grains” (resolving the cases where the 
nucleus is fragmented into several particles), fig. 3(a3). In order 
to obtain the position of each leukocyte (coordinates x and y), 
we use the morphological centroid (ultimate erosion) or the 
geometrical centre of mass (very fast computation from binary 
moments). These centroids define the regions of interest: a 
centered sub-image around each leukocyte can be 
automatically extracted from the whole blood image, reducing 
the size of images to be processed in subsequent steps, fig. 3 
(a4). The leukocyte sub-images, fleuko_i , are the input to the 
leukocyte classification module, which allows the identification 
of lymphocytes, a particular class of leukocytes. 

For the erythrocytes-cytoplasms image, we perform a 
“Close-Holes” operator. Note that the erythrocytes overlapped 
on cytoplasmic particles have been separated and the 
cytoplasmic regions extracted, fig. 3(a6), for this purpose we 
use the geodesic reconstruction using the nuclear particles as 
markers (see details below). The image ferythro may be used to 
quantify the morphology of erythrocytes. 

 
Lymphocyte segmentation – Each lymphocyte colour image, 
flympho_i, must be separated into two regions: the nucleus, 
fnu

lympho_i, and the cytoplasm fcy
lympho_i, see fig. 3(b). The 

lymphocyte segmentation has to be very precise as the masked 
colour nucleus and cytoplasm are used in the feature extraction 
step. We propose to combine the green component and the 
saturation component (from a luminance/saturation/hue 
representation).  

The first step is a thresholding procedure on the green 
component, using the same algorithm than for the preliminary 
segmentation. After that, we have two binary images: the 
provisional cytoplasmic mask (fig. 3(b2)) and the provisional 
nuclear mask. For the cytoplasm, we start with a reconstruction 
using the nuclear mask as marker, in such a way that there will 
be only a cytoplasmic particle (the “Close-Holes” operator is 
also applied), fig 3(b2). Frequent contacts between the 
cytoplasm and the neighbouring erythrocytes are observed. The 
separation of this kind of overlapping particles is a problem 
well-resolved in mathematical morphology. The solution 
involves the use of the distance function of the binary set: the 
maxima of the distance function mark the different particles. 

Then, the watershed transformation of this function (after a 
slight filtering to remove unimportant maxima) yields an ideal 
separation between these particles. Fig. 3(b3) depicts these 
separation lines and the shaded distance function. Note that the 
over-segmentation of erythrocytes is not a problem since a new 
reconstruction with the approximation to the nucleus extracts 
only the cytoplasmic profile. 

In the case of the nucleus, the first step is the image 
simplification of the green and saturation components using a 
levelling (a symmetrical filter by reconstruction that simplifies 
the texture and preserves the contours). Then, the 
morphological gradient is obtained for each component by 
subtraction from a dilated and eroded function. The function to 
flood with the watershed transformation is the maximum of 
these two gradients, fig. 3(b4). The previously obtained 
cytoplasm is considered as the outer nucleus marker. For the 
inner markers, we construct the distance function of the 
provisional nuclear mask, then, the maxima of the distance 
function (ultimate erosion) are dilated. Using a marker for each 
particle of the nucleus, we guarantee the correct extraction 
(sometimes, the connection between the different particles of 
the nucleus is thin or, in fact, non-existent). Fig. 3(b4) shows the 
inner marker as a square. The construction of the watershed line 
of the gradient image associated with the inner and outer 
markers yields the final result. In fig. 3(b5) and (b6) the 
extracted nucleus and cell are shown. 

Fig. 4(b) shows several lymphocytes segmented with this 
method (superposition of contours on the original images). In 
fact, as already pointed out, the problem of separation of 
overlapped erythrocytes on the cytoplasm and polynuclear 
lymphocytes is satisfactorily solved by the algorithm. 

 

 
Fig. 4 Examples of colour blood segmentation: (a) 
segmentation of erythrocytes and extraction of leukocytes; 
(b) segmentation of lymphocytes (contours in black). 
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In fig. 4(a) an example of erythrocyte 
segmentation and leukocyte extraction is also 
given. Both algorithms have been used to 
segment hundreds of images and only a few of 
them have been considered as errors of 
segmentation. 
 
Texture/colour leukocyte classification 

Leukocytes may be subdivided into five different 
categories: 1- monocytes, 2- neutrophils, 3- 
basophils, 4- eosinophils and 5- lymphocytes. In a 
blood colour image (stained with May-Grünwuald 
Giemsa), the five classes of leukocytes may be 
differentiated according to their morphological and 
spectral features (29,5,31). In our approach, the 
texture/colour leukocyte classification is needed to 
detect the lymphocytes in order to constitute a 
representative lymphoid population. 

This algorithm treats the full leukocyte image 
(including some erythrocytes and the plasma 
background), i.e., no leukocyte segmentation is 
required at this step, only the identified lymphocytes 
are then segmented. 

The leukocyte classification is achieved by 
combining colour granulometries and colour 
histograms using statistical techniques (template 

matching by histogram distances); which identify 
the category of the extracted subimages fleuko i. After 
the learning processing, where different feature 
selection and classifier definition alternatives were 
tested, a definitive approach has been proposed 
resulting in very high-performances. On the one 
hand, we use the colour histograms of the images in 
a luminance/saturation/hue representation (1D 
histogram of luminance and 2D histogram in polar 
coordinates of saturation/hue). In order to be 
independent and robust faced with the variations of 
the staining procedure, the histograms are 
normalised with respect to the colour of the plasma 
(background). On the other hand, an extension to 
colour images of the notion of granulometry curve 
or pattern spectrum (series of openings/closing of 
increasing size and a measure associated to each 
size) allows to define colour granulometric curves 
to complete the description of leukocytes. In fig. 5 
an example of colour granulometric curves for a 
basophile is depicted, showing the pattern spectrum 
of luminance component and the pattern spectra of 
centered hue functions (weighted by the 
saturation), which describe the colour-texture 
information. As for the other algorithms, full 
details can be found in (2). 

 

 
 

Fig. 5 Examples of colour granulometric curves for a basophil. On the left, pattern spectrum of luminance component and on the right 
part, pattern spectra of centered hue functions (weighted by the saturation). 
 

Lymphocyte feature extraction and quantification 
Taking the segmented nuclear and cytoplasmic 

colour images of each lymphocyte, fnu
lympho_i and 

fcy
lympho_i respectively, a set of morphological 

quantitative features (parameters, measurements, 
curves, etc.) is computed. We present in this section a 
brief summary of this quantification step. 
(1) Nuclear size, (2) Cell size, (3) N/C ratio and (10) 
Nuclear excentration – The size of the nucleus and the 
cell (nucleus+cytoplasm) can be defined by means of 
the surface area (equal to the number of pixels) of their 
binary masks, Snu and Scell. Then, the classical nucleus to 
cytoplasm area ratio is defined as: NCR = Snu / Scell. 

The nucleus location within the cell is a particular 
case of the general problem of the location of one 
structure within another. Many methods have been 
published describing some alternatives to deal with 
this problem (23). We propose a simple parameter to 
quantify the degree of eccentricity of the nucleus in 
the cell: the Euclidean distance of centroids, i.e., 
dnu→cell = √(xnu – xcell)2 +(ynu – ycell)2 where (x,y)nu and 
(x,y)cell are the morphological centroid of the binary 
mask of the nucleus and cell respectively. 
(4) Chromatin density – Chromatin distribution 
reflects nucleus organisation of the DNA and 
contains important cellular diagnostic/prognostic 
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information. The use of the chromatin pattern in 
automated cell classification is complicated by 
several factors. In fact, the type of pattern obtained is 
dependent on the fixation and staining method used. 
In lymphocytes stained with May-Grünwuald 
Giemsa, the variations are less critical than in other 
DNA quantitative cytochemical staining procedures 
as the Feulgen reaction. In contrast to other 
morphological parameters, like shape and size, the 
textural parameters may not be easily assessed by 
visual observation. Many approaches have already 
been considered to automatic analyse the chromatin 
texture, see for instance (26,4,14,34). 

We propose a morphological method for the 
analysis of nuclear texture based on the notion of 
granulometry (morphological size distributions), 
working on the luminance component. In fig. 6 (a) 
are shown some examples of nuclei for the different 
chromatin categories of our ontology. The density of 
the chromatin is given by the alternation from 
condensed (dark) structures and light (bright) 
structures. For this reason, we have combined four 
granulometric curves (using disks of increasing size 
as structuring elements): granulometry by openings 
(describing bright structures), granulometry by 
closings (dark structures) and pseudo-granulometries 
using erosions and dilations which complement the 
two other curves. An important advantage of  

 

 
Fig. 6 Selection of nuclei with four different 
chromatin texture, from the least dense (a1) to the densest 
(a4). Granulometric curves of chromatin: (b1) pattern 
spectra by openings and closings and (b2) curves of 
erosions and dilations. 

 
granulometries is their inherent normalisation. The 
four curves are normalised to the volume of the 
image, thus variations (under some conditions, i.e. 
anamorphoses) in the acquisition process do not have 
an influence on the granulometric results. In fig. 6 (b) 

the corresponding results of chromatin description 
using the granulometric curves are depicted. We can 
observe their ability to differentiate the different 
classes of texture. In practice, Euclidean distances are 
used to compare the granulometries to classify with 
templates associated to reference populations. 

(5) Nuclear shape – According to our lymphocyte 
ontology, the nuclear shape is the richest 
morphological feature in terms of category number 
(in fact, the case “grooved chromatin pattern” has not 
yet considered in our works due to its difficult 
morphological interpretation). Let us recall that the 
ideal lymphocyte nuclear shape is a circle. 

Many quantitative studies on the nuclear 
morphology of lymphoid cells have been published, 
showing that simple parameters are not sufficient for 
reliable discrimination of the different cell typologies 
(24,3,22,27,30). In order to give a shape definition or 
classification of the nucleus, we have developed a 
strategy in different phases. 

Firstly, we start by considering the extreme degree 
of irregularity: the presence of a polynuclear cell. 
This is achieved by thresholding the distance function 
of the binary mask shape, because of the parts of 
nucleus could be connected, see the example of a tri-
nuclear lymphocyte in fig. 7(a). 

 

 
Fig. 7 (a) Polynuclear lymphocytes and thresholding 
of distance function. (b) Example of polylobular nuclei 
description using parameters associated to the inter-lobe 
regions. 

 

Then, using two simple scalar parameters, the form 
factor or circularity, FF = P2 / 4πS, and the eccentricity 
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(obtained by using the binary moments to 
compute the ratio between the length of the 
major axis and the length of the minor axis of 
the ellipse of inertia), the regular shapes are 
separated from the irregular ones. 

The irregular shapes are described by 
considering the nuclear lobes. In fact, 
computing the difference between the nuclear 
mask and its convex hull, the inter-lobe 
regions are extracted, fig. 7 (b), and these 
regions can be used to study the number, 
regularity and magnitude of nuclear shape 
irregularities. Starting from these significant 
concavity regions, several parameters of size 
and shape have been defined which allow a 
powerful description of irregular shapes and a 
sorting into several classes. Moreover, an 
additional morphological algorithm has been 
developed to identify, the cleaved cells 
(characterised by linear irregularities through 
the nucleus), see details in fig. 8. 

 

 
 

Fig. 8 Algorithm to extract linear irregular-
rities, characterising the cleaved cells: (a1) 
original image, (a2) grey-level thinning from the 
green component of nucleus, (a3) result of 
morphological filtering (basically, the detection 
of lines is achieved by means a linear opening). 
 

(6) Nucleolus – The nucleolus is a rounded 
body that is usually basophilic (bright), 
eccentrically placed in the nucleus and 
sharply demarcated from the surrounding 
nucleoplasm. We have developed a multi-step 
algorithm for detecting the presence of 
nucleoli, and in the positive case, their 
extraction and quantification, see fig. 9. 

Our approach is mainly based on the 
hypothesis that the nucleolus is a bright 
structure surrounded by a very dark 
background, which presents a circular shape. 
Therefore, working on the green component, 
the first step is an adaptively stretching of the 
histogram in order to saturate the bright 
regions and to extract them. Then, several 
criteria of size and shape on the one hand, and 
of contrast between the region inside the 
region and outside allow to accept a candidate 
region as a nucleolus. 

 
Fig. 9 Algorithm to extract the nucleolus: (a1) original 
green component of nucleus, (a2) contrast modification by 
adaptively stretching of histogram, (a3) thresholding, (a4) 
filtering of binary components according to size/shape, (a5) 
candidate used to evaluate the criterion of intensity difference, 
(a6) accepted nucleolus (rounded shape). 

 
Nucleoli may be single or multiple and vary 

greatly in size from one lymphocyte type to 
another in different disorders. For our purposes 
we consider two situations: single, large 
nucleolus or multiple nucleoli (two or three small 
nucleoli, more difficult to detect and with 
uncertain significance). This is probably the most 
difficult morphological feature to study. 
(7) Cytoplasmic basophilia, (8) Cytoplasmic 
granulations – Basophilia is the tendency to 
readily stain with basis dyes. In the case of 
images of smears stained with May-Grünwald-
Giemsa, basophilia is the tendency to stain blue. 
Therefore, a study of the basophilia of cytoplasm 
must involve the study of cytoplasm colour. 

Our approach is very simple and involves the 
description of the colour of the cytoplasmic 
region by using the L*a*b* colour representation 
(perceptually uniform). In fact, it is possible to 
discriminate the basophilia by means of the 
averaged values of these three colour 
components for the pixels of the cytoplasm. In 
fig. 10 an example illustrating the capacities of 
separation of cytoplasms according to their 
colour is given. A clustering on this space of 
three parameters allow us to define the frontiers 
of different classes. 

The other interesting feature to be studied is 
the cytoplasm granulation, an important 
phenomenon since in lymphoid cells 
classification this feature is of fundamental 
importance. The presence of grains happens 
exclusively in cytoplasms with relatively weak 
basophilia. Consequently, the application of the 
detection algorithm will have to be associated to 
the study of basophilia level. 
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Fig. 10 (a) Examples of lymphocytes with different level of basophilia. (b1) and (b2) averaged values of colour components 
L*, a* and b* in the cytoplasmic region. 
 
 
From an image processing viewpoint, the 

detection of the azurophilic granules in the 
cytoplasm is an easy problem: the grains are 
dark structures, adequately contrasted 
(especially in the green component). Using a 
top-hat transformation accompanied by a 
thesholding operation, these structures can be 
extracted (see fig. 11). Due to fact that the 
grains are almost circular dark particles, we use 
a black top-hat by a closing with a disk as 
structuring element. 

 

 
Fig. 11 Algorithm to extract the cytoplasmic 
granulations: (a1) original image, (a2) green 
component, (a3) result of black top-hat 
transformation (residue of a closing) limited to the 
cytoplasm. 
 

(9) Cytoplasmic shape – The shape of the cell 
contour (or cytoplasm profile) is also useful to 
identify different atypical classes of lympho-
cytes. Fig. 12 (a) shows some examples of the 
three categories of cytoplasm profiles to 
characterise. Once again using a granulometry, 
by applying circular opening of increasing size 
on the binary masks of cytoplasms, it is very 
easy to identify if the shape is regular, or in the 
case of irregular shape, the degree of irre-
gularity, see fig. 12 (b). In fact, two parameters 
are derived from the curves (integral of narrow 
irregularities and integral of wide irregularities) 
to synthesise the shape information. 

 
Fig. 12 Selection of nuclei with the three different 
cytoplasmic shape: (a1) regular, (a2) budding, (a3) 
villosity. (b) Granulometric curve of openings (blue for 
regular, green for budding and red for villosity). 
 

Mapping lymphocytes onto the ontology 
All these extracted measurements yield a 

classification of each morphological feature from our 
ontology into a pre-established category. For 
instance, according to the value of surface area, the 
nuclear size may be “very small”, “small”, “medium” 
or “large”; or according to the granulometric curve 
of cytoplasm binary mask, the cytoplasmic shape 
may be “regular”, “budding irregular” or “villosity 
irregular”. We consider this step as the procedure of 
mapping each lymphocyte of the population onto the 
ontology in order to generate the population 
morphological descriptor. 

In practice, the morphological feature classify-
cation is a set of decision trees obtained after 
statistical methodological tests and training 
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procedures from our database. A classifier has been defined 
for each morphological feature and takes as input 
information the corresponding measurements and 
parameters, providing as output the corresponding category, 
and in some cases a level of confidence of classification. The 
complexity of classifiers is quite simple because the 
computed morphological parameters are already very 
adapted to the discrimination of corresponding categories; 
the interested reader can find all the details in (2). 

In conclusion each lymphocyte of a population can be 
described by using well established terms of the ontology, 
corroborated by quantitative measurement. The resulting 
analysis of a population takes the form of an XML 
document, very efficient for editing, database indexing and 
searching, Web visualization, etc. 
 

RESULTS AND DISCUSSION 
A lymphocyte population can be summarised and 

compared to another population by means of the histograms 

associated to the category values of each morphological 
feature (e.g. histogram of size categories or histogram of 
chromatin density). These representations are more useful in 
diagnosis purposes than the histograms of direct parameters: 
obviously the histogram of surface area is not easy to 
interpret by a hematologist or still worse, the 
multidimensional histograms of granulometric curves 
describing the texture of chromatin. 

Fig. 13 shows a first example of comparison of two 
lymphocyte populations by means of the histograms. As we 
can observe from the images of analysed cells, the H400 
(Chronic Lymphocytic Leukaemia) is morphologically very 
different from the H470 (T-Prolymphocytic Leukaemia). 
H400 is distinguished from H470 by distinctly smaller 
nuclear and cellular sizes, by a stronger density of 
chromatin, by more regular nuclear shapes, the quasi 
absence of nucleoli, and by a clearly weaker basophilia. The 
parameters of N/C ratio, nuclear excentration or the 
cytoplasmic features are indistinctive. 

 
 

 
Fig. 13 Comparison of two lymphocyte populations (pathologies H400 and H470) using the histograms of the ten features. 
Six examples of processed cells for each population are shown on the top part. 
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But we can also consider the following examples 
of pathology, with close morphology, compared two 
to two, which demonstrate the discriminating 
character of these morphometric data; they are 
superimposed narrowly on the classically recognized 
morphological data from medical literature. 

For instance, in fig. 14 the comparison of two 
populations of Hairy Cell Leukaemia (H410) and 
Splenic Lymphoma with Villous Lymphocytes 

(H412) are given, which are often morphologically 
mixed. From the four histograms shown, H410 is 
distinguished from H412 by higher nuclear sizes, a 
density of chromatin definitely weaker than in H412 
(value “very dense” very rare in H410), a basophilia 
less marked (value “very weak” very frequent and 
seldom presents in H412), finally by a different 
distribution of nuclear excentration (more marked in 
H412). 

 

 
 
Fig. 14 Comparison of two lymphocyte populations: H410 Vs. H412. 
 
Another example, depicted in fig. 15, 

compares a population of H413 (Follicular 
lymphoma) and Mantle Cell Lymphoma (H414). 
In this case, H413 is distinguished from H414 by 
a higher N/C ratio (less dispersed values), rarer 
nucleoli (form “prominent, single” always goes 
away), polymorphic nuclear shapes, but with a 
peak of value “irregular, narrow indentation” for 
H413. Other parameters which are not shown, 
like a less strong nuclear excentration, a less 
strong density of chromatin or a weaker 
cytoplasmic basophilia, are also very significant. 

Particularly interesting is the comparison of two 
cases of Chronic Lymphocytic Leukaemia (H400) in 
fig. 16. The first H400 is taken after an evolution of 
22 years without treatment. H400 is distinguished 
from the second H400-92 by distinctly smaller 
nuclear and cellular sizes, a higher N/C ratio (less 
dispersed values), a weaker nuclear excentration and 
by a stronger basophilia. The second H400-92 is 
transformed into a Plasmocytic leukaemia, H404-95, in 
three years of evolution. The profiles H400 and H400-92 
(each one with the diagnosis of Chronic lymphocytic 
leukaemia) are in fact definitely different. 



J. ANGULO et al. 

13 
Copyright © 2006 C.M.B. Edition 

 
 

Fig. 15 Comparison of two lymphocyte populations: H414 Vs. H413. 
 
 

 
 

Fig. 16 Comparison of two lymphocyte populations: H400 Vs H400(92). 
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The H400-92 and its H494-95 transformation are also 
definitely morphologically different (fig. 17): H400 (92) is 
distinguished from H404-95 by nuclear and cellular sizes 

definitely smaller, a higher N/C ratio (and more dispersed 
values), a stronger density of chromatin and by a weaker 
cytoplasmic basophilia. 

 

 
 

Fig. 17 Comparison of two lymphocyte populations: H400(92) Vs. H404(95). 
 

CONCLUSIONS 
Several advantages are associated with the present 

system. This ontology-based framework to describe 
automatically lymphocyte cells is coherent in its 
different steps with the manual procedures. The 
terminology, data and classification/decision trees are 
based on the medical expertise, which yields an 
interesting link between the classical medical 
knowledge and the automatisation of the laboratory 
routines. In practice, this methodology improves and 
makes easier the development and validation of 
automated image processing systems. In fact, other 
biomedical problems which are usually studied by 
subjective interpretation of images (e.g., retinal 
images in ophtalmology, etc.) can be approached by 
means of conceptually similar systems. 

The automated image-based measurements and 
derived descriptors are objective and reproducible. 
The morphological data obtained can be used to 
automate the classical diagnosis. In addition, this type 
of quantitative approach provides the necessary tools 
to bring precise details within diagnoses already 
strongly elaborate and to advance in the consensus 
necessary to all the related disciplines in experimental 
medicine. 

 
 
 
 
 
 
 

With the reservation of a larger evaluation of 
“observer versus measurement results” and an 
application on cell population by a more automatised 
procedure (selection of zone of interest on wide 
microscopic field), this approach may allows to study 
the evolution of a pathology according to the 
treatment and the system can also be applied in 
clinical protocols. 

After this first validation of the approach, 
subsequent biomedical studies will be able to 
highlight its practical usefulness for the evolutionary 
study of lymphoid pathologies and for discrimination 
among various groups of similar diagnosis. 

The results obtained by the system can be indexed 
and can be consulted from databases, with the 
possibility of searching for similar morphological 
content. Moreover, due to the fact that there are fewer 
haematologists than in the past who are specialists in 
cellular morphology, this kind of systems can also be 
used for teaching activities. 

A similar approach has been developed for 
describing and quantifying the erythrocyte cell 
morphology (red blood cells) and the results have 
been also promising (25). 
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