
ON MINIMUM SPANNING TREE STREAMING FOR IMAGE ANALYSIS

Leonardo Gigli, Santiago Velasco-Forero and Beatriz Marcotegui

MINES ParisTech, PSL Research University, CMM - Center of Mathematical Morphology
{leonardo.gigli,santiago.velasco,beatriz.marcotegui@mines-paristech.fr}

ABSTRACT

This work addresses minimum spanning tree (MST) construc-
tion in streaming for images. We study the problem of com-
putation a MST on streaming in which image columns from a
continuous stream are processed in blocks of a given size. The
correctness of proposed algorithm is proved and confirmed
in the case of morphological segmentation of remote sensing
images.

Index Terms— Minimum Spanning Tree, Streaming Pro-
cessing, Hierarchical Segmentation

1. INTRODUCTION

The computation of minimum spanning tree (MST) on the
gradient of an image is one of the main ingredients for the
characterization of structures in different image processing
algorithms including registration [1], anisotropic filtering [2],
salience detection [3], hierarchical segmentation [4], marker-
based segmentation [5], prior-based segmentation [6], spa-
tiotemporal background subtraction [7], stereo matching [8]
among others. More particullary, in Remote Sensing (RS) ap-
plications the computation of MST is one step to the retrieval
of important objects from different scales [9]. However, re-
cent advances in RS and computer techniques give birth to the
explosive growth of remote sensing data [10]. The application
of classical image processing technique needs to wait until all
the data are known and this is an issue for streaming appli-
cations. Accordingly, streaming spatial algorithms has been
identified as one of the main research challenges in RS[11].

Namely, in this paper we address the problem of compu-
tation a MST on streaming in which image columns from a
continuous stream are processed in blocks of a given size. In
a nutshell, the highlights of this paper are shown as follows:

• Methods to produce MST on streaming are introduced
and their correctness proved.

• We illustrated, how can algorithms based on MST com-
putation be adjusted to exploit the streaming nature that
is becoming increasingly common in remotely sensed
data.

The rest of the paper is organized as follows: In Section 2, we
introduce the notation and the proposed algorithms. In Sec-
tion 3, we validate our procedure using various experiments
on image. Conclusion is presented in Section 4

2. ALGORITHMS

First, we introduce the notation that we use in this paper. Let
It be an image streaming during time, in which new pixels
come from one side of the image. Let t = 0, . . . , N be differ-
ent intervals of time, and let It be the new pixels that arrive
at time t, that is It = It−1 ∪ It. To simplify our problem, we
assume that the new image It shares a column with It−1: the
last column of It−1 is the first column of It (see Figure 1).

Fig. 1. Representation of image It streaming as the union of
the two images It−1 and It. We do not consider the two im-
ages as disjoint, but instead, they share one column of pixels.

An image can be considered as a standard 4-connected,
undirected graph, with nodes being all the image pixels
and edges between neighboring pixels being weighted by
color/intensity differences. Using Kruskal’s algorithm, a
minimum spanning tree (MST) can be constructed in average
O(|E| log(|V|)) time, where |E| is the number of edges in
the graph and |V| is the number of vertices. In our case, since
we construct 4-connected graphs from images, we have that
|E| ≈ 2|V|, so Kruskal’s algorithms takes O(|V| log(|V|)).
Nevertheless, in case of graphs associated to images, Bao et
Al. [2] developed an algorithm that builds a MST for a 8-bit
depth image in O(|V|) time.
Before introducing our work, we need to recall some opera-
tions between graphs that we use in our algorithms.

Definition 1 (Graph Union). Given two weighted graphs

G1 = (V1,E1,W1) and G2 = (V2,E2,W2) such that

W1

∣∣
E1∩E2

≡W2

∣∣
E1∩E2

,

we call G1 ∪ G2 the graph G = (V,E,W), with V = V1 ∪
V2, E = E1 ∪E2 and

W(e) =

{
W1(e) if e ∈ E1,

W2(e) if e ∈ E2,

for all e ∈ E.

In Figure 2 we report an example of union of two MSTs.

Definition 2. Given a weighted graph G = (V,E,W) and
a subset of the edges E1, we call G − E1 the graph (V,E \
E1,W) obtained by removing the edges in E1 from G.

Finally, we indicate MST (·) the function that takes a
graph G and returns a minimum spanning tree of G, and with
E(G) the set of all edges in a G. From now on, we are going
to refer to It and It, both as images and graphs.
As said in the introduction, in this paper we address the prob-
lem of updating the minimum spanning tree of the image It−1
each time that a new bunch of pixels It arrives. Three meth-
ods are compared to perform this task:

• Method 1 (Naive MST): At the step t, compute from
scratch the MST of the image It.

• Method 2 (Union MST): At the step t, compute
the MST of the new image It, and then compute
MST (MST (It−1) ∪MST (It)).

• Method 3 (Proposed Method): At the step t, the graph
G made by the union of MST (It−1) and MST (It)
may contain cycles. In fact, observe that each time the
two trees do not share an edge in the joining column
of pixels, that generate a cycle in the resulting graph,
caused by the fact that there are two different ways,
one in each tree, to go from one pixel to its neighbor
(see Figure 2). So, the method, first finds all the can-
didate edges to form those cycles on the MST union,
and then computes the MST on those edges. We call
EIt−1

, the candidate edges in MST (It−1) to form
cycles on G. Similarly, we call EIt , the candidate
edges inMST (It) to form cycles on G . The method
computes MST (EIt−1 ∪ EIt), and finally it returns
MST (It) = (MST (It−1)− EIt−1) ∪ (MST (It)−
EIt) ∪ (MST (EIt−1

∪ EIt))

The underlying idea of method 3 is that only a little part of the
edges in the two MSTs need to be removed after merging. In
fact, the number of edges to remove is equal to the number of
cycles in the graphMST (It−1) ∪MST (It), and in the fol-
lowing proposition we prove that the number of cycles in this
last graph limited by the number of common pixels between
the two images It−1 and It.

Proposition 1. Given It−1 and It two images of dimension
n× k and m× k, and letMST (It−1) andMST (It) mini-
mum spanning trees respectively of It−1 and It. Finally, let

G =MST (It−1) ∪MST (It)

the union of the two trees. The number of cycles in G is k −
h−1, where h is the number of edges in common between the
two trees.

Proof. The number of edges inMST (It−1) is nk− 1, while
the number of edges inMST (It) ismk−1. Thus the number
of edges in G is:

nk − 1 +mk − 1− h = (n+m)k − h− 2.

We can observe that G contains a spanning tree for the image
It, which has (n + m − 1)k − 1 edges. So the number of
cycles in G is

(n+m)k − h− 2− (n+m− 1)k + 1 = k − h− 1.

Fig. 2. MST (I0) in red and MST (I1) in blue. EI0 and
EI1 in bold and dashed, edges linking common pixels and
candidate to form cycles on the union of the two MST.

In order to compute the edges in EIt−1
(respectively in

EIt), we compute all the paths inMST (It−1) (respectively
MST (It)) from the sharing pixels between It−1 and It, to
the upper-right pixel in It−1 (respectively upper-left pixel in
It). We called this function edges in cycles.
In Procedure 1 we report the pseudo code for method 3.

We conclude this section proving that all the three meth-
ods generate a minimum spanning tree for the image It.

Theorem 1. All the proposed methods return a minimum
spanning tree for the image It, for each t.

Procedure 1 Method 3
Input: A streaming image It
Output: A minimum spanning tree MST for the image It

1: procedure METHOD 3
2: T0 ←MST (I0)
3: EI0 = edges in cycles(T0)
4: T0 ← T0 − EI0

5: MST (I0) = T0 ∪ EI0

6: while a new image It arrives do:
7: Ti ←MST (It)
8: EIt ← edges in cycles(Ti)
9: Ti ← Ti − EIt

10: T ←MST (EIt−1
∪ EIt)

11: MST (It)← ∪ti=0Ti ∪ T
12: // Fetching edges in cycles for the next iteration
13: EIt ← edges in cycles(Ti)
14: Ti ← Ti − EIt

Proof. The proof for the first method is straightforward since
for each t it returns MST (It). Concerning the other two
methods, we are going to prove that the resulting graphs G
respect the following properties:

• G is connected,

• G is a spanning tree,

• the sum of all weights of edges in the graph is minimal.

Method 2 Let G2 =MST (MST (It−1) ∪MST (It)) be
the result of the second algorithm for the image It. It is easy
to check the first two properties since G2 is a MST on a graph
containing all the vertices in It. Thus we only need to prove
that G2 is minimal. By contradiction, suppose that G2 is not
minimal. Thus, there exists an edge e = (u, v) ∈ E(It), such
that T ⊆ G2 ∪ e is a spanning tree which sum of edges is
smaller than the sum of the edges in G2. Since e ∈ It then
either e ∈ It−1 or e ∈ It. Without loss of generality, let
suppose that e ∈ It, then MST (It) ∪ e contains a smaller
spanning tree thanMST (It), and this is a contradiction.

Method 3 Let G3 = (MST (It−1)−EIt−1
)∪(MST (It)−

EIt) ∪ (MST (EIt−1
∪ EIt)) be the graph obtained using

method 3 on image It. First of all, we prove that G3 is con-
nected. Let u, v ∈ It, and G = MST (It−1) ∪MST (It).
Since G is connected, it is possible to find a path π = {v =
v0, . . . , vn = u} contained in G. Using the fact that G3 ⊆ G,
we can conclude that either π ⊆ G3 or it exists an edge
e = (vi, vi+1) such that e 6∈ E(G3). In this last case, by
construction e ∈ EIt−1

∪ EIt , but e 6∈ MST (EIt−1
∪ EIt).

However, since MST (EIt−1 ∪ EIt) is a connected tree we
can find another path π1 = {vi = w0, . . . , wm = vj} ⊆
MST (EIt−1

∪ EIt) and thus in G3. We just proved that for
each couple of vertices u, v in It, we can construct a path that

(a) (c)

(b) (d)

(e)

(f)

Fig. 3. Three iterations of the proposed method. (a) The MST
of the image I0, while in (b) we report in blue the edges in
EI0 and in red the edges in T0. In (c) a new image I1 arrives.
First the MST of I1 is constructed, and all the candidate edges
that form cycles in the union betweenMST (I0)∪MST (I1)
are found. In red the edges in T0, in green MST (I1) −
EI1 , and in blue the edges in EI0 ∪ EI1 . Note that only blue
graph contains cycles. (d) The MST of I1 is MST (I1) =
(MST (I0)−EI0)∪(MST (I1)−EI1)∪(MST (EI0∪EI1)).
Like in (b), in blue EI1 = edges in cyles(MST (I1)) and
in red T0 ∪ T1. Again, figures (e) and (f) show the results
obtained after that the image I2 arrives.

joins u and v entirely contained in G3 starting from a path
π ⊆ G, so G3 is connected. Secondly, the reason why G3 is a
spanning tree comes directly from Proposition 1. In fact G3 is
obtained from G, removing all the cycles that this last graph
contains, and using the fact that G3 connects all the vertices
in It, then we can say that G3 is a spanning tree. Finally, the
same argument used for Method 2 can be applied to prove that
the sum of weights of edges in G3 is minimal.

50 100 150 200 250
megapixels of the image

0

100

200

300

400

500

600

ti
m

e
to

co
m

pu
te

M
ST

of
th

e
al

li
m

ag
e

(s
)

Method 1
Method 2
Method 3

Fig. 4. Time comparison between three methods described in
Section 2. We tested the three methods on images of differ-
ent sizes. Remark that the execution times of our proposed
method is linear in the size of images.

3. EXPERIMENTAL RESULTS AND DISCUSSIONS

We conducted our experiments on a satellite high-resolution
image of San Diego, that is a 33-mega-pixels image (7038 ×
4723 in RGB channels). The CPU of the machine used for
the tests is Intel 3.00 GHz Xeon with 32GB RAM.
In the first experiment, we compared the execution times of
our methods on images of different sizes all generated start-
ing from the image described above and repeating it several
times along the vertical axis. The goal was to test how our
algorithms perform on really big images. We run our meth-
ods on each of the generated images and we measured how
long each method took to build the MST for the complete
image given as input. While Method 1 charges each image
directly in memory and then compute the MST, in method
2 and 3 we divided each image in several blocks I0, . . . , In
each of size (7038 × 4723). Since we repeated the images
along the vertical axis, we made stream those blocks from the
bottom side of the image instead of the right side. In Figure
4 is possible to see that the execution times of our proposed
increase linearly with the size of the images. We could not
experiment Method 1 with bigger images because it allocates
all the system memory and the program crashes.

Second, we compute in streaming a level of the quasi-
flat zones hierarchy [12][13]. It is obtained by computing
the strongly connected component of a threshold on edge-
weighted graph, the weight being a gradient of intensity [13].
Equivalently, these connected component can be obtained
directly from the MST. The corresponding connected com-

(a) Original image

(b) (c)

(d)

Fig. 5. (b) and (c) Lambda-flat zones (λ = 5) computed on
streaming by the proposed algorithm on MST. Pixels in black
are those that are waiting to a definite label in the streaming
process. (d) Final result on the complete image.

ponents are also called lambda-flat zones [14][15]. Using the
proposed method it is possible to find on the fly some of the
lambda-flat zones in the image It. In fact, our method returns
the MST of It as the sum of two components. The first is
T = ∪iTi that is made by edges that we do not need to touch
any more, while the second is EIt . So, thresholding edges in
T and removing all the connected components that contains
pixels adjacent to edges in EIt , we obtain lambda-flat zones
that will be in any Is, for any s ≥ t. In Figure 5 we report the
results obtained on our test image. Pixels in black, (b) and
(c), are those for which we cannot assign a label at the time
we process image It.

4. CONCLUSION

This paper studies the problem of minimum spanning tree
streaming on images. We proposed new algorithms for this
task and a detail analysis of the solution is provided. Our ini-
tial experiments in morphological segmentation provide sup-
porting evidence for using our proposed MST streaming for
more difficult task as anisotropic filtering [2] or spatiotempo-
ral background subtraction [7].

5. REFERENCES

[1] B. Ma, A. Hero, J. Gorman, and O. Michel, “Image reg-
istration with minimum spanning tree algorithm,” in Im-
age Processing, 2000. Proceedings. 2000 International
Conference on, vol. 1. IEEE, 2000, pp. 481–484.

[2] L. Bao, Y. Song, Q. Yang, H. Yuan, and G. Wang,
“Tree filtering: Efficient structure-preserving smoothing
with a minimum spanning tree,” IEEE Trans. Im. Proc.,
vol. 23, no. 2, pp. 555–569, 2014.

[3] W.-C. Tu, S. He, Q. Yang, and S.-Y. Chien, “Real-time
salient object detection with a minimum spanning tree,”
in Proceedings of the IEEE Conference on Computer Vi-
sion and Pattern Recognition, 2016, pp. 2334–2342.

[4] F. Meyer, “Hierarchies of partitions and morphological
segmentation,” in International Conference on Scale-
Space Theories in Computer Vision. Springer, 2001,
pp. 161–182.

[5] C. Couprie, L. Grady, L. Najman, and H. Talbot, “Power
watershed: A unifying graph-based optimization frame-
work,” IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, vol. 33, no. 7, pp. 1384–1399, 2011.

[6] A. Fehri, S. Velasco-Forero, and F. Meyer, “Prior-based
hierarchical segmentation highlighting structures of in-
terest,” in International Symposium on Mathematical
Morphology and Its Applications to Signal and Image
Processing. Springer, 2017, pp. 146–158.

[7] M. Chen, Q. Yang, Q. Li, G. Wang, and M.-H. Yang,
“Spatiotemporal background subtraction using mini-
mum spanning tree and optical flow,” in European Con-
ference on Computer Vision. Springer, 2014, pp. 521–
534.

[8] Q. Yang, “A non-local cost aggregation method for
stereo matching,” in Computer Vision and Pattern
Recognition (CVPR), 2012 IEEE Conference on. IEEE,
2012, pp. 1402–1409.

[9] L. Gueguen, “Classifying compound structures in satel-
lite images: A compressed representation for fast
queries,” IEEE Transactions on Geoscience and Remote
Sensing, vol. 53, no. 4, pp. 1803–1818, 2015.

[10] Y. Ma, H. Wu, L. Wang, B. Huang, R. Ranjan,
A. Zomaya, and W. Jie, “Remote sensing big data com-
puting: Challenges and opportunities,” Future Genera-
tion Computer Systems, vol. 51, pp. 47–60, 2015.

[11] S. Li, S. Dragicevic, F. A. Castro, M. Sester, S. Win-
ter, A. Coltekin, C. Pettit, B. Jiang, J. Haworth, A. Stein
et al., “Geospatial big data handling theory and meth-
ods: A review and research challenges,” ISPRS Journal

of Photogrammetry and Remote Sensing, vol. 115, pp.
119–133, 2016.

[12] F. Zanoguera and F. Meyer, “On the implementation
of non-separable vector levelings,” in in (H. Talbot
and R. Beare Eds.) Mathematical Morphology, Proc. of
ISMM2002. CSIRO Publishing, 2002.

[13] L. Najman, J. Cousty, and B. Perret, “Playing with
kruskal: Algorithms for morphological trees in edge-
weighted graphs,” in ISMM, 2013, pp. 135–146.

[14] P. Soille, “Constrained connectivity for hierarchical im-
age partitioning and simplification,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 30,
no. 7, pp. 1132–1145, Jul. 2008.

[15] L. Gueguen, S. Velasco-Forero, and P. Soille, “Local
mutual information for dissimilarity-based image seg-
mentation,” Journal of mathematical imaging and vi-
sion, vol. 48, no. 3, pp. 625–644, 2014.

