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A distance transformation converts a binary digital image, consisting of feature and 
non-feature pixels, into an image where all non-feature pixels have a value corresponding to 
the distance to the nearest feature pixel. Computing these distances is in principle a global 
operation. However, global operations are prohibitively costly. Therefore algorithms that 
consider only small neighborhoods, but still give a reasonable approximation of the Euclidean 
distance, are necessary. In the first part of this paper optimal distance transformations are 
developed. Local neighborhoods of sizes up to 7 • 7 pixels are used. First real-valued distance 
transformations are considered, and then the best integer approximations of them are 
computed. A new distance transformation is presented, that is easily computed and has a 
maximal error of about 2%. In the second part of the paper six different distance transforma- 
tions, both old and new, are used for a few different applications. These applications show 
both that the choice of distance transformation is important, and that any of the six 
transformations may be the right choice. �9 1986 Academic Press. Inc. 

1. INTRODUCTION 

Consider a digital binary image, consisting of feature and non-feature pixels. The 
features can be points, edges, or objects. A distance transformation is an operation 
that converts this binary image to a grey-level image where all pixels have a value 
corresponding to the distance to the nearest feature pixel. An example is shown in 
Fig. 1. The binary image depicts the letter F. After the distance transformation all 
pixels are have a value corresponding to the distance to the F. The image can be 
seen as a series of distance contours, each contour being all pixels equidistant from 
the feature. 

Computing the distance from a pixel to a set of feature pixels is essentially a 
global operation. Unless the digital image is very small, all global operations are 
prohibitively costly. Therefore algorithms that consider only a small neighborhood 
at a time, but still give a reasonable approximation to the Euclidean distance are 
necessary. Distance transformation algorithms that use small neighborhoods will be 
denoted DTs henceforth. A number of different DTs, more or less complex, and 
more or less accurate, have been developed, and will be discussed in this paper. 

The paper consists of two parts. In the first part, Section 3, optimal DTs are 
computed, optimal in the sense that the maximum difference from the Euclidean 
distance that can occur is minimized. Local neighborhoods of sizes up to 7 • 7 
pixels are investigated. Parts of the results for 3 • 3 neighborhoods have been 
published before [1], but in less mathematical detail. An excellent new DT is 
presented, that is easily computed, and that has a maximal difference from the 
Euclidean distance of about 2%. 

In the second part, Section 4, six different DTs are used in some applications. 
Two of tlae 'DTs are the best integer ones developed in Section 3: The other four 
ones are previously published DTs, which will be briefly described, with references, 
in Section 4. The applications show both that DTs in general are useful in a number 
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FIG. 1. Example of a distance transformation. To the left is a binary image, with feature (*)  and 
non-feature ( - - )  pixels. To the right is the resulting image: Each pixel has a value corresponding to the 
distance to the nearest feature pixel. The Euclidean distance has been rounded to the nearest integer. 

of contexts, and that the choice of DT is important. One application is new: the 
computation of pseudo-Dirichlet tessellations in digital images, Section 4.4, where 
the fact that the images are digital rather than continuous is taken into account. 

2. BASIC IDEA AND ALGORITHMS 

Digital distance transforms, DTs, that use only a small image neighborhood at a 
time are based on the following idea: Global distances in the image are approxi- 
mated by propagating local distances, i.e., distances between neighboring pixels. 
This propagation can be done either in parallel or sequentially. Sequential DTs was 
first published in 1966 [2], and parallel ones in 1968 [3]. These papers present the 
basic idea, and some DTs. 

An original binary image, to which the DT is to be applied, consists of feature 
pixels with the initial value zero, and non-feature pixels with the initial value 
infinity, i.e., a suitably large number. All DTs will here be described in graphical 
form as "masks," see Fig. 2. Note that the DT masks are not linear filters! The 
constants c, are the local distances that are propagated over the image. The size of 
the neighborhood can vary. In Fig. 2, a 5 • 5 neighborhood is illustrated. 

The computation of the DT is either parallel or sequential. In the parallel case the 
center of the mask at the top of Fig. 2 is placed over each pixel in the image. The 
local distance in each mask-pixel c, is added to the value of the image pixel 
"below" it (including the central zero). The new value of the image pixel is the 
minimum of all the sums. The process is repeated until no pixel value changes, i.e., 
the number of iterations is proportional to the largest distance in the image. The 
parallel algorithm is thus: 

Oi, y minimum( m - 1  c(k,l)) m = V i + k , j + l  + 
(k , / )~mask 

(1) 

where vm is the value of the pixel in position (i, j )  in the image at iteration m, I , J  

(k, l) is the position in the mask (the center being (0,0)), and c(k, l) is the local 
distance from the mask. A small example of the parallel algorithm is shown at the 
top of Fig. 3. 
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FIG. 2. Masks describing the distance transformations. The upper mask is used in parallel computa- 
tions. In sequential computations that mask is split at the thick line, resulting in the two lower masks. 
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FIG. 3. Computation of a DT. At the left is the original image with one feature point in the middle. 
The upper images illustrate the parallel algorithm. The lower images illustrate the sequential algorithm, 
showing the result of the forward and backward passes. (The DT is the chessboard one, see Sect. 4.1). 
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The sequential algorithm also starts from the zero/infinity image. The symmetri- 
cal parallel mask is split into two masks, shown at the bottom of Fig. 2. The masks 
are passed over the image once each: the forward one from left to right, and from 
top to bottom, and the backward one from right to left and from bottom to top. The 
new value of the "central" image pixel is the minimum of the sums of the image 
pixel values and the local distances c,, as before. After these two passes the distance 
transform is computed. The sequential algorithm is thus: 

Forward: 

for i = (size + 1)/2 . . . . .  lines do 

for j = (size + 1)/2 . . . .  , columns do 

vi,j= minimum (vi+k,j+ t + c(k,l)) (2) 
(k,I)~ 

forward mask 

Backward: 

for i = lines - (size - 1)/2 . . . . .  1 do 

for j = columns - (size - 1) /2 . . . . .  1 do 

vi, j = m i n i m u m  ( v , + k , g + , +  c(k,l)) 
(k, t )~ 

backward mask 

where "size" is the side-length of the mask and the rest of the notation is the sar0e 
as in (1). A small example of the sequential algorithm is found at the bottom of 
Fig. 3. 

From now on each DT will be described only by its parallel mask (with a thick 
line indicating where it should be split in the sequential case). The final DT result is 
exactly the same whether the parallel (1) or sequential (2) computation method is 
used. 

3. OPTIMAL DISTANCE TRANSFORMATIONS FOR DIFFERENT 
NEIGHBORHOOD SIZES 

In this section optimal local distances in the DT will be derived. Optimality is 
here equivalent to minimizing the maximum difference between the DT and the 
Euclidean distance that can possibly occur. Other definitions of optimality could of 
course be used, e.g., minimizing the average difference. Then the values of the 
optimal local distances would be (slightly) different. 

The Euclidean distance transformation, that gives the correct real valued Euclidean 
distance between pixel centers, is abbreviated EDT henceforth. Algorithms that 
compute EDT have been published, but they are rather computationally complex, 
see Section 4.1. (If EDT could be easily computed there would be no need for 
approximations.) 

In early papers about distance transforms, [2, 3], almost no attempt was made 
to optimize the local distances used in the DT. This optimization was accomplished 
for a 3 • 3 neighborhood in [4 and 1]. To make the presentation in this paper 
complete the relevant results from [1] are repeated here, but extended and in greater 
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The 3 • 3 neighborhood mask. The local distances a and b are to be optimized. 

mathematical detail. The mathematics of the optimization is straightforward. The 
greatest difficulty is to keep track of all the different equations. 

Naturally the approximation to the EDT becomes better the larger the size of the 
neighborhood that is used in the algorithm is. The neighborhood sizes 3 • 3, 5 • 5, 
and 7 • 7 are analyzed. 

In many digital image processing applications real-valued pixels are undesirable. 
This is especially the case when using dedicated hardware, and when simplicity and 
speed are essential. Therefore, the true goal of optimization of the local distances is 
to find as good integer approximations as possible. Such integer approximations are 
discussed in Section 3.4. 

3.1. 3 • 3 Neighborhood 

The general 3 • 3 neighborhood mask is found in Fig. 4. The two local distances 
a and b are to be determined, where a is the distance between horizontal/vertical 
neighbors, and b is the distance between diagonal neighbors. Values that have been 
suggested for a and b are: a = 1, b = infinity, and a = 1, b = 1 in [2]; a = 1, 
b = C ~ - i n [ 5 ] ;  a = 2 ,  b = 3 i n [ 6 ] ; a n d a = 3 ,  b = 4 i n [ 1 ] .  

Consider two pixels with the horizontal distance x units, and the vertical distance 
y units. Assume y < x. This is not a restriction as the mask is symmetric. In Fig. 5 
the geometry is illustrated. The two pixels under consideration are marked with 
black dots. Montanari has proved, [5, Theorem 1], that there always exists a 
minimal path between the pixels that consists of (at most) two straightline segments. 
A minimal path is the shortest path between the pixels, when the distance is 

Local d is tances 

I ~  y=H,  Line 3 

L ' l l  I I 
I/! ! '-1 V I  I I i -  A rea  2 

I A I I  

I / I  I I  I I  I I I  
, I / I  I I I I ~ , I , I I . . . .  
1.4-~-4-i-J-4-4-4-~-4--+ ~ y--u, ~e, 

y n-y ~=M 

FIG. 5. The  geometry of the D T  in the 3 • 3 neighborhood case. The two local distances in the small 
upper  diagram are used. The distance between the lower left-hand pixel and all pixels with x = M are 
computed.  The solid line is an example of a minimal path. 
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measured in the small steps allowed by the mask. Montanari 's theorem is true for all 
neighborhood sizes, as long as the local distance values are constrained in some very 
natural ways (discussed below). 

The minimal path between the points in Fig. 5 is the solid line. The length of the 
diagonal piece is y 'b ,  and the length of the horizontal piece is (x - y)*a (remember 
x > y). These expressions are valid for the minimal path between the pixel in the 
lower left-hand corner and any other pixel in the area illustrated in Fig. 5. Consider 
the DT along the vertical line x = M (i.e., not only at the pixel centers). The DT 
value is a function of y, T2(y ), where 

T2(y ) = y - b +  ( M - y ) * a = y ( b - a )  +Ma.  (3) 

Function (3) is valid only if a and b are constrained as 

b < 2a and b > a. (4) 

The first inequality ensures that one diagonal step is "shorter" than one horizontal 
+ one vertical step, and the second inequality ensures that two diagonal steps (e.g., 
up right + down right) is "longer" than two horizontal steps. These constraints are 
the ones necessary for the validity of Montanari 's theorem. 

The difference Diff(y) between DT and EDT along the line x = M is, using (3), 

Di f f (y )  = y(b  - a) + Ma - f ~  + y2,  0 <_ y <_ M. (5) 

The absolute maximum of (5) is the measure of optimality of the DT. The aim is 
now to determine a and b so that this maximum is minimized. The maximum 
occurs either when the derivative of Diff(y) is zero, or at the ends of the interval, 
y = 0 o r y - - M .  

The maximum for many functions of the same type as (5), but with other 
constants, will be needed in the subsequent sections. Therefore a general formula is 
derived. For  a function 

F ( y )  = y*S + M ' T -  ~/M 2 + y2 (6) 

the derivative becomes 

Y 
F ' ( y )  = S (7) 

~/M 2 + y2 

The extremal value occurs for F ' ( y )  = 0, i.e., for 

M*S 
Y = _r:-------~, (8) 

V 1 - S "  

if tS I < 1, which is true if the constraints (4) hold. Inserting (8) into (6) and 
simplifying the resulting expression gives the value of the maximum: 

(9) 

This formula will be used frequently. 
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Using (9), the maximum of the difference (5) within the interval 0 < y < M, i.e., 
in Area 2 of Fig. 5, becomes 

Diff 2 = ( a -  i l -  ( b -  a )2)*  M. (10) 

The ends of the interval are the points where x = M crosses the lines y = 0 and 
y = x, drawn as dashed lines in Fig. 5. For y = 0, i.e., on Line 1, the difference (5) 
becomes 

Diff 1 = ( a -  1 )*M,  

and for y = M, i.e., on Line 3, (5) becomes 

Diff 3 = (b - 1/~-)* M. 

(11) 

(12) 

First fix the local distance between horizontal/vertical pixels to one, a = 1. This 
is a natural assumption, as a can be interpreted as a scaring factor. Then from (11): 
Diff 1 = 0; and from (4): 1 < b < 2. The optimal b is the value that minimizes the 
absolute values of Diff 2, (10), and Diff3, (12), i.e., minimizes 

m a x ( l -  2 ~ - b  2,1 b - r  1 < b < 2 ,  (13) 

where the constant factor M is disregarded. Expression (13) is illustrated in Fig. 6. 
Diff 2 and the absolute value of Diff 3 are drawn as functions of b. The optimal b is 
clearly the value for which the two curves cross, at b -- 1.35. 

The exact value of b can be found by solving Diff 2 = - D i f f  3, i.e., 

1 -  V~-b- bZ = v /2-  b. (14) 

The solution of (14) is 

1 
boot = ~ -  + I112-- 1 ~- 1.35070. (15) 

maxima[ 
difference 

~~ ) 1-']T~-z 

o..~ Ib-~l 

�9 B b  
1.0 bopf I".5 2.0 

FIG. 6. The maximal  difference between the DT  and the EDT as a function of the local distance b 
(13). The two curves are the difference for y = M (12), and for the maximal  difference in 0 < y < M 
(10). 
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Note that bop t is smaller than the corresponding Euclidean distance between 
diagonal neighbors: r 1.41. 

The maximum difference possible, denoted maxdiff, is found by inserting (15) 
into (12) (or (10)): 

maxdiff = ( 1 / r  - ~/-~-- 1 )* M ~ 0.06351"M. (16) 

The difference from EDT has now been minimized along x = M. As M is arbitrary 
the difference have been minimized everywhere. In reality maxdiff is not propor- 
tional to the size of the image, but rather to the longest distance between feature and 
non-feature pixels that occurs in the image. As y actually only takes integer values 
(the pixel centers) maxdiff may never occur. It is thus an upper limit rather than a 
maximum. 

In the previous optimization a = 1. Now let a be any real value (allowed by (4)). 
Then the optimal a and b can be found by minimizing the absolute value of the 
two-parametric functions Diffl, Diff2, and Diff 3, i.e., (10), (11), and (12). Some 
study reveals that this minimum occurs when - D i f f  1 - Diff 2 = - D i f f  3. Solving 
these equations the results become 

aopt = (~-v~ - 2 + 1 ) /2  ~ 0.95509 

and 

bop t = r + (~--~/2- - 2 - 1 ) / 2  ~ 1 . 3 6 9 3 0 .  (17) 

The maximum difference from EDT is found by inserting aop t and bop t in (10) (or 
(11) or (12)); maxdiff becomes 

maxdiff = (~-V~- - 2 - 1)* M / 2  ~ 0.04491"M. (18) 

As before maxdiff is proportional to the size of the image (or rather the longest 
distance), but with a smaller factor, 0.045 instead of 0.064. 

In the computations of aop t and bop t only the maximum difference from the EDT 
have been considered. But having minimized maxdiff it is interesting to see how the 
"error" varies along the line x = M, 0 < y _< M (Fig. 5 again). In Fig. 7 the 
difference from the EDT (5), is plotted as a function of y, with the optimal local 
distances inserted. 

When both a and b are free variables, (17), the difference function is the solid 
curve marked OPT in Fig. 7. The maximum absolute difference occurs at both ends 
of the interval, and also at a point within the interval (the function is not 
symmetric). Expressed in another way: the maximum difference from the EDT 
occurs along the lines angled 0 ~ + n'45 ~ 24.5 ~ + n*90 ~ and 65.5 ~ + n*90 ~ from 
the horizontal, where n is any integer. 

When a = 1 and only b is optimized, (15), the difference function is the solid 
curve marked OFF 1 in Fig. 7. The difference is 0 for y -- 0, grows to its maximal 
value, and then decreases to the same value with negative sign at the end of the 
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FIG. 7. The  difference between some DTs and E DT  along the line y = M in the 3 • 3 neighborhood 
case. See the text. 

interval. The maximum difference occurs along the lines angled 20.5 ~ + n*90 ~ 
45 ~ + n*90 ~ and 69.5 ~ + n*90 ~ from the horizontal. 

The dashed curve marked 13 in Fig. 7 is the difference function for the 
recommended integer approximation in the 3 • 3 neighborhood case, a = 3 and 
b = 4, (see Sect. 3.4). The maximum difference here occurs for y = M, i.e., 45 o + 
n*90 ~ 

3.2. 5 x 5 Neighborhood 

When the local neighborhood is extended to a 5 • 5 pixels the general D T  mask 
becomes the one in Fig. 8. Some of the mask-pixels are not used (marked - - ) ,  as 
that would be pointless: Consider the mask-pixel in the middle of the leftmost 
column, and call its value x. If x >__ 2a, then x will never be "used"  in the 
algorithm, as using two steps of length a will be shorter or equally long. If x < 2a 
then the value a will never be used (except for the very first step from the feature 
pixels), and in practice the effect is a new a value, a = x /2 .  As each adding and 
comparison in the DT algorithms (1) or (2) take time, the number of mask-pixels 
should be as small as possible, and thus these unnecessary mask-pixels are excluded. 

i l l i i M m  
|NN II 

DINIINNII 
NLnJNNHnll 

FIG. 8. The  5 • 5 neighborhood mask. The local distances a, b, and c are to be optimized. The 
empty  mask-pixels are not  needed in the computat ions (see the text). 
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Fie. 9. The geometry of the DT in the 5 • 5 neighborhood case. The three local distances in the 
small upper diagram are used. The distance between the lower left-hand pixel and all pixels with x = M 
are computed. The solid lines are examples of the two occurring types of minimal paths. 

As in the 3 • 3 neighborhood case the maximum difference between the DT and 
the EDT along the line x = M, 0 < y < M is minimized. The geometry is illustrated 
in Fig. 9. Montanari 's  theorem still holds (ensuring that the minimal path consists of 
two straight lines), if the values of the local distances are constrained in natural 
ways (cf. (4)). As there are three local distances involved, the minimal path between 
the lower left-hand pixel and a pixel on the hne x = M can be of two different 
types. The types are illustrated as solid lines in Fig. 9. The change between the two 
types occurs for y = M/2, marked with a dashed line in the figure. 

For  y < M/2 the path consists of the steps c and a, and for y > M/2 the path 
consists of the steps b and c. The value of the DT in the two intervals along the l ine  
is, for 0 < y < M/2: 

Tl(y ) = y - c +  ( M -  2y)*a= y ( c -  2a) + M a ,  (19) 

and for M/2 <_ y <_ M: 

Ta(y ) = (2y  - M)*b + ( M -  y)*c = y ( 2 b  - c) + M(c - b). (20) 

The maximum difference occurs either inside one of the two intervals, where the 
derivatives of T1 - EDT and T 3 - EDT are zero, or at the ends of the intervals. 

Let a = 1. Then the difference becomes zero for y = 0. The maximum in the 
interval 0 < y < M/2 (Area 1 in Fig. 9) is found using the general formula (9) on 
T 1 - EDT (19): 

Diff 1 =  ( 1 -  i l - ( c - 2 )  2 ) * M .  (21) 

For  y = M/2 (Line 2) the DT value is c/2*M (use (20)), EDT is V~-/2*M, and the 
difference becomes 

Diff 2 = ( c -  r  (22) 
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In the interval M/2 < y < M (Area 3) the maximum is again found using (9) on 
T 3 - EDT, (20): 

Diff 3 = ( c - b -  i i -  ( 2 b -  c) z)* M. (23) 

Finally for y = M (Line 4) the DT value is b*M (use (20)), EDT is ~-*M,  and the 
difference becomes 

Diff 4 = ( b -  V~)* M. (24) 

The optimal local distances b and c are the values that minimize the largest of the 
absolute values of the four difference expressions (21)-(24). When these expressions 
are studied it soon becomes apparent that only the value of c is critical, i.e., as long 
as b is within a certain (small) interval only c changes the maximal difference 
because Diff 1 and Diff / (which are dependent only on c) are larger than Diff 3 and 
Diff 4. Thus the approximation to EDT is worst in Area 1 (as can be expected when 
a is fixed). The optimal c is found by solving Diff 1 = Diff2: 

Cop t = (6 + ~ + ~3273- - 64 ) / 5  = 2.19691. (25) 

Inserting the r  into (22) (or (21)), the maximum difference between the EDT 
and the DT becomes 

maxdiff = ( ~ -  - C o p t ) *  M//2 = 0.01958"M. (26) 

With c = (?opt the small interval within which b can vary can be computed. The ends 
of the interval are computed by finding the Diff,, n = 3 or 4, that becomes larger 
than maxdiff at each end, and then solving the corresponding equation Diff.  -- 
maxdiff ( =  -Di f f2 ) .  The minimal b is found by solving - D i f f  4 = -Dif f2 :  

bmi ~ = (2V~- - ~ -  + Copt)/2 = 1.39463, (27) 

and the maximal b is found by solving Diff 3 = -Dif f2 :  

bmax - (Tcopt- ~/~ - + 41~ ' -Copt-C2pt) /10 ~-1.43155. (28) 

The DT values will be different for different b, but as long as b is within the interval 
(27) to (28), maxdiff is unchanged. One attractive choice is b = ~ = 1.41, which is 
within the allowed interval. The local distance is then equal to the corresponding 
Euclidean distance, and the difference from EDT becomes zero for y -- M. 

The local distances have not been optimized for a 4: 1. Undoubtedly maxdiff 
would be smaller, but the computations are complex and the most important aim of 
these real-valued optimizations is to, eventually, find good integer DTs. For integer 
DTs a becomes a scale factor, and the distance between horizontal/vertical neigh- 
bors is thus (in some sense) always one. The optimal local distances are used as 
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FIG. 10. The difference between some DTs and EDT along the line y = M in the 5 • 5 neighbor- 
hood case (see the text). 

indicat ions  o f  which integer values to use, but  the choices are always confirmed by  
the result ing values of  the difference expressions Diff , .  

As  in the 3 • 3 ne ighborhood case the difference f rom the E D T  along the line 
x = M,  0 _< y _< M have been plot ted as a funct ion of  y,  Fig. 10. The solid curve, 
marked  OPT1,  represents the difference when a = 1, b = v~-, and c = Cop t. The 
funct ion  depends  on a and c for y < M/2, and on b and c for  y > M/2. The 
m a x i m u m  absolute difference occurs in the first interval, and at y = M/2. 

The  dashed  curve in Fig. 10, marked 15, represents the difference funct ion for the 
r e c o m m e n d e d  integer approximat ion in the 5 • 5 ne ighborhood  case, a = 5, b = 7, 
and  c -- 11 (see Sect. 3.4). 

3.3. 7 x 7 Neighborhood 

N o w  consider  a 7 • 7 pixel neighborhood.  The  general D T  mask is the one in 
Fig. 11. There  are five local distances to be determined. As in the 5 • 5 neighbor-  
h o o d  case some of  the mask-pixels can be excluded. 

The  geometry  of  this case is shown in Fig. 12. As before the difference between 
the D T  and  E D T  is minimized along x -- M, 0 _< y _< M. A minimal  pa th  still 

N M  'mmu 'mmiml 
unumumu 
NNNUnNg 
NINN NNI 
 ammleaID 
u n o n o m u  
n n n n n n u  

FxG. 11. The 7 • 7 neighborhood mask. The local distances a, b, c, d, and e are to be optimized. 
The empty mask-pixels are not needed in the computations (see the text). 
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F l 6 .  12. The geometry of the DT in the 7 • 7 neighborhood case. T h e  local  distances in the smal l  
upper diagram are used. The distance between the lower left-hand pixel and all pixels with x = M are 
computed. The solid lines are examples of the four occurring types of minimal pa ths .  

consists of two straight segments. However, there are now four different types of 
minimal paths, exemplified by the four solid lines in Fig. 12. The changes between 
the different types of minimal paths occur at y = M / 3 ,  y = M / 2 ,  and y = 2 M / 3 .  

If the local distance values are suitably constrained (cf. (4)), then the value of the 
DT in the four different intervals is, for 0 < y < M/3 :  

Tl(y ) = y , d +  ( M -  3y)*a = y ( d -  3a) + Ma; (29) 

for M / 3  < y <_ M / 2 :  

T3(y ) = ( 3 y - M ) * c + ( M - 2 y ) * d = y ( 3 c - 2 d ) + M ( d - c ) ;  (30) 

for M / 2  < y < 2 M / 3 :  

Ts(Y ) = ( 2 y - M ) * e +  ( 2 M - 3 y ) * c = y ( 2 e - 3 c ) + M ( 2 c - e ) ;  (31) 

and for 2 M / 3  < y < M: 

T7(y  ) = (3y - 2 M ) * b  + ( M  - y ) * e  =y(3b - e)  + g(e - 2b) .  (32) 

If the local distance e is excluded (the reason for excluding it will be explained 
later) (31) and (32) are replaced by, for M / 2  < y < M: 

Tz(y ) = (2y - M ) * b  + ( M - y ) * c  =y(2b - c) + M(c  - b). (33) 

The maximum difference between the DT and the EDT occurs either within the four 
intervals, where the derivative of the difference T, - EDT is zero, or at the ends of 
the intervals. 

Let a = 1 as in the 5 • 5 neighborhood case. Then the difference between DT 
and EDT is zero for y = 0. There are now eight different expressions that will 
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determine the maximum absolute difference. The expressions for the maxima within 
the intervals are computed using (29)-(32) and the general formula (9). The 
expressions for the ends of the intervals can also be found using (29)-(32). The eight 
expressions become 

Diff 1 = ( 1 -  ~ 1 -  ( d -  3) 2 )* M, (34) 

Diff 2 = ( d -  ~/-~)* M/3 ,  (35) 

Diff3 = ( d - c -  ~1 - ( 3 c -  d) 2 ) .  M, (36) 
Diff4 = (c - ~/5 ) �9 M/2,  (37) 

Diff 5 = ( 2 c - e -  ~1 - ( 2 e -  3c) 2)* M, (38) 

Diff6 = ( e -  J ~ - ) *  M/3,  (39) 

Diff 7 = ( b - e -  ~1 - ( e -  2b )2 )*  M, and (40) 

Diff 8 = (b - v~-) * M, (41) 

where the number n in Diff n corresponds to the area and line numbers in Fig. 12. 
If e is not used then Diff 5, Diff 6, and Diff 7, (38)-(40), are replaced by the single 

expression (see (33)): 

Diff 2 = ( c - b -  ~ l - ( 2 b - c )  2 ) * M .  (42) 

As before, the task is to determine b, c, d, and e so that the absolute maximum 
of all the expressions Diffn is minimized. When (34)-(41) are studied it becomes 
apparent that the only critical local distance is d, i.e., the approximation is worst in 
area 1, as in the 5 x 5 case (and for the same reason). The optimal d is the solution 
of Diff 1 = - D i f f  2, (34) and (35), which is 

dop t = (24 + ~ + ~108~/]O- - 324 ) / 1 0  = 3.13487. (43) 

The absolute maximum difference then becomes (substituting (43) into (35)), 

maxdiff = (9~i-0- - 24 - ~108 1~/1-O - 324 ) / 3 0  = 0.00914.M. (44) 

With d = d o p  t the other three constants, b, c, and e, can be allowed to vary within 
certain small intervals, without increasing maxdiff. The intervals are determined by 
finding out which Diff n that becomes critical at each end of the interval, and then 
solving the equation Diff n = maxdiff. 

The lower limit for b is determined by - D i f f  s = -D i f f2  (35) and (41), which 
gives 

bmi n = (3r - ~ + dopt)/3 = 1.40508. (45) 
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The lower limit for c is determined by - D i f f 4  -- - D i f f 2  (35) and (37), which gives 

cmi ~ = ( 3 ~  - 2~/i-6 + 2dopt) /3 -~ 2.21780. (46) 

The lower limit for e is determined by - Diff 6 = - Diff 2 (35) and (39), which gives 

emi n = 1~ -  - 1 ~  + dop ̀  = 3.57814. (47) 

The upper limits are a little more complex to compute. The easiest is the upper limit 
for c, which is determined by Diff 3 = - D i f f  2. These expressions, (35) and (36), 
contain only d and c, and solving for c gives 

Cmax (22dop t ~-~ + 6~ l ~ d o p t  2 ) /  (48) = -- -- dop t 30 -- 2.25212. 

The upper limits for b and e unfortunately depend on each other, as they are both 
determined by Diff 7 = - Diff 2. The constants b and e corresponds to the Euclidean 
distances ~ and 1 ~ ,  locally. It would be nice if these Euclidean values were 
included in the respective allowed intervals. To achieve this the following constrain- 
ing equations are introduced: 

bma x = ~ + x and ema x = J ~ -  + X. (49) 

Substituting (49) into Diff 7 = - D i f f  2 (35) and (40), and solving for x gives the 
following rather daunting expression: 

= (dop  t - 2 4 v ~ -  1 ~  + 9  1r X 

+ ~-4do20, + 4(3r + 21d-6 - 3~i3) dopt - 6(2 2v~-6 - 32~-~ - 2 ~ )  - 130)/15 

~- 0.00417. (50) 

Thus the upper limits become (use (49) and (50)) 

bm~ x = r + x ~ 1.41839 (51) 

and 

em~ = ~ + x ~ 3.60972. (52) 

Summing up the above expressions (43), (45)-(48), and (51)-(52), the optimal 
values of the four local distances b, c, d, and e are 

1.40508 < bop t < 1.41839, 

2.21780 = < Cop t ~ < 2.25212, 

dop t = 3.13487, and (53) 

3.57814 = < eop t = < 3.60972. 

As has been hinted at before, the local distance e can be excluded without 
increasing maxdiff. The reason is that if e is excluded the local distance value of the 
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vector (3, 2) is approximated by b + c instead of by e, see Fig. 12. Values for b and 
c can be chosen within their allowed intervals, (53), so that their sum is within the 
allowed interval for e, and thus maxdiff is unchanged. (Obviously the actual D T  
values do become different.) 

I f  e is excluded Diff z is valid instead of Diffs, Difft ,  and Diff 7. The optimal value 
of d is not affected, as Diff I and Diff 2 still are the same. The lower limits for b and 
c are also unchanged. However, the upper limits of b and c now becomes 
determined by  Diffz = - Diff 2. As before these upper limits are dependent on each 
other. The allowed intervals are now much smaller (as could be expected), so that V~- 
and ~ -  cannot  be included in the respective intervals. Extra arbitrary constraints 
must  be added as before. In this case the constraint is that both intervals should be 
equally long: 

bma x = bmi ~ + x and c~a x = c~i ~ + x. (54) 

Substituting eqs. (54) into Diff z -- - Diff 2 (35), and (42), and solving for x gives the 
value of x as 

X = Cmin - -  2bmi~ 

+  6(m - - , . = )  - - - + :  lm ,o t-  h 

= 0.00284. (55) 

Inserting (55) into (54) give the upper limits for b and c: 

and 

b m ~  = 1 . 4 0 7 9 1  ( 5 6 )  

= 2.22063.  (57) 

Summing up the new results (56) and (57) and using the old results in (53), the 
opt imal  values of the local distances b, c, and d becomes 

1.40508 < bop t < 1.40791, 

2.21780 = < Cop t = < 2.22063, and 

dop t = 3.13487. (58) 

To  exclude the local distance e will speed up the D T  computation, without 
increasing the maximum difference from the EDT. There will then be 25 instead of 
33 pixels in the D T  mask (Fig. 11), and thus eight sums less to be computed in each 
step. 

As in the previous cases the difference from the EDT along the line x = M, 
0 < y < M have been plotted as a function of y, Fig. 13. The solid curve marked 
OPT1, shows the difference when a = 1, b = ~/2-, c = ~/5-, d = dopt, and e = 1 ~ .  
The max imum absolute difference occurs in Area 1 and on Line 2 (Fig. 12). The 
difference is zero for y = 0, y = M / 2 ,  y = 2 M / 3 ,  and y = M. 

The solid curve marked OPT1M (Minus e) shown the difference when a = 1, 
b = 1.407, c = 2.220, and d = dop r This curve OPT1M is exactly the same as OPT1 
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FIG. 13. The difference between some DTs and EDT along the line y = M in the 7 • 7 neighbor- 
hood case (see the text). 

for 0 <_ y <_ M/3. For y > M/3 the curves differ, and on the average OPTIM is 
farther from zero than OPT1. 

The dashed curves, 112 and I15M, represents the difference function for the two 
"bes t"  integer approximations in the 7 • 7 neighborhood case: For 112 the local 
distances are a = 12, b = 17, c = 27, d = 38, and e = 43; and for I15M they are 
a = 15, b = 21, c = 33, and d = 47. The maximum of 112 is slightly less than the 
maximum of I15M. See Section 3.4. 

The optimal real-valued local distances for neighborhoods up to 7 • 7 pixels have 
now been computed, together with the maximal difference between the DT and the 
EDT in each case. These results are interesting in themselves. In the next section the 
real-valued results will be used to develop integer-valued DTs. 

3.4. Integer Approximations 

In most digital image processing applications it is preferable to use only integers, 
if possible, as was remarked above. In this section the best integer approximations 
to the optimal local distances will be determined. 

Integer approximations are found by multiplying all the local distances with an 
integer factor n, and rounding to the nearest integer. Thus a = n, where a is the 
local distance between horizontal/vertical neighbors. All computed distances are of 
course multiplied with the factor n. If that is undesirable in the application, then 
division by n before actually using the distance value is the remedy. In Table 1 
integer approximations for the 3 • 3 neighborhood case are shown. Maxdiff, the 
upper limit of the difference from the Euclidean distance, can be computed from the 
expressions Diff,  in Section 3.1, (10) and (12): 

maxdiff = max(lOiff2( ' toiff3(a, (59) 

where n is the scaling factor. (Dividing by n corresponds to diving the computed 
DT by n, to normalize it.) Diff 1, (11), is always zero. 
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TABLE 1 

Integer Approximations of the Optimal Local 
a 3 X 3 Neighborhood 

Distances for 

a b maxdiff 

2 3 0.1340 
3 4 0.0809 
8 11 0.0730 

11 15 0.0685 
14 19 0.0660 
17 23 0.0644 
20 27 0.0642 

i opt 010635 
opt opt 0.0449 

The approximation gets better with increasing scaling factors. Table 1 starts with 
n = 2, and then all approximations with a smaller maxdiff than any previous one 
are listed, up to n = 20. For the sake of comparison maxdiff for the optimal a and b 
are also listed. The 3-4 approximation is the recommended one. Maxdiff is not too 
far from the optimal one, and the scaling factor has to increase to 8, which is rather 
large, before a better approximation is found. The difference from the EDT is 
shown as a dashed curve in Fig. 7. 

In Table 2 one integer approximation in the 5 • 5 neighborhood case is shown. 
Maxdiff is here computed as the maximum of the expressions (21)-(24), cf (59). The 
only integer approximation listed in Table 2 is 5-7-11. The maximum difference is 
very close to the optimal value, so close that the scaling factor has to be 51 (sic!) 
before a better approximation is found. That this approximation is almost optimal 
is also apparent from the curve showing the difference from EDT in Fig. 10. This 
5-7-11 approximation is obviously a very good DT, with a maximum difference 
from the EDT of only about 2%. Note also that maxdiff is here only a fourth of the 
value for the recommended 3 • 3 neighborhood! 

The integer approximations for the 7 • 7 neighborhood is shown in Table 3. In 
the upper part of the table the local distance e is excluded, and maxdiff is computed 
from (34)-(37), (41), and (42). The listed approximations start where maxdiff 
becomes lower than for the recommended 5 • 5 approximation. That does not 
occur until n = 14, and even then the improvement is very small. In the lower part 

TABLE 2 

Integer Approximation of the Optimal Local Distances for 
a 5 x 5 Neighborhood 

a b c maxdiff 

5 7 11 0.0202 

i opt opt 010196 
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TABLE 3 

Integer Approximations of the Optimal Local Distances for 
a 7 x 7 Neighborhood 

a b c d e maxdiff  

14 20 31 44 - -  0.0197 
15 21 33 47 - -  0.0180 
17 24 38 53 - -  0.0147 
19 27 42 60 - -  0.0142 

i opt opt opt - -  010091 

12 17 27 38 43 0.0140 
19 27 42 60 68 0.0128 

i opt opt opt opt 010091 

Note. In the upper part  of the table the local distance e is not  
used. Even though the optimal maxdiff  is the same in both cases, 
the approximatious become better using e. 

FIG. 14. 

+11 +7 +5 ~+7 J 

+5 0 +5 

+11 +7 +5 +7 +11J 

+11 +11 

The two recommended integer DTs  with neighborhood size at most  7 x 7. 

of Table 3 the local distance e is included. With n = 12 maxdiff does become 
somewhat lower than in the 5 • 5 case, but the difference is still too small to justify 
the additional computational complexity. Therefore no 7 • 7 integer approximation 
is recommended. However, the two "best"  approximations are shown in Fig. 13. 

The masks for the two recommended DTs are shown in Fig. 14. The 3 • 3 
neighborhood algorithm gives an "error" of at most 8%, and the 5 • 5 neighbor- 
hood algorithm gives an "error" of at most 2%. The algorithms can be implemented 
either in parallel (1), or sequentially (2). There is no reason to use a 7 x 7 
neighborhood if the local distances are integers! 

Before discussing these results in more detail the two recommended DTs will be 
compared to four other well-known DTs. The six DTs will be applied to several 
image processing tasks. The optimal real-valued DTs will also be illustrated. 

4. EXAMPLES A N D  COMPARISONS 

Here six different distance transformations will be presented, Section 4.1. These 
will be applied to different digital image processing tasks, Sections 4.2-4.4. The 
results will be illustrated and compared, mostly as pictures. 
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4.1. The Six Distance Transformations 

City Block. This is the simplest and fastest of all DTs. It is, however, also the 
worst approximation of the Euclidean distance. It is, among other places, found in 
[7]. The city block DT is described by the general 3 • 3 neighborhood mask, Fig. 4, 
with a = 1 and b = infinity, i.e., the diagonal neighbors are ignored. As for all 
algorithms described by the mask, the computation can be either parallel, (1), or 
sequential, (2). 

Chessboard. This DT, which is also found in [7], is described by the mask in Fig. 
4, with a =  l and b =  l. 

Octagonal. This DT is a mix of the city block and the chessboard DTs. The 
underlying idea is to use the two DTs alternately, as city block distances are always 
too large, and chessboard distances always too small. Presentation of it, and a 
parallel algorithm for computing it are found in [3]. In the simplest case each DT is 
used every other time. Other octagonal algorithms are also described in [3], where 
the city block and chessboard DTs are mixed in more complex ways, to get a better 
approximation of EDT, A sequential algorithm for computing the simplest octago- 
nal distance using, four passes over the image, is found in [8] and described with DT 
masks in [1]. 

Chamfer 3-4. This is the 3 • 3 neighborhood integer DT from Section 3.4. It is 
called a "chamfer" DT because the distance values are "chamfered out" in two 
passes over the image when:the computation is sequential [6, 4, 1]. 

Chamfer 5-7-11.  This is:the 5 x 5 neighborhood integer DT from Section 3.4. 
This new DT is the key result of Section 3. 

Eudidean. This is the true Euclidean distance, i.e., EDT. For sequential compu- 
tation of EDT the best published algorithm is probably [8], even though the results 
are not always quite correct. Due to complex feature geometry errors can occur, but 

difflH 

CITY BLOCK 

0.4 

0,2- 

0.0 0.'SM _ ~  "Y 

- 0 . 2 -  ~ ~ A R O  
- 0.4- 

FIG. 15. The difference between the six DTs to be used in section 4 and EDT. The chessboard and 
octagonal curves coincide in the first half of the interval. 
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they are always small. This sequential algorithm uses four passes of a 3 • 3 
neighborhood over the image; the sum of two squares must be computed for each of 
the nine mask-pixels; and it needs two extra images of the same size as the original 
one to store intermediate results (the number of vertical and horizontal steps to the 
nearest feature pixel). A parallel EDT algorithm that always gives correct results has 
been published, [9]. This algorithm also uses a 3 • 3 neighborhood; the sum of two 
squares must be computed for each mask-pixel; and it needs two extra images to 
store intermediate results (the signed number of steps to the nearest feature pixel). 
The number of iterations is proportional to the longest distance in the image. 

The difference from the EDT for all the six DTs is shown in Fig. 15. The curves 
show the difference along the line x = M, 0 < y < M, cf. Fig. 5. All DTs give the 
correct distance value along horizontal and vertical lines, and thus all curves start at 
zero. The city block and chessboard DTs are the worst approximations (and the 

City block Chessboard 

Octagonal Chamfer 3-q 

Chamfer 5-7-11 Euclidean 

FIG. 16. The distances from a point for the six DTs. The lighter the color the larger the distance. 
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City block Chessboard 

FIG. 17. 
text). 

Octagonal 

The difference between the city block, chessboard, and octagonal DTs and the EDT (see the 

most used DTs!). The octagonal, 3-4, and 5-7-11 are progressively better. The 
EDT is of course always correct. 

4.2. "'Circles" and Difference from Euclidean Distance 

In Fig. 16 the distance from a point, i.e., a single pixel, have been computed using 
the different DTs. The distance from the central pixel to the edge is 100 pixels. The 
distance values have been grey-level coded: the larger the distance the lighter the 
color. The images illustrate the "circles" of the different DTs. The city block and 
chessboard circles are square. The octagonal circle is an octagon (as the name 
implies). The chamfer 3-4 circle is also an octagon, but one that is a better 
approximation of the Euclidean circle than the octagonal one. However, it is not 
quite regular, which may be a problem in applications where rotation occurs. The 
chamfer 5-7-11 circle is a hexadecagon, i.e., a polygon with 16 sides. 

Previously the difference between the DTs and the EDT have been measured by 
its maximum, and it has also been illustrated in a number of diagrams, Figs. 7, 10, 
13, and 15. Here the difference is illustrated as grey-level images: the lighter the 
color, the greater the absolute difference. The difference images have been computed 
from the images in Fig. 16, so that the difference "fields" around a point are 
illustrated. 

The difference images for the city block, chessboard, and octagonal distances are 
found in Fig. 17. The grey-level scale is the same for the city block and chessboard 
DTs, but different for the octagonal distance, because otherwise the image would 
have been almost completely black. For the city block and chessboard DTs the 
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Chamfer %pt-bop t Chamfer 1-bop t 

Chamfer 3-4 

FIG. 18. The difference between the two optimal and the integer 3 • 3 neighborhood DTs and the 
EDT (see the text). 

difference is greatest along the diagonals. The maximal differences in the images are 
- 5 8 . 6  and + 41.4, respectively. For the octagonal DT the difference is greatest at 
the comers of the associated octagonal circle. The maximal difference is + 11.8. 

Difference images have been computed for three 3 • 3 neighborhood DTs, Fig. 
18. The first image shows the difference when both local distances a and b have 
their optimal values (17). The difference "field" is then very regular. The second 
image shows the difference when a = 1 and b is optimal (15). Finally the third 
image is the difference for the 3-4 integer approximation. The difference from the 
optimal image is not too great, but the difference is larger, especially along the 
diagonals. The maximal differences are ___ 4.5, _ 6.4, and -8.1,  respectively. 

Chamfer 1-V-~-C0p t Chamfer 5--7-11 

FIG. 19. The difference between the two 5 x 5 neighborhood DTs and the EDT (see the text). 
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ChomfeF 1-bopt-Copt-dopt 

FIG. 20. The difference between the optimal 7 X 7 neighborhood DT and the EDT (see the text). 

City block Chessboard 

Octogonol Chomfer 3-4 

Chamfer 5-7-11 EucI ideon 

FIG. 21. The distances from an object for the six DTs. The lighter the color the larger the distance. 



368 GUNILLA BORGEFORS 

For 5 • 5 neighborhoods two difference images have been computed, Fig. 19. The 
first is the optimal case, a = 1, b = q~-, and c = Cop t, (26); and the second is the 
5-7-11 integer approximation. The images are all but indistinguishable, but if you 
look closely, there is a discernible difference along the diagonals. The maximal 
absolute differences are _+ 1.96 and + 2.02. 

Finally the difference image for the optimal 7 x 7 neighborhood DT have been 
computed, Fig. 20. The local distances are those where e has been excluded, (58), 
with b and c about in the middle of their allowed intervals. The maximal absolute 
difference is only _ 0.91, and thus the image is very dark. (The grey-levels are the 
same as in Fig. 19.) 

4.3. Distance from an Object 

In some applications the distance from an object, or object contour, must be 
computed. One such case is when the distance values are used to compute a 
matching measure, i.e., a value that measures how close to each other the shape of 
two different objects or contours are, [10]. The matching algorithm presented there 
performed better the better the DT approximated the EDT. (The city block, 
chamfer 3-4, and Euclidean DTs were tested.) 

As an illustration the distance from a maple leaf have been computed for the six 
DTs, Fig. 21. The distance is grey-level coded as before: the larger the distance, the 
lighter the color. The size of the images are 200 • 200 pixels. It is very obvious that 
even when the distance is computed from a complex shape, the "flavor" of the 
distance is preserved. Note also how close the chamfer 5-7-11 DT is to the EDT. 

4.4. Pseudo-Dirichlet Tessellations 

Consider a set of points in the plane. Then divide the plane into polygonal areas 
such that each area contains one point, and the part of the plane that is nearer to 
that point than to any other. Such a division of the plane is called a Dirichlet, or 
Voronoi, tessellation. The polygonal areas are called tiles. An example of such a 
tessellation is found in Fig. 22. Dirichlet tessellations in the image processing 
context are described in [11]. 

FIG. 22. A Dirichlet tessellation with ten kernel points. Each tile consists of the area that is closer to 
its kernel point than to any other point. 
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There are several uses of Dirichlet tessellations in image processing. In [11] they 
are mostly used in the context of texture descriptions. Another application is when 
objects in an image must be ordered in such a way that neighbors in the image are 
close to each other in the list, [12]. However, in neither application the fact that the 
image is actually digital rather than continuous is taken into account. The line 
dividing the tiles are computed analytically (see, e.g., [13]). 

In a digital image there is another way of computing the Dirichlet tessellation: 
Compute a DT from all the kernel points of the tessellation, while at the same time 
keeping track of from which point the distance is computed. The computation must 
be done in parallel, (1). 

First create a new image of the same size as the original one, and mark each 
kernel point pixel with a unique number identifying it. At each iteration of the DT, 
the pixels in the new image that corresponds to the pixels that get new values in the 

City block Chessboard 

Octagonal Chamfer 3-4 

Chamfer 5-7-11 Euc1 ideon 

FJo. 23. Pseudo-Dirichlet tessellations computed for the same set of points, using different DTs. 
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distance image are marked with the number of the kernel point from which the 
distance is computed. Note that this number may in some cases change at the next 
iteration! When the algorithm stops, all pixels will have been identified as belonging 
to a certain tile, except those that have the same distance to more than one kernel 
point. The resulting tessellation is here called a pseudo-Dirichlet tessellation, as the 
tessellation is digital and the result depends on the DT used. 

The pseudo-Dirichlet tessellation have been computed for 12 kernel points in a 
50 • 70 pixel image. The results are shown in Fig. 23. Each tile is identified by a 
certain grey-level. The kernel points are black. The pixels that do not belong to a 
unique tile are white. The outlines of the tiles for the correct Euclidean tessellation, 
i.e., the digital EDT, are overlayed in black. 

The main difficulty with the city block DT is that large areas are not assigned to 
any tile. Note the two large white areas center right in the image. For the chessboard 
DT many of the pixels get assigned to the wrong tile. Note, e.g., the long "arm" of 
the dark grey tile in the lower right comer. The results of the octagonal DT are 
much better, even though many pixels are unassigned. For the chamfer 3-4 DT the 
result is almost correct, even if a few pixels between the tiles are unassigned, and a 
few are assigned to the wrong tile. Finally for the chamfer 5-7-11 DT the results 
are almost correct, i.e., almost equal to the results for the EDT. 

5. CONCLUSIONS AND RECOMMENDATIONS 

A digital distance transformation converts a binary image to a distance image. A 
distance transformation that gives the correct Euclidean distances have here been 
called EDT. Suggested EDT algorithms are too computationally complex to be 
really attractive (Sect. 4.1). Thus distance transformation algorithms that use only a 
small image neighborhood and work within the image itself, i.e., do not need any 
extra memory, are needed. They have here been called DTs. Several DTs have been 
suggested in the literature (Sect. 4.1). In [1] the 3 • 3 neighborhood DTs were 
optimized and analyzed. This paper gives some new results for these DTs and, more 
importantly, extends the results to larger neighborhoods. 

A number of DTs are now available. However, the problem of choosing the best 
distance transformation seems seldom to get much consideration. As the examples 
in Section 4 show, this is probably a mistake. The DT used may influence the results 
of the application to a large degree, and not in an advantageous way. Therefore 
some thought should be spent on the choice. Note that any of the six DTs in Section 
4 may be the right choice, depending on the application. 

In some digital image processing applications, where a distance transformation is 
needed, it is necessary to use the correct Euclidean distance. In other cases the 
distance should be as close to EDT as possible, but need not be quite exact. Then 
the new chamfer 5-7-11 DT is an ideal choice. If the accuracy needed is somewhat 
less, then the chamfer 3-4 DT, which is less computationally complex, may be the 
best choice. One common case when the distances need not be quite exact is when 
the images to which the DT is applied are somewhat noisy. Computing exact 
distances from inexact features is not reasonable, at least not when the exact 
distances are more computationally costly than adequate approximations. 

If the DT computations can be performed in parallel, then the octagonal DT may 
be good enough; (the sequential algorithm uses four passes over the image and is 
thus too computationally complex compared to its resulting accuracy). The octago- 
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nal DT has the advantage of only using the local distance one, and also that the 
distance values are not multiplied by any scale factor. The chessboard DT can be 
advantageous for images consisting mainly of rectangles with the sides parallel to 
the coordinate axis, e.g., house or street scenes. Finally the city block distance is the 
fastest to compute, and where speed is essential rather than accuracy it may be the 
best choice. 

The two most important results in this paper are thus: 

*The new chamfer 5-7-11  distance transformation, illustrated in Fig. 14. 
*The insight that for all applications using a distance transformation some 

effort should be spent on choosing the "right" one. The results may differ consider- 
ably for different distance transformations. 
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