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The definition of morphological operators for colour images requires a total ordering for colour points. A
colour can be represented by different algebraic structures, in this paper we focus on real quaternions.
The paper presents two main contributions. On the one hand, we have studied different alternatives to
introduce the scalar part to obtain full colour quaternions. On the other hand, several total lexicographic
orderings for quaternions have been defined, according to the various quaternion decompositions. The
properties of these quaternionic orderings have been characterised to enable the identification of the
most useful ones to define colour morphological operators. The theoretical results are illustrated with
examples of processed images which show the usefulness of the proposed operators for real life complex
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1. Introduction

Mathematical morphology is the application of lattice theory
to spatial structures. This means that the definition of morpho-
logical operators needs a totally ordered complete lattice struc-
ture, i.e., the possibility of defining an ordering relationship
among the points to be processed. Considering the case of colour
images, let ¢; = (r;,8;, b;) be the triplet of the red, green and blue
intensities for the pixel i of a digital colour image, and let <, be
a total ordering between the colour points, i.e., for any pair of
unequal points ¢; and ¢; it should be possible to verify if
ci<oC or if ¢;=¢c;. For any subset of RGB points, its colour ero-
sion (dilation) is defined as the infimum (supremum) according
to <o. In other words, (7 <) is a complete lattice. The chal-
lenge in the extension of mathematical morphology to colour
images is just the definition of appropriate total colour order-
ings. For a general account on mathematical morphology the
interested reader should refer to the two pioneer books by Serra
[37] and to an excellent monograph by Heijmans [21]. Funda-
mental references to works which have studied the theory of
vector morphology theory are [38,17,42]. Many approaches have
been proposed in the last few years on the extension of mathe-
matical morphology to colour images. An exhaustive state-of-
the-art has been reported in recent papers by Angulo [5] and
by Aptoula and Lefévre [6].
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This paper is the first part of a series of studies which focus on
defining colour total orderings based on geometric algebra represen-
tations of colour images. In particular, in this article we focus on real
quaternions, or hypercomplex numbers, as discovered by Hamilton
in 1843 [18]. In the forthcoming second paper, we will consider the
case of colour tensors and derived total orderings. We explore here
the way to build colour quaternions from a RGB triplet and the differ-
ent alternatives to define total orderings based on the specific prop-
erties of two quaternion representations (polar form and parallel/
perpendicular decomposition), characterising and identifying the
most useful to define nonlinear morphological operators. The theo-
retical results are illustrated with examples of processed images.

Colour images can be represented according to three main fam-
ilies of colour spaces: “3 primaries-based” spaces (e.g. RGB, XYZ,
etc.), “1 intensity + 2 chrominances” spaces (e.g., YUV, L’a’b’, etc.),
and “luminance/saturation/hue 3d-polar” spaces (e.g., HLS, HSV,
LSH [4], etc.). The reader interested in standard colour space repre-
sentation is invited to the books of reference [45,33]. In this study
we focus specifically in the RGB representation, which in fact is
the most direct way to manipulate digital colour images, for
three main reasons: (1) colour images are produced in RGB
representation by most of digital devices; (2) the three R, G and B
channels can be considered as a three dimensional vectorial space,
which constitutes a fundamental starting point for geometric alge-
bra formalisation; (3) application of multivariate data analysis tech-
niques such as principal component analysis (PCA), etc. allow to
reduce the dimension of multispectral images, and in most of cases
the n image channels can be represented in 3 PCA axis.
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A colour point ¢; can be represented according to different geo-
metric algebra structures. Di Zenzo [9] proposed in his pioneer
work a tensor representation of colour derivatives in order to com-
pute the colour gradient by considering the colour image as a sur-
face in R3. Later, Sochen and Zeevi [40] and Sochen et al. [41]
considered a colour image as a two-dimensional manifold embed-
ded in the five-dimensional non-Euclidean space, whose coordi-
nates are (x,y,R,G,B) € R, which is described by Beltrami colour
metric tensor. But all these studies consider only the differential
representation of the colour triplet, which is useful for differen-
tial geometric colour processing, e.g., colour image enhancement
and smoothing using PDE. Another algebraic tool used to repre-
sent and to perform colour transformations by taking into ac-
count the 3D vector nature of colour triplets is the quaternion.
The first application of quaterion colour processing was reported
by Sangwine [34] for computing a Fourier colour transform.
Other quaternionic colour transformations were then explored
by Sangwine and Ell such as colour image correlation [10], colour
convolution for linear filtering [36] and for vector edge-detecting
[35] as well as new results on quaternion Fourier transforms of
colour images [11]. Ell [13] introduced recently the application
of quaternion linear transformations of colour images (e.g., rota-
tion and reflections of colours). Other works by Denis et al. [8]
and Carré and Denis [7] have also explored new approaches for
colour spectral analysis, edge detection and colour wavelet trans-
form. Quaternion representations have been also used to define
colour statistical moments and derived applications by Pei and
Cheng [31] and to build colour Principal Component Analysis
[32,26,39]. Quaternion algebra can be generalised in terms of
Clifford algebra. In this last framework, Labunets et al. have stud-
ied Fourier colour transform [24], including colour wavelets for
compression and edge detection, as well as computation of
invariants of nD colour images [23,25]. Ell [14] has also started
to study this representations for colour convolution and Fourier
transform.

All this previous work on colour quaternions deals with linear
colour transformations of colour images. Our purpose here is to ex-
plore how colour quaternion representation can be useful for non-
linear inf and sup colour processing. To our knowledge this is the
first work considering the definition of colour mathematical mor-
phology using quaternions, and more generally, the first to define
total ordering between quaternions.

The rest of the paper is organised as follows. In Section 2 we dis-
cuss the colour quaternion representation, considering the various
alternatives to define the scalar part of a full colour quaternion.
Then, in Section 3 we present the total orderings introduced for
colour quaternions, including a study of their invariance properties
and a comparison with more classical colour total orderings. Mor-
phological operators for colour images are defined in Section 4. The
behaviour and the applications of morphological colour filters
using quaternion orderings are illustrated in Section 5. Finally,
the conclusion and perspectives are given in Section 6.

1.1. Notation for RGB colour images

Let f(x) be a greylevel image, f:E— 7, in that case
T = {tmin, tmin + 1,. .., tmax} (in general 7 C Z or R, for our study
7 =10,1])is an ordered set of grey-levels and typically, for the dig-
ital 2D images X = (x,y) € E where E c 7? is the support of the
image. We denote by # (E, 7)) the functions from E onto 7. If 7
is a complete lattice, then # (E, 7)) is a complete lattice too. Given
the three sets of scalar values 77, 7% 7% we denote by
F(E, [T x T8 x 7)) or #(E,7™), with 77 =78 =7 =1[0,1],
all colour images in a red/green/blue representation. We denote
the elements of 7 (E, 7) by f, where f = (f;, f¢,fs) are the colour

component functions. Using this representation, the value of
f at a point xecE, which lies in 7™, is denoted by
£(X) = (%), fo(X). fo(X).

Each of the N pixels of a colour image (N = card(E)) corresponds
to a colour point ¢; = (ri,g;,b;) of the colour space %=
[0,1] x [0,1] x [0,1], such as ¢; =f(x;) = (fr(X:),fc(Xi),fs(Xi)) and
where 1 <i<N.

2. Colour quaternion image representations

2.1. From RGB points to colour quaternions: the choice of the scalar
part

A quaternion q € H may be represented in hypercomplex form
as

q=a-+bi+q+dk, (1)

where a,b,c and d are real. A quaternion has a real part or scalar
part, S(qQ) =a, and an imaginary part or vector part, V(q) = bi+
¢j +dk, such that the whole quaternion may be represented by
the sum of its scalar and vector parts as q = S(q) + V(q). A quater-
nion with a zero real/scalar part is called a pure quaternion. The
algebra of quaternions, and in particular the definition of the prod-
uct of two quaternions, may be found in standard graduate texts on
applied mathematics.

According to the previous works on the representation of colour
by quaternions, we consider the grey-centered RGB colour-space
[10]. In this space, the unit RGB cube is translated so that the coor-
dinate origin 6(070, 0) represents mid-grey (middle point of the
grey axis or half-way between black and white). Then, a colour
can be represented by a pure quaternion: c¢= (r,g,b) =
q=7ii+g+bk, where &= (Fgb)=(r-1/2,g—1/2,b—1/2).
It should be remarked that in this centered RGB colour space the
black colour quaternion and the white colour quaternion, associ-
ated to the two main achromatic colours, play a symmetrical role
in terms of distance to the center and the same is true for any pair
of complementary colours.

In order to better exploit the power of quaternion algebra, we
propose here to introduce a scalar part for each colour quaternion,
ie,

c=(r.g.b) = q=y(c c)+Fi+g+bk. 2)

The scalar component, y(c, ¢o), is a real value obtained from the
current colour point and a colour of reference ¢y = (19,8, bo). As
we will show, the scalar part provides the structure to introduce
an additional datum which can be a colour magnitude, a distance
or a potential. The choice of the reference colour is an interesting
degree of freedom to impose to each colour an “ordering” with
respect to this outer colour, and consequently an effect of the
operator favouring a particular colour.

We have considered three possible definitions for the scalar
part.

2.1.1. Saturation

) sat _ o I
lﬁ(cth) Si ]/2 2 + (mi — mini)

1 {g(max,- —my)
3
2
where m; = (r; + g; + bi) /3, max; = max(r;, &;, bi), min; = min(r;, g;, b;)
and med; is the median value of the triplet (r;,g;,b;). In fact, s; is
the saturation of the luminance/saturation/hue representation in
norm L; [4], obtained as the modulus of the projected colour
vector on the chromatic plane (i.e., the orthogonal plane to the
grey axis in the origin). The saturation in norm L; can be also
written as
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1
Si = 7 (12ri — & — bil + |28; — 17 = bif + [2b; — i — &) 4)
The luminance [; in norm L, is the average value of intensities, i.e.,
1
l,':mi:§(r,t+g,-+b,l)A (5)

Keep in mind these colour magnitudes which will appear below
in colour quaternion decompositions. Obviously, the value of satu-
ration for ¢; does not depend on the reference colour ¢y. The satu-
ration s; is the chromatic variety of a colour (i.e., the degree of
dilution, inverse to the quantity of “white” of the colour) and it
cannot be obtained as a simple linear combination of RGB values
in contrast to the luminance [;. This is the rationale behind the
appropriateness of y(c;, €)™ as scalar value for the colour quater-
nion. We notice that in the scalar part the saturation defined in
[0,1] has been centered in order to have a symmetrical 4D space
[-0.5,0.5] x [-0.5,0.5] x [-0.5,0.5] x [-0.5,0.5].

2.1.2. Mass with respect to ¢

(i, €)™ = exp <—w5Hci — Co|| — w, arccos <M> ), (6)

‘ l[cillllcol
where w; = (1/v2)7and w, = (27) "' (1 — 4). It is a decreasing func-
tion of a linear barycentric combination of two colour distances be-
tween ¢; and the reference colour ¢,. The value of 0 < 4 < 1 allows
to weigh up the influence of the Euclidean distance (i.e., RGB uni-
form distance) between both colours with respect to the angle dis-
tance (i.e., chromatic distance equivalent to a hue distance).
Consequently, the value of the scalar component y(c;, €o)7** is max-
imal for ¢; = ¢y and decreases when the colour ¢; gets away from the
reference co. In any case, the values are always positive and can be
normalised in order to have the same dynamics as the colour qua-
ternion complex components.

2.1.3. Potential with respect to ¢, and the nine significant colour points
in the RGB unit cube

(e, €)™ = df + ¢
_ K* 4 K-
47'CEOHCI‘*CQH 47'[360“(:1*01”7

7)
n=—4, n#i
where the positive potential ¢, represents the influence of a posi-
tive charge placed at the position of the reference colour ¢g and
the negative term ¢; corresponds to the potential associated to nine
negative charges in the significant colours of the cube %.
These significant colours are the main achromatic colours (black
c¢'=(0,0,0), mid-grey ¢®=(1/2,1/2,1/2) and white c!'=
(1,1,1)), the chromatic primaries (red c¢?=(1,0,0), green
¢ =(0,1,0) and blue ¢* = (0,0, 1)), and the chromatic complemen-
tary primaries (cyan ¢2 = (0,1, 1), magenta ¢ = (1,0,1) and yel-
low ¢* = (1,1, 0)). This function y/(c;, ¢o)* balances the influence of
the reference point with respect to the significant points of the RGB
cube. Typically, to equilibrate both kinds of charges, it is taken
KT =9Q and k- = —Q, and in order to make the computation easier
we fix Q = p/(4me€o). The value of constant u allows to control the
dynamics of this scalar part with respect to the other quaternion
components.

2.2. Colour quaternion representations

Besides the hypercomplex representation, we are considering in
this paper two other interesting quaternion representations.

2.2.1. Colour quaternion polar form
Any quaternion may be represented in polar form as

q= pe”, ®)

with  p=vVa+b*+c2+d*, ¢=Lxa=dk _7i Zi Fk and

Vb e id?
2 2 . . .
0 = arctan (7“”;2“1) Then, a quaternion can be rewritten in a

trigonometric version as q = p(cos 0 + &sin0).

In this polar formulation, p = |q| is the modulus of q; ¢ is the
pure unitary quaternion associated to q (by the normalisation,
the quaternion representation of a colour discards distance infor-
mation, but retains orientation information relative to mid-grey,
which correspond in fact to the chromatic or hue-related informa-
tion.), sometimes called eigenaxis; and 0 is the angle, sometimes
called eigenangle, between the real part and the 3D imaginary part.

The eigenaxis of a colour quaternion, ¢, is independent from its
scalar part. The imaginary term u= P 4c2+d* =(r—1/2)>%+
(g —1/2)* + (b — 1/2)? is the norm of the colour vector in the cen-
tered cube and can be considered as a perceived energy of the col-
our (i.e., relative energy with respect to the mid-grey), being
maximal for the eight significant colours associated to the cube
corners. Note that the black and white have the same value as
the six chromatic colours. The modulus p is an additive combina-
tion of the imaginary part and the scalar part. The function
arctan (four-quadrant inverse tangent) is defined in the interval
[-m/2,7/2]. However, for all the numerical examples used in this
paper, we have calculated 6 using the computational function
atan2(y/fi, (€, ¢)) which lies in the closed interval [—7, 7t]. The
value of p is > 0 and if y(c, o) is also positive, which is always
the case for the mass with respect to c¢g, we have 6 > 0 and it in-
creases when the ratio /7i/y(c, ¢o) increases. The value of y(c, ¢o)
can be negative for the saturation and for the potential and in this
case 6 continues to be positive because of y > 0 and it is decreas-
ing with respect to the absolute value of the ratio. Consequently,
even if 6 gives an angular value, we can consider the eigenangle
as a totally ordered function.

In Fig. 1 for a colour image f(x) the colour quaternion modulus
image f”(x) and eigenangle image f’(x) are compared according to
three examples of scalar part.

2.2.2. Quaternion parallel/perpendicular decomposition

It is possible to describe vector decompositions using the
product of quaternions. Ell and Sangwine published the following
results in [10], which have been recently generalised in [12].
A full quaternion q may be decomposed about a pure unit
quaternion p*:

q=q, +q, 9

the parallel part of q according to p*, also called the projection part, is
given by q, = S(q) + V| (q), and the perpendicular part, also named
the rejection part, is obtained as q, =V, (q) where

Vi@ =3 (Vi) - pV@p) 10)
and
V(@) = 5 (V(@) + pV(@Pp). an

A diagram illustrating the principle of ||/ L decomposition is de-
picted in Fig. 2(a).

In the case of colour quaternions, p* corresponds to the pure
unit quaternion associated to the reference colour ¢y, which is de-
fined by

. it &j+bk .. ..
=——2——— =Toui + 8ou + bouk,
0 Vil

with (72, + g2, + b2,) = 1. By developing the triple product for col-
our quaternion, it is obtained
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(b1)
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(c3) @
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Fig. 1. Colour quaternion modulus image f* (x) (column c) and eigenangle image f’(x) (column d) of the “Carmen” RGB image f(x) (a) according to three different scalar parts
£/(<)(x) (column b). Note that images have been normalised to be represented in 8 bits. (For interpretation of color mentioned in this figure the reader is referred to the web

version of the article.)

PUV(Qp* = (i — 2i#2, — 28F0uou — 2bFoubou)i

+ (g - Zgg%u - 2flf.o.ugo,u - ZBgo,uBO,u)j

+ (b — 2bb%, — 2040 — 2880ubo.)k (12)
Now, we can particularize Egs. (10) and (11) to obtain the following
vectorial part and perpendicular part for the unit quaternion

¢o = (ro,To, o) (= Tou = 1/V/3), which represents the decomposition
along the grey axis:

V,(q) :% [(f+g+5)i+ (F+&+b)j+ (f+g+B)k],
and

Vi@ =3 [~ g~ b)i+ (287 )i+ (2b 7 - gk].

We notice that these projection components correspond respec-
tively to the luminance term and the saturation term, see Rel. (5)
and (4). Hence the colour image is decomposed into the intensity
information along the grey axis (parallel part) and the chromatic
information (perpendicular). Taking another example, for instance

Co = (r0,70/2,0)(= fou = /), we have V(@) =4[(F+8/2)i

+(F/2+g/4)j] and V. (q) =5 (7/4 — 8/2)i +5(& —T/2)j + bk.
Fig. 2 shows also two examples of the decomposition for a col-
our image. It provides the case ¢y = (1,1,1) with the intensity

information and the chromatic information. The other example
corresponds to ¢, = (0.75,0.54,0.50), the typical colour of skin.
Considering now the moduli of the decomposed quaternions, i.e.,

lq,| = \J¥(c )’ + Vi@ la.|=Vi(q), (13)

It should be remarked that the rejection part is a pure quater-
nion, independent from the scalar part of q, but of course, it de-
pends on the reference colour used for the decomposition. Three
examples of the images of the modulus of parallel and perpendic-
ular parts are given in Fig. 3.

3. Total orderings for colour quaternions

We have now all the ingredients to define total orderings be-
tween quaternions, <t and consequently total orderings be-
tween associated colours. This objective can be formalised by the
following paradigm:

A< @ = GG

In this context, and using the quaternion representations pre-
sented in the previous section, two main families of lexicographi-
cal-based partial orderings between colour quaternions can be
defined.
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1 =u +

! u=u +u

1

I =y - A

i

1

(f)

Fig. 2. (a) Decomposition of quaternion u into its projection and rejection parts
according to the unitary quaternion associated to quaternion v. Two examples of
colour image decomposition into parallel part and perpendicular part: (b) “Bianca”
RGB image f(x); (c) and (d) respectively, vectorial component of parallel part fﬁ(x)

and perpendicular part f9(x), where the scalar part of f(x) is y(ci, )™ and

¢y = (1,1,1); (e) and (f) respectively, vectorial component of parallel part f“( x) and

perpendicular part f!(x) where the scalar part of f%(x) is ¥(c;,¢)/%s and

¢y = (0.75,0.54,0.50). (For interpretation of color mentioned in this figure the
reader is referred to the web version of the article.)

3.1. Polar-based orderings

These three approaches are based on ordering according to a
priority in the choice of the polar parameters of the quaternion.
The ordering gg,,(u) imposes the priority to the modulus, i.e.,

1

pi < p;or

p; = p; and 0; < 6; or

pi=p;and 0; = 0; and [|& — &l = (1§ — &l
(14)

qi<9?3 q —

2 g 6o \2 b by \2 .
where 1&g — &oll = /(Ji — 15 )2 + (B — £)2 4 (B Ba)? with
e =T} + 8 +

bﬁ. In this ordering, for two colour quaternions hav-
ing the same module the quaternion with bigger eigenangle is big-
ger or if equals, with the lowest chromatic distance to the reference
colour.

Two other orderings can be defined, giving respectively the pri-
ority to the value of the eigenangle or to the distance between the
eigenaxis and q§ = &, i.e.,

0; < 0]‘ or
s 0 0; = 6; and p; < p; or
2 0i = 0; and p; = p; and [|&; — &l = [1& - &l
(15)
and
€ = &oll > 11§ — &oll or
q;< lloqj 1€ = &oll = 1I& — &l and p; < p; or
1€ — &oll = 1§ — &ll and p; = p; and 0; < 6;

(16)

However these ones are only partial orderings or pre-orderings,
i.e,, two distinct colour quaternions, q;#q;, can verify the equality
of the ordering because even if &=¢; their corresponding chromatic
distances to the reference can be equal, [|& — & = || — &l|- In or-
der to have total orderings we propose to complete the proposed
cascades with an additional lexicographical cascade of green, then
red and finally blue as previously introduced for distance-based
orderings [5]; see below for the case of parallel/perpendicular
ordering how is completed a pre-ordering.

3.2. Parallel/perpendicular-based ordering

The ordering < o is achieved by considering that a quaternion

is bigger than another one with respect to qj if the modulus of the
parallel part is bigger or if the length of parallel parts are equal and
the modulus of the perpendicular part is smaller, see the examples
depicted in Fig. 4. The schema is only a pre-ordering which is then
completed to define the following total ordering:

lq,:| < |qy;| or

l9,:/ = |q,;| and |q, ;| > |q, ;| or

9,:| = lq,;] and |q, ;| = |q, ;| and
gi<§g;or
gi=gandr <rjor
gi=gandr;=r;and b; < b;

qi<935 q =

Obviously, other orderings are possible by considering a differ-
ent priority in the choice of the polar and parallel/perpendicular
component or even taking the same components but selecting a
different sense in the illegalities. For the sake of coherence we limit
here our presentation to the above introduced orderings.

3.3. Extremal values

The set of colours in the cube % is now a totally ordered com-
plete lattice or chain. Each ordering relationship introduces a dif-
ferent colour chajn and each chain is bounded between the
greatest colour T L (upper bound) and the least colour 19% (lower
bound). The extremal values of each colour chain are very impor-
tant to understand the effect of the corresponding colour dilation
and erosion.

The bounds of each quaternionic ordering depend obviously on
the type of scalar part. We should consider separately the three
type of proposed ¥/(c;, €o) to calculate the greatest and least colours
of each Q%. For the sake of simplicity, we limit here our presenta-
tion to the case of the saturation as scalar part since the analysis for
the mass or the potential depends strongly on the reference colour.

Let us consider that p* =/y? 4+ u and 0°* = arctan(/fi/y),
where ¢ = (s—0.5) and u=(r—0.5)*+(g—0.5)*+(b—05).
The saturation equals 0 when r=g=>b(y =-0.5) and conse-
quently y? = 0.25. Note that y? = 0.25 also when saturation is
maximal (s =1 = y = 0.5), which is the case for all six dominant
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w(ci: CO)

(b1) (c1)

mass - o = (0.40,0.66, 0.86)

(b3) (c3)
£9()

[£21(x)

Fig. 3. Colour quaternion decomposition about the unit quaternion associated to reference colour ¢y: image of modulus of parallel part \fﬁ'\(x) (column b) and image of
modulus of perpendicular part [f? |(x) (column c) of “Carmen” RGB image f(x) (a) according to three different scalar parts. (For interpretation of color mentioned in this figure

the reader is referred to the web version of the article.)

Uy peeee oo - Uy
1
1
u, Y |
~ 1

________ e~ - v v
LT 11Uy
1
1
LT T U,
(a) (b)
Fig. 4. Ordering of quaternions u; according to their decomposition u; + u;, about the pure quaternion v: (a) |uz | > [u; | > |[uz || = u3 > w; > u and (b) |uy | = Juyy| and

[uy ;| > |uz ;| = u; < uwy. But quaternions u, and u; which have equal modulus of both parallel and perpendicular parts cannot be ordered without an additional condition.

chromatic colours, i.e., colours defined only by ones and zeros. It is
obtained for these six dominant chromatic colours and for
c¢=(0,0,0) and ¢ =(1,1,1) that £ =0.75 and the corresponding
value p** = 1. It is easy to verify that y* = 0 when s = 0.5, which
corresponds to colours including the three values 0.25, 0.50 and
0.75, e.g., ¢ = (0.25,0.75,0.50). These points have p =0.125 and
then p5® = 0.35. The minimum p = 0 is obtained only for the cen-
ter of the cube, ¢ = (0.5,0.5,0.5), which involves p** = 0.5. Conse-

quently, we have the following interval of variation:
0.35 < p* < 1. Using for ¢°* the function atan2, we obtain the
max bound 0 =7 when w=0 which is the case for
c = (0.5,0.5,0.5), independently of the value of . If u =0.75 and
¥ = —0.5 the obtained value is 0°" = 2.09, and with u = 0.75 and
Y = 0.5 we get ¢ = 1.04. This last value is the min bound for
6°*. Hence 1.04 < ** < 7. The bounds for the chromatic distance
are independent of the scalar part but depend strongly on the
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reference colour. More precisely, 0 < ||€ — &|| < D, where D = 2.31
is the distance between ¢ = (0,0,0) and ¢, = (1,1, 1) (or vice ver-
sa). For any particular colour chain, the chromatic distance equals
0 for any colour having the same chromaticity than centered c,.
The maximal distance corresponds to one of the main colour
points, e.g., for ¢, = (0.2,0.2,0.5) the max distance is for the colour
point (1,1, 0). The interval of definition of the modulus for both ||
and 1 components depends also on the choice of the reference col-
our. In addition, it should be reminded that the modulus of the par-
allel part relies also on the scalar part. For instance, if ¢ = (1,1, 1),
the |q, | = |V.(q)| is the saturation of centered colours in norm L,
which is max with value |q, | = 0.4 for the six chromatic colours
and the min |q,| = 0 for all the colours in the chromatic axis, i.e.,
r=g=>b. The value of |V(q)| is O for the center of the cube
co =(0.5,0.5,0.5) and the max |V,(q)| = 0.86 is obtained for the
extremes of the grey axis. For other colour references, the corre-
sponding extremes for |q, | and |q,| can be also computed in such
a way.

After this numerical analysis, we can now summarise as follows
the extremes of the quaternionic orderings for the saturation as
scalar part:

a
. Tfa}o =(1,1,1) or (0,0,0) depending on which one is the closest to
the reference colour ¢y,
a
. J_i’: = The intermediate achromatic colour (including the three

values 0.25, 0.5 and 0.75) farthest from the reference colour ¢y,
g

« T2 =(05,05,05),

qll
Q0 . .
e 1.2 = The farthest dominant chromatic colour from the refer-
ence colour ¢,

qll
Q0 .
e T,2 = The closest colour to the reference colour ¢, having max-
imal p*,

0
. J—iff = The farthest dominant colour (six chromatic ones+white/
black) from the reference colour c,,
a

« T 6 =(1,1,1)=(1,1,1),

QY

o

. Ljf;;”,co =(1,1,1)= The intermediate achromatic colour
(including the three values 0.25, 0.5 and 0.75) farthest from
the reference colour cp.

There is another important notion to interpret the effects of sup
and inf operators in a colour chain. Given to colours ¢; and ¢;, we

. CH . CH
say that ¢; is closer to T° than ¢; if < it G T, Consequently,

in a subset of colours, the closest colour to T?% is the biggest one
and the farthest is the smallest one. In a discrete colour chain, such
as the case for the digital colour images, we can also define the dis-
tance in the chain of two colours ¢; and ¢; as the number of interme-
diate colours between them. Then, we can calculate for each colour

its distance to T and to 19,

3.4. Invariance properties of orderings

Let .7~ and .7/ be two ordered set of grey-levels, i.e., two com-
plete lattices. Consider the mapping A: .7 — 7, then we say that
an ordering <, is invariant under A (or respected by A) if

X<gy = AX)<AY) WX, yeT. (18)

As we can suppose, it may or may not be possible to fund such
an invariant ordering, depending on the nature of the A. The con-
cepts of ordering invariance and of commutation of sup and inf
operators under intensity image transformations have been well
studied in the theory of complete lattices [37,27]. More precisely,
in mathematical morphology a mapping A: 7 — 7’ which satis-
fies the criterion (18) is called an anamorphosis. It is well known
for the grey-tone case that any strictly increasing mapping A is
an anamorphosis. Theoretical results on anamorphoses for multi-
valued lattice such as colour images were studied by Serra [38].

We are interested here to study the behaviour of quaternionic
total ordering with respect to digital colour image transformations
having a physical sense. In particular, for any grey level value
p; € 7, there are two typical mappings used in many devices and
imaging software:

J

(d) Co = (1! 1:1) (e) Co = (130,0) (f) Co = (111?1)

w(ci’cO)mass, < ay w(ci’cg)mass, < ag w(ci’CO)pOt’ Sﬂqg

g

Fig. 5. Comparative of colour erosions &g n5(f)(X) (the structuring element B is a disk and the size is n = 7) on image “Bianca” using different quaternionic orderings and with
different scalar parts. (For interpretation of color mentioned in this figure the reader is referred to the web version of the article.)
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e Linear transformation: A;(p;) = op; + 5, with « > 0 and g € R.

e Gamma correction: A, (p;) = p!, with y > 0. To make calculations
easier, we can take the limited expansion of first order as linear
approximation, for p; near to 1, and consider the following cor-
rection function A;(p;) = yp; + (1 — ).

Both transformations are clearly anamorphosis for grey-images.
Let us consider now a family of three independent anamorphosis
A = (Ar,Ac,As) for each R,G and B colour components. The map-
ping A does not generate always a product anamorphosis from
77 onto 77 . It will depend on the total ordering <, of the com-
plete lattice 7™, In our case, we focus on uniform colour map-
pings, that is the same transformation is applied to each colour
component, i.e., Ag = Ac = Ag = A. A counterexample, out of the
scope of our analysis, is the white balance transformation which
involves a different linear transformation for each colour
component.

By the way, our problem here is more tricky. A colour ¢; is trans-
formed into another different colour ¢ =A(c) = (A(r;),A(g;),
A(by)) = (1}, g}, b;), but what is the corresponding transformed col-
our quaternion q; = Q(q;)? Obviously the mapping Q will depend
on the scalar part. Furthermore, the quaternionic colour orderings
are not based directly on the four quaternion components derived
from transformation Q but on the variables of quaternion decom-
positions. In conclusion, we need to check if the RGB linear ana-
morphosis involves also anamorphosis in the transformed
quaternionic polar and parallel/perpendicular representations,
and of course, the reference colour ¢, is kept constant.

In order to take into account the centering of colours, let us start
by rewriting ¢, = A;(c¢;) = oc; + § with g = g — 0.5 for the transfor-
mation each colour component r;,g; and b; of colour i. It is easy to
check that (¢, o)™ = awy(c;, €0)**. The mass and the potential
with respect to ¢y depends on distances. For the Euclidean dis-
tance, we have ¢} — ¢olf} = oie; — €oll3 + 20llci]ly — Bllcoll; + 35
Consequently ||¢; — Coll; < [I€; — €oll, <= lI€; — Coll; < |16 — o[, iff
p=0or|ci|; = |cll,. The last condition is achieved by normalising
the colour components, i.e., normalised red is 7; = r;/(r; + g; + bi),
with identical calculation for the two other components, and con-
sequently ||Ci|l; = |I¢j]l; = 1. This kind of normalisation against
intensity variations is well known in colour invariance, see for in-
stance Gevers and Smeulders [15]. The invariance of the angle be-
tween the transformed colours and ¢y, which corresponds to the
chromatic distance, needs very specific conditions. Hence we pro-
pose to set up A = 1 for the mass, and then, the conditions derived
from the Euclidean distance make the transformed mass
¥(c}, )T’ and potential y(c}, ¢o)" ordering invariant.

The first variable used in the quaternion polar decomposition is

the modulus: p; = /¥(c),c)* + i, where = |co|} and

W = 02|coll5 + 20|/ €o|l;, + 352 According to the previous analysis,
we have justified the ordering preservation of scalar parts, and
consequently of the squared counterparts. We need to verify if
p; < pj <= p; < p;, or more precisely, under which conditions
M < W <= ; < 1. The equivalence of norms guarantees that
llcilly < llgjll; <= llcill, < lIgjll,, so again the same conditions of no
translation or L; normalised colours is a sufficient condition. In
the case of the eigenangle 0; = arctan(,/1]/y/(c}, ¢o)), a similar anal-

ysis shows that only 3 = 0 guarantees ordering invariance. And this
is also the case for the invariance of [|& — & < [|& — &I

Concerning the parallel/perpendicular decomposition, we can
also easily calculate the modulus of the decomposed transformed
quaternions. Their simplified expressions are

2
lIoll3

2
Ci, C e .
Vi) = o 50 s 20 s e+ 2.
0ll2

2 2
loll l[€oll2

and
2
/ c‘yc a C
V()P = oc(c L ) +2ocﬁ<|ci1 _ Il <cf,co>>
ol ol
Y (1 _ Tog + T'obo +gob0>.
ol

The terms of 2 depends only on ¢, and the term of a2 corre-
sponds to the original values |V,(q)]* and |V (q)[*. Due to the fact
that r, g and b are positive, one has (c,¢;) > 0 and as it was im-
posed that o >0, we have that |Vy(q)| < |V (q)] < |V}(q)) <
[V\(q))| iff § > 0. A similar analysis leads to the same condition
which guarantees also that |V.(q)|<|V.(q)] <= [V.(q)] <
V.(q)l.

To conclude, we can assert that only under strict conditions the
colour quaternionic orderings are invariant to RGB uniform linear
colour transformations. In the forthcoming second part of this pa-
per on colour morphology using tensor representations, the search
of invariant orderings is a strong motivation in the definition of de-
rived tensor orderings.

Another theoretical point to be considered in future work is the
duality of colour operators with respect to the complementation of
colours (i.e., negative of colour components). In practice, this useful
property allows us in mathematical morphology to implement
exclusively the dilation, and using the complement, to be able to
obtain the corresponding erosion. Quaternion duality implies the
notion of quaternion involutions which have been recently forma-
lised by Ell and Sangwine [12].

3.5. Comparison with classical colour total orderings

The presented lexicographical four orderings are conceptually
different from the previous colour total orderings proposed in
the literature. However, a comparison with previous works allows
us to identify some common characteristics.

In [2], an ordering based on giving the priority to a linear com-
bination of luminance and saturation was used to build colour lev-
ellings. At a first look, this seems similar to the ordering < 4, using

. . . Q0 .
saturation as scalar part. However, as pointed above, in thi$ partic-
ular case the module is a combination of saturation and a RGB en-
ergy associated to the distance from the mid-grey and not directly
to an intensity of energy in the sense of luminance.

In previous works many attention has been paid to define total
orderings adapted to the hue, considered as an angular component
defined in the unit circle [20,19]. We remark again that the angular
component 0 can be considered as an ordered function without the
need to define an origin of angles. This last condition is required for
defining a total ordering in the hue component.

The ordering <, based on giving priority to the chromatic dis-
tance between each colour and the colour of reference, is funda-
mentally a distance-based ordering which corresponds to the
framework studied previously in detail in [5]. No major interest
is found to this kind of ordering to consider the colour as a full qua-
ternion. This is just the reason why this ordering has not been eval-
uated in the empirical part of this study. This type of ordering is
very useful for colour filtering and the reader interested in more
details can consult the paper [5].

Finally, orderings based on projecting the colour along a refer-
ence colour, and in particular the projection with respect to the
grey axis, were studied in [16] to construct exclusively colour lev-
ellings (see below the definition of levelling operator). The projec-
tion principle is quite similar to the ordering < 4, but note that
here we are decomposing full quaternions with %'scalar part. We
notice that if y(c;,¢o) =0 the moduli of ||/ L decompositions
about ¢y =(1,1,1) yields to the luminance and saturation.

I: Colour quaternions, J. Vis. Commun. (2009), doi:10.1016/j.jvcir.2009.10.002
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Mathematical morphology operators based on lexicographical

orderings for luminance and saturation components have been

widely studied in the literature [19,3]. However, contrary to the

order ggqg, with y(c;, (1,1,1)) =0, all the proposed previous ap-
4

proaches consider luminance and saturation in the same sense
(i.e., bright chromatic colours are bigger than bright achromatic
ones) whereas here we give priority to bright/dark achromatic
colours.

In summary, the quaternionic representations involve a rich
framework which, on the one hand, generalises many of the previ-
ously studied total orderings for colour images; and on the other
hand, introduces new total orderings based on geometric decom-
positions tailored by a reference colour.

4. Colour quaternionic mathematical morphology

Once the family of quaternionic total orderings <, has been
established, the morphological colour operators are defined in
the standard way. We limit here our developments to the flat oper-
ators, i.e., the structuring elements are planar. The non planar
structuring functions are defined by weighting values on their sup-
port [37]. The implementation and the use of colour structuring
functions will be the object of future research.

(a) £(x) (b=

1,1,1)

We need to recall a few notions which characterise the proper-
ties of morphological operators. Let 1/ be an operator on a complete
lattice #(E, 7).  is increasing if Vf,ge #(E,7) f<,g
= y(f)<oy(f). It is anti-extensive if y,(f)<of and it is extensive
if f<qy,(f). An operator is idempotent if it is verified that

() = y(f).
4.1. Erosion and dilation

The colour erosion of an image f € 7 (E, 7"®) at pixel x € E by
the structuring element B C E of size n is given by

eons(F)(X) = {£(y) : £(¥) = nalf(z)],z € n(By)}, (19)

where infy, is the infimum according to the total ordering <. The
corresponding colour dilation éqnp is obtained by replacing the
inf, by the sup,, i.e.,

dans(F)(X) = {£(y) : £(y) = Valf(z)],z € n(By)}. (20)

Erosion and dilation are increasing operators. Moreover, erosion
is anti-extensive and dilation is extensive. In practice, the colour
erosion shrinks the structures which have a colour close to T;
“peaks of colour” thinner than the structuring element disappear
by taking the colour of neighboring structures with a colour away

Pleico)*™, < ar (e o), < ay

@eo=0LLY)  (e=(LL1)  ({e=(L1)

P(ci, €0)™%, < _qu Y(ei, €)™, < _qu (e, €0) ™, < qu

Q,

©co=(LLY)  [@eo=LLL)  ()eo=(L11)

Tu[)(ch Co)pOt’ Sﬂqa‘ ¢(Ci’ CU)pOta Sﬂqb“ w(ci: CU)pOta Sﬂqg
2 4

Fig. 6. Comparative of colour closings ¢, ,;(f)(X) (the structuring element B is a disk and the size is n = 5) on image “Bedroom in Arles” (detail of painting by Van Gogh) using
different quaternionic orderings and with different scalar parts. (For interpretation of color mentioned in this figure the reader is referred to the web version of the article.)
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from T%. As well, it expands the structures which have a colour
close to 1. Dilation produces the dual effects, enlarging the re-
gions having a colour close to 1, and contracting the others.

4.2. Morphological filters

In general, a morphological filter is an increasing operator that
is also idempotent (erosion/dilation are not idempotent).

4.2.1. Opening and closing
A colour opening is an erosion followed by a dilation, i.e.,

Vons(£) = dons(6ans(f)), (21)
and a colour closing is a dilation followed by an erosion, i.e.,
QQ,nB(f) = 8o 8 (dan(f)). (22)

The opening (closing) is an anti-extensive (extensive) operator.
More precisely, the opening removes colour peaks that are thinner
than the structuring element, having a colour close to T#; the clos-
ing removes colour peaks that are thinner than the structuring ele-
ment, having a colour far from T¢, i.e., close to L%.

4.2.2. Alternate sequential filters

Once the colour opening and closing are defined it is indubita-
ble how to extend other classical operators such as the colour alter-
nate sequential filters (or ASF), obtained by concatenation of
openings and closings, i.e.,

iy
it

(el) Wshed0fed(p;)

(d) o1(%) — 02(x)

Cp = (17 11 1), w(cinO)sat: < qg

ASF(f)Q,nB = ®@qonsVons" " (pQ,ZBVQ,ZB(pQ,By!Z,B(f)‘ (23)

A dual family of ASF operators is obtained by changing the order
of the openings/closings. The ASF act simultaneously on the peaks
and the valleys, simplifying (smoothing) them. They are useful
when dealing with noisy signals.

4.2.3. Residue-based operators

Moreover, using a colour metric to calculate the image distance
d,d € 7 (E, 7)) (a scalar function), given by the difference point-by-
point of two colour images d(x) = ||f(x) — g(X)||, we can easily de-
fine the morphological colour gradient, i.e.,

0q(f) = [16a5(f) — ap(f)]. (24)

This function gives the contours of the image, attributing more
importance to the transitions between regions close/far to the ex-
tremes T and L°. The positive colour top-hat transformation is the
residue of a colour opening, i.e.,

Pons®) = If =70l (25)
Dually, the negative colour top-hat transformation is given by

Poms(®) =190 us(E) — . (26)

The top-hat transformation yields greylevel images and is used
to extract contrasted components with respect to the background,
where the background corresponds to the structures of colour

..

(c2) eanp(f)(x) = 0*(x)

puns
Sl

[ ATy
R
(€2) Wshed30fed(gy)

Fig. 7. Comparative of two colour morphological gradients on image “Carmen”: considering the same ordering < o and changing the scalar component, with the saturation
and the mass (using as reference ¢, the blue colour of the skirt). In the last row, the image (d) gives the differerice between both gradients (in white, pixels where g, (x) is
bigger than g, (x) and in black, the dual case). The images (e1) and (e2) correspond to the segmentation by hierarchical watershed in 30 regions of gradient ¢, (x) and @, (x),
respectively. (For interpretation of color mentioned in this figure the reader is referred to the web version of the article.)
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close to L? for p ; and close to T? for pg ;. Moreover, top-hats
remove the slow trends, and thus enhances the contrast of objects
smaller than the structuring element used for the opening/closing.

4.2.4. Geodesic reconstruction and derived operators

In addition, we also propose the extension of operators “by
reconstruction”, implemented by means of the geodesic dilation.
The colour geodesic dilation is based on restricting the iterative dila-
tion of a function marker m by B to a function reference f [44], i.e.,

Sp(m, f) = 54,55 ' (m,f), (27)

where the wunitary conditional dilation is given by
on(m, f) = dgp(m)Aof. Typically, B is an isotropic structuring ele-
ment of size 1.

The colour reconstruction by dilation is then defined by

yee(m, ) = ob(m, ), (28)

such that ¢},(m, f) = 65" (m, f) (idempotence). Whereas the adjunc-
tion opening v, ,;(f) (from an erosion/dilation) modifies the colour
contours, the associated opening by reconstruction y%¢(m, f) (where
the marker is m = &g »5(f) orm = y,, ;(f)) is aimed at efficiently and
precisely reconstructing the contours of the colour objects having a
colour close to T and which have not been totally removed by the
marker filtering process.

5. Results and discussion

We explore in this section the effects of these morphological
operators when they are applied to colour images according to
the family of quaternionic total orderings introduced in this paper.
We try to illustrate a wide variety of morphological colour opera-
tors by analysing the choices of the scalar part and of reference col-
our in the various orderings. Even if we are conscious that a further
study would need more extensive comparisons, we consider that
the following comparative examples allow us to draw some inter-
esting conclusions. In addition, in the last part of this section, we
focus on a particular application domain, the image-based traffic
applications, to show the usefulness of the proposed operators
for real life complex problems.

In Fig. 5 a comparative of erosions using different quaternionic
orderings is given, with different scalar parts. The same structuring
element, i.e., the same “shape and size of operation”, has been ap-
plied in the six cases. As we can observe from the examples, the ef-
fects of the various orderings are quite different. For instance, < o
(Fig. 5(a)), with saturation as scalar part, enlarg%s regions of achfo-
matic middle intensity colours (i.e., close to 1%") and reduces the
zones of achromatic and chromatic ones situated close to the ex-
treme parts of the RGB cube. The other results can be interpreted
with the help of the analysis of orderings discussed in previous sec-
tions. We notice also the influence of the choice of the reference
colour when, for instance, the mass is taken as scalar part:

©co=(1,11) (@) co=(111)

¢(Cia CU)Sata < ag
Ql

(g) Co = (11 L, 1) ) Co = (17010)

P(cq, co)es?, <8 Ples, co) 1230, < o
4 4

(e) co=(1,1,1) (f) co =(1,1,1)

¥(c;, co) et Sﬂqg p(es, co) 02t Sﬂqg
1 2

(1) Cp = (17010) (.]) Cp = (17070)
¥(c;, co)P*, L% P(c;, co)P%, < qu

—=_q
0
1 Qd

Fig. 8. Comparative of colour openings by reconstruction y%°(m, f)(x) on image “Flower 1” (the original image is (a) and the marker image is (b)) using different quaternionic
orderings and with different scalar parts. (For interpretation of color mentioned in this figure the reader is referred to the web version of the article.)
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choosing the red, ¢, = (1,0,0) (Fig. 5(e)), the regions of middle
greys and reddish colours are reduced.

A similar comparison is provided in Fig. 6. The image is a detail
of the painting “Vincent’s Bedroom in Arles” painted by V. Van
Gogh in 1889. This case deals with a systematic comparison of col-
our closings, which typically roughly regularise the structures. Due
to the properties of this particular painting, we have a large variety
of colour in small regions and consequently, the results for the var-
ious operators are quite different. Hence, using the same reference
(white colour), it is possible to identify the orderings which yield
the best visual object regularisation and the colour nature of struc-
tures which are filtered. Orderings < @ and < o lead to visual
similar results for the three scalar p%lrts with“teference colour
¢, = (1,1,1), although this is not the case when other ¢, are cho-
sen. The mass scalar part gives smoother filtered images, indepen-
dently from the ordering, in most of the studied cases. The effect in
the various orderings of the scalar potential is limited to colour
very close to the reference. It is perhaps interesting in future re-
search to explore a potential function more asymmetric with re-
spect to the values of positive and negative charges, and with a
particular choice of the dominant colours for the negative charges.

The adjunction erosion/dilation can be used to build gradients.
In the comparative of colour gradients of Fig. 7, by choosing as ref-
erence the colour of the skirt, ¢y = (0.40,0.69,0.96) we are sure

that the morphological gradient associated to the ordering < g,
W(ci, €)™, catches the contours of the image, attributing more
importance to the transitions between regions close/far to the ref-
erence colour. Besides to compare directly both gradients, we have
used them to segment the colour image by hierarchical watershed
transformation [28,29]. Using this algorithm we fix the number
of significant regions to be segmented according to a volume crite-
rion (i.e., a combination of the contrast and area of the region). As
we can observe from the example, using adapted colour filtering
regions around the skirt leads to a better segmentation than when
no preference to colour is fixed (i.e., co = (1,1,1)).

In order to illustrate the effect of geodesic colour propagations,
Fig. 8 gives a comparison of colour “swamping”: an opening by
reconstruction of a function by imposing as markers the maxima
associated to the objects to be preserved. These points initiate
the propagation and the image is strongly simplified in such a
way that the other image maxima are removed. For this example,
the marker image is composed of a point on the red/pink flower
and a point on one leaf. The background of the marker image
should be set to the colours of the lower bound of each ordering.
As we can observe, the most important property of these operators
is their ability to preserve the image contours of objects. These dif-
ferent results show the strong possibilities of the various geodesic
propagation types.

76 (m, £)(x)

(dl) Cp =

¥(eis co)

—(1,1,0)  (d2) co = (0,0,1)
Tifsv SQZIH w(ci:cD)TEfsa Sﬂjg

Fig. 9. Colour and size structure extraction using opening by reconstruction (c) of image “Butterfly 1” (a) with the same quaternionic total ordering and different reference
colour ¢,. Markers are colour openings (b) of size n = 12 where the structuring element B is a disk. The negative of the residue is given in (d). See the text for more details. (For
interpretation of color mentioned in this figure the reader is referred to the web version of the article.)
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Nevertheless, the excellent capabilities of geodesic operators to
simplify selectively image structures do not require the introduc-
tion of manual markers for the target objects. Usually, the marker
image is the result of an opening which removes the structures
smaller than the size of the structuring element. Fig. 9 depicts an
example of colour/size structure extraction just using an opening
by reconstruction. Two different cases are provided, using the same
total ordering < q with mass as scalar part y/(c;, €)'}’ and varia-
tion in the referénce colour. By fixing the yellow, ¢, = (1,1, 0), the
yellowish objects of size smaller than 12 are removed in the open-
ing m(x) = y,,3(f)(x), then the geodesic reconstruction using this
opening as marker, y%°(m, f)(x), restores the original contours of
the yellow structures which still are connected to the colour struc-
tures of the marker image. By taking the residue between the origi-
nal image and the reconstructed one, i.e., colour top-hat
transformation @g%,(x) = |[f(x) — y5°(m, f)(x)||, the removed de-
tails are detected. We notice that some small greenish details have
been also simplified since their colour is close to yellow, whereas
the blue small size structures are perfectly preserved. So, we can
choose now the blue as the reference colour, ¢, = (0,0, 1), and apply
the same transformations. The blue objects are removed by the
opening (and the yellow ones fill the corresponding structures)
and then by geodesic reconstruction the contours are recovered.
Note that the blue spots on the butterfly wings have been sup-
pressed. We observe also that some dark objects, closer to blue than
to yellow, are also simplified by this transformation.

There are other very useful and classical applications of geode-
sic reconstruction in grey level images which are based on using an
“image border” as marker. The counterpart in quaternionic colour

(a)

)

(1) 1 (x) = AEom, (1) (c2) 12(x)

Cp = (1, 1, 1)

",D(Cig CO)T;I?S: gﬂqg‘
4

e, () (c3) 1)

Cp = (0, 1, 0)

¢(Ci: CD)TE?) < ag

morphology is a marker image, m(x) with a colour in the border
and a background equal to the lower bound of the ordering. Let
us illustrate this transformation with the comparative example of
Fig. 10. In this case the reference colour is the blue ¢, = (0,0, 1)
and the same ordering is considered for the three cases. Using
the blue border marker in a closing by reconstruction,
@ (m, f)(x), with blue reference colour ¢, = (0,0, 1) (Fig. 10(c3)),
extract all the blue objects independently from their size or posi-
tion in the image (some dark objects are also reconstructed). The
marginal dual top-hat (i.e., an independent residue for each colour
components), @E°(m,f)(x) — f(x), produces the remaining colour
objects (Fig. 10(d3)). Instead of a closing, we can also apply an
opening by reconstruction ygc(m,f)(x) in such a way that the
selection of the reference colour allows to remove the bright/blue
colours with ¢y = (1,1,1) (Fig. 10(c1)) and green colours with
¢, = (0,1,0) (Fig. 10(c2)); and then to extract the removed struc-
tures by the corresponding residue f(x) — y5°(m, f)(x) (Fig. 10(d1)
and (d2)). It is easy to see the potential applications of this simple
family of transformations in order to decompose the image into the
background layer and the object layer. Moreover, we remark again
that the results of geodesic reconstruction for the colour quater-

mass

nion-based ordering <Qq3,l//(c,-,co) ", are visually good indepen-
4

dently of the reference colour.

5.1. Application to image-based traffic analysis

To conclude this section of results, we apply the colour quater-
nion operators introduced in the paper, and mainly the geodesic

(b) m(x)

= g (m, £)(x)

U

Co = (01,1) )

) lb(ciaCO)Tﬁf: EQZS

Fig. 10. Colour background + object decomposition using opening/closing by reconstruction of image “Butterfly 2” with the same quaternionic total ordering and different
reference colour ¢y. The marker (b) is the image border set to colour (0, 0, 1). See the text for more details. (For interpretation of color mentioned in this figure the reader is

referred to the web version of the article.)
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filters, for two applications in image-based traffic analysis. Our
main motivation is just to show the usefulness of the proposed
operators for the development of robust real life complex prob-
lems. In particular, the main advantage of the colour quaternion
geodesic operators is the reduced number of parameters required
for the algorithms.

5.1.1. Saliency detection in road images

Fig. 11(a) depicts two examples of natural road images acquired
by an embarked car camera [43]. One of the classical applications of
these images is the extraction of the more salient structures, i.e., the
lane marking, the traffics signs and the interest zones of the cars.
This problem can be easily solved using openings by reconstruction
and in addition, using the colour quaternion representations, we can
detect separately the bright structures and the red structures (these
last elements correspond to warning signs or to tail lights). Given the
original colour image f(x), the steps of the algorithm are:

(1) To compute a “white” opening by reconstruction (image (b)
in Fig. 11): £“"(x) = yrec(mhite f)(x), where m"hie(x) =
Yons(®)(X) with ¢o = (1,1,1).

(2) To compute a “red” opening by reconstruction (image (c) in
Fig. 11): £ (%) = yi5c(m™d, £)(x), where mr(x) = 7, ,5(f)(X)
with ¢y = (1,0,0).

(3) To define the salient bright zones as the colour residue of the
corresponding  opening (image (d) in Fig. 11):
shiee(x) = £(x) — £, (x).

(4) To define the salient red zones as colour the residue of the
corresponding opening (image (e) in Fig. 11):
sied(x) = f(x) — £, (x).

(5) To integrate both salient structure images in a global inten-
sity saliency map (negative of the image (f) in Fig. 11):
sn(X) = [[f(x) — £ (x)|| v ||f(x) — £*(x)||. This last step is
necessary only if a single greylevel saliency map is required.

The images s*"® and s/ can be then used as low-level features
for a classification algorithm. We notice that only a parameter
must be fixed: the size n of the structuring element for the open-
ings, which correspond to the size of the largest structure of the
image considered as a prominent object (as opposition to a back-
ground object).

5.1.2. Monitoring in traffic sequences

Video-based traffic monitoring is a classical issue in video se-
quence processing. It is needed, on the one hand, to detect the lane
lines (active zones of the image) and on the other hand, to identify
the cars driving in the road and the cars which are stopped. This last
aim, which may indicate a situation of danger, cannot be detected

—

(c2)

1 (e2)

Fig. 11. Algorithm of saliency detection in road images (two examples from [43]): (a) original colour image, (b) colour opening by reconstruction on “white structures”, (b)
colour opening by reconstruction on “red structures”, (d) salient bright zones, (e) salient red zones, and (f) integrated saliency map. See the text for more details.(For
interpretation of color mentioned in this figure the reader is referred to the web version of the article.)
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by difference of successive frames. The proposed approach based
again exclusively on colour quaternion openings/closings by recon-
struction is illustrated in Fig. 12, and the steps are as follows.

(A) Initialization phase using frame ft,.

(1) To compute the lane lines (image (b) in Fig. 12):
closing by reconstruction followed by opening by
reconstruction, i.e., £ = yec(m®hie prec(mwhite f, ),
where the marker image m""(x) is an image border
of value ¢y = (1,1, 1), and the same reference colour is
used for the corresponding ordering.

(2) To compute the background layer of the scene, which
is associated here to the vegetation (image (c) in
Fig. 12): f*% = Qg (mereen prec(meeen f, ), where the
marker image mé&*"(x) is an image border of value
¢ = (0,1,0), and the same reference colour is used
for the corresponding ordering.

(B) Running phase for frames fto, fit, fita,... using the images

£ and £,

(1) To compute a simplified road image by removing sec-
ondary road marks (image (e) in Fig. 12): f:, = pEe
(mhie £,), with ¢o = (1,1,1).

(2) By difference with the background image, to obtain all
the objects presented in the road (image (e) in
Fig. 12): of!(x) = ||f; (x) — £ (x)].

(3) To obtain the objects in movement (negative of image
(f) in Fig. 12): of**(x) = [l0{" (x) — 0% (x)]|.

For the sake of simplicity, we have not included in the example
how the lane lines image f“™ can be thresholded in order to obtain
the binary mask of the main lines. The main lines may be used with
image og” the separate the objects of each line. The stopped red car
of the example is well detected thanks to the soundness of the f*.

This last image can be periodically updated in order to cope for in-
stance with strong illumination changes.

6. Conclusions and perspectives

In this paper we have studied the appropriateness of colour
quaternion representations to extend mathematical morphology
to colour images. To our knowledge this is the first work consider-
ing the definition of morphological operators using quaternions,
and more generally, the first to define a complete lattice for
quaternions.

From a methodological viewpoint this study has two main con-
tributions. On the one hand, we have studied different alternatives
to introduce the scalar part in order to obtain full colour quater-
nions. On the other hand, several lexicographic total orderings
for quaternions based on their various decompositions have been
defined. We conclude that the geometric and algebraic properties
of quaternionic representations involve a rich structure to deal
with ordering-based colour operations and it yields a powerful
framework to generalise the definition of morphological operators
for colour images.

We have illustrated with various examples the effects of basic
morphological operators to process colour images. Then we have
shown several cases of advanced morphological colour processing
using connected operators (i.e., opening/closing by reconstruction)
for colour/size feature extraction, colour object detection and back-
ground+object decomposition. From these tests we state that the
ordering based on the decomposition into ||/ L parts is probably
the most interesting ordering, although more exhaustive empirical
tests are needed to qualitatively and quantitatively study the per-
formances of all proposed orderings.

In addition, we believe that other quaternion-based colour
operations (colour Fourier Transform, colour convolution, etc.),

)

(f2)

(f3)

Fig. 12. Algorithm of monitoring traffic sequence (example with four time frames): (a) original colour image, (b) road extraction with main lanes, (c) background layer, (d)
simplified image by removing secondary road marks, (e) objects included in the road, and (f) time difference between road objects. See the text for more details. (For
interpretation of color mentioned in this figure the reader is referred to the web version of the article.)
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previously defined for pure colour quaternions, could be now stud-
ied for the full colour quaternions here proposed.

Two questions should be addressed in future studies. The first
relates to the geometry of the colour space and the second to the
generalisation to multispectral images. Since the basic R,G and B
components are correlated in most images, the RGB space is not
really orthogonal. It can be interesting to study how colour quater-
nions defined from uncorrelated basis C;,C, and Cs, obtained by
PCA of each image or using the uncorrelated colour representations
proposed in the literature [30] or [46], perform in comparison with
the results shown here. The extension to multispectral images
(more than 3 spectral images) can be considered in the framework
of Clifford algebras [22,1]. In fact, the ||/ L decomposition is de-
fined for any Clifford algebra %, or ¢,, according to the corre-
sponding inner product.

As mentioned in Section 1, in the forthcoming second part of
this paper we will consider colour mathematical morphology by
introducing colour tensor representations and defining appropriate
tensor total orderings.
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