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ABSTRACT:

3D laser scanners acquire 3D point clouds of real environments. The process consists in sampling the scene with laser beams rotating
around an axis. By construction, the point density decreases with the distance to the scanner. This density heterogeneity is a major
issue, in particular for mobile systems in the context of autonomous driving, as usually a single scan is processed simultaneously
(instead of mapping applications that can integrate several scans, reducing the density heterogeneity). We propose a dartboard grid
with cell size increasing radially in order to adapt the grid size to the point density. The effectiveness of this strategy is demonstrated
by means of a ground detection task, a fundamental step in many workflows of analysis of 3D point clouds.

1. INTRODUCTION

Ground detection is a fundamental problem to solve for sev-
eral applications such as 3D modeling process and mobile ro-
bot navigation. In autonomous-driving applications, the interest
for ground detection is twofold. The first is to narrow down
the zone of the scene where the vehicle can navigate through.
The second is the fact that once removed the ground from the
set, other objects can be identified as isolated components. In-
deed, this strategy is employed in many object detection or ob-
ject classification algorithms.

Some approaches project the 3D point cloud into 2D images,
highly reducing the computational complexity. However, the
uniform grid usually used for this purpose is not adapted to the
acquisition configuration because the point density decreases
with the distance to the scanner. In this paper we propose a
dartboard grid that fits the sampling scheme of the scanner. The
aim is to avoid the over-segmentation of far away objects if the
cell size is too small or the loss of details of close objects if the
cell size is too large.

This paper is organised as follows. Section 2 reviews previous
works on ground detection tasks. Section 3 introduces our pro-
posal, including a dartboard representation that simulates the
acquisition system configuration, resulting in an ideal repres-
entation for further processing. Then, section 4 demonstrates
the effectiveness of our method and compares it to several state
of the art methods like RANSAC, λ-flat zones, and CNN-based
methods on Semantic KITTI dataset. Finally, section 5 con-
cludes this work and provides some perspectives.

2. PREVIOUS WORKS

Many 3D object detection and classification approaches start
with a ground detection step (Serna and Marcotegui, 2013, Serna
and Marcotegui, 2014, Roynard et al., 2016). The idea is mo-
tivated by the fact that once removed the ground from the scene
all the other objects in the scene appear as different connected
components. The pipeline is illustrated in Figure 1.

Among the approaches proposed in the literature for ground de-
tection, many solutions rely on geometrical intuitions. A simple

attempt to solve this problem is to model the ground as a flat
surface and carry out a planar approximation using RANSAC
paradigm introduced by (Fischler and Bolles, 1981). Examples
of RANSAC based approaches are (Oniga et al., 2007, Schna-
bel et al., 2007, Gallo et al., 2011). In spite of the fact that those
methods are robust to outliers, the assumption of the ground as
a unique plane is not realistic, even in the urban context. To
solve this problem, (Hernández and Marcotegui, 2009, Serna
and Marcotegui, 2013) proposed to use λ-flat zones to detect
the ground in dense point clouds. The method projects the point
cloud on a regular grid parallel to the xy plane placed at the
lowest value of z coordinate, and stores for each grid cell the
value of the minimal elevation among all projected points on
the same pixel. This is called the Bird’s Eye View (BEV). Once
obtained the projected BEV images the segmentation via λ-flat
zones is carried out to obtain the ground. Similarly, (Roynard
et al., 2016) project points on a discrete horizontal grid and the
z value with the highest value in the histogram is selected as
ground seed. Then a region growing approach is used to detect
the ground. Both methods are very similar: lambda flat zone
and region growing approaches rely on the same hypothesis of
smooth height variation. The unique difference is the initializa-
tion step.

These methods were proposed for a mobile mapping applica-
tion with a relative density homogeneity. They are sensitive
to the grid resolution and the authors suggest carefully pick-
ing a value that allows both to obtain one point per pixel in the
average case and to obtain connected profiles in the projected
image. Unfortunately this assumption does not hold for stand-
ard autonomous driving applications. In that case, the scanner
is mounted on top of the car and the axis of the scanner is or-
thogonal to the ground. The resulting point density decreases
with the distance from the scanner. In this kind of scenario it
is not possible to find a good resolution value. On one hand,
a sufficiently big resolution disconnects objects in the projec-
ted image. On the other hand a small resolution accumulates
too many points in pixels closer to the scanner where the point
cloud density is high and the corresponding information ag-
gregation may disturb the detection of small objects.

A more recent method has been introduced by (Zhang et al.,
2016). Their idea is to turn upside down the point cloud and let



Figure 1. Common classification pipeline: first ground is detected. Then, object classification is simplified.

drop a cloth to the inverted surface from above. The ground is
then detected analysing the intersections between the nodes of
the cloth and the inverted point cloud. Finally, in recent years
several CNN-based methods have been introduced in the more
general problems of semantic segmentation of a 3D point cloud
(Landrieu and Simonovsky, 2018, Thomas et al., 2019, Hu et
al., 2020). Concerning the ground detection task (Velas et al.,
2018) propose to project the point cloud using a spherical view
and generate 2D images containing range, z and laser intensity
values. The resulting images are then used to train a fully CNN
(FCNN) in order to obtain a binary segmentation. Finally the
labels are back projected to 3D points. This kind of approach
has been also used by (Behley et al., 2019) and (Milioto et al.,
2019) to carry out a semantic segmentation of the scene.

Polarnet (Zhang et al., 2020) is an interesting recent work that
introduces an improved BEV image representation. The pro-
posed grid contains two axes: radius and azimuth angle, assum-
ing the matrix is connected on both ends of the radius axis. Po-
larnet demonstrates a more homogeneous distribution of points
in the new grid representation compared to the Cartesian grid
and achieves improved results compared to the state of the art.
However they do not consider different ring thicknesses, ac-
counting for the higher sparsity in distant areas. Moreover the
larger size of distant sectors (due to longer azimuthal circular
sector perimeter) is not taken into account in their polar rep-
resentation. A similar idea is proposed in (Zhu et al., 2021),
where a cylindrical partition, with a polar pattern in the hori-
zontal plane, is proposed. As in (Zhang et al., 2020), the ring
thickness is uniform in the radial axis.

In this paper we go further in the BEV grid definition. We pro-
pose a dartboard shaped grid that better adapts to the scanner
configuration. The resulting improved BEV representation is a
better starting point for any analysis approach. We demonstrate
the effectiveness of the method on a simple ground detection
scheme that does not require an annotated database or a learning
procedure. The resulting approach outperforms other classical
techniques.

3. GROUND DETECTION ON POINT CLOUDS WITH
HETEROGENEOUS DENSITY

Assuming that the height variations in ground area are smooth,
(Hernández and Marcotegui, 2009) proposes to detect the ground
as the largest quasi-flat (Meyer, 2001, Soille, 2008) of the BEV
range image.

A quasi-flat zone, also named λ-flat zone (λ-FZ), is defined fol-
lows:
Definition 1. λ-flat zone: Two neighboring pixels p, q belong
to the same λ-flat zone of a function f , if their difference |fp −
fq| is smaller than or equal to a given λ value

∀(p, q) neighbors : |fp − fq| ≤ λ

Let us now present our proposed method. It uses λ-flat zones to
detect ground on Point Clouds and aims to solve the problems
deriving from the high variation of point density in the scene.
By construction, the point density of 3D Point Clouds decreases
with the distance to the scanner. This means that projecting the
points on a squared grid defined over the xy plane, the pixels
far from the scanner have a higher probability to be empty.
This causes a problem of connection between peripheral pixels.
Figure 2 illustrates this problem. Left column shows BEV of
ground pixels of a SemanticKITTI frame and right column the
corresponding ground detection based on the largest quasi-flat
zone ((Hernández and Marcotegui, 2009)). The resolution of
the images in the first row is 1 m side. 15% of 3D ground points
are missing in this detection. The problem worsens with higher
resolutions. The resolution of the images in the second row is
20 cm side, where 22% of 3D ground points are missing.

Figure 2. Ground disconnection caused by peripheral lower
density. Ground detected (right) by the method described in

(Hernández and Marcotegui, 2009) and its corresponding ground
truth (left). Two different resolutions: pixels of 1 m side (first

row) and 20 cm side (second row).

Our method consists in splitting the xy grid as a particular polar
grid that we will introduce in section 3.2. In order to adapt the
cell grid to the point density, its size increases with the distance
to the scanner. Then, BEV image is interpolated in each circu-
lar sector. The method uses Imin, Imax and Iacc BEV images
that store respectively the minimal elevation, maximal elevation
and number of points projected in each pixel. To obtain these



images we use a resolution of 5 pixels/m for the xy grid, that
is, the size of the pixel side is 20 cm. Along with this, the BEV
images are 8-bit encoded images and the resolution used for the
elevation is 10 levels-of-gray/m.

Differently from the original work, we interpolate and segment
Imax image for a higher confidence in the detected ground. The
method can be divided into the following steps:

1. identify the ground around the scanner,

2. build a polar grid and interpolate values,

3. compute λ-flat zones and extract ground on BEV image,

4. back project ground label from BEV image to 3D points.

Figure 3. A zoom of the image Imax: in a narrow street, the road
in front of the car is disconnected from the rear. In red, pixels in

the closest ring around the scanner are detected as ground.

3.1 Identify the ground around the scanner

The first step is to retrieve the part of the ground closest to the
car. The goal is to reconnect the road in front of the car with
the one behind. In the original method, the ground is identified
as the biggest λ-flat zone found after segmenting the image. In
situations where the car is navigating through narrow streets,
this assumption may not be verified, just because the ground
in front of the car could not be connected with the ground in
the rear, as shown in Figure 3. In the proposed example, pixels
in the sides of the car represent either a wall or other cars, the
ground in the front is disconnected from the one behind. To
solve this problem, we detect the ground among the pixels in
the closest ring around the car. These pixels will be used later
on as markers to detect which λ-flat zones belong to the ground
and merge them together. We start identifying the circle made
of void pixels around the scanner using a morphological recon-
struction by dilation. We use as marker image f :

f(x, y) =

{
255 if (x, y) = (x0, y0),

0 otherwise.

where (x0, y0) is the pixel corresponding to the position of the
scanner in the image. Furthermore, we use as mask image g:

g(x, y) =

{
255 if Iacc(x, y) = 0,

0 otherwise.

Thus, the image Ic containing the identified circle is obtained
as Ic = Rδ

g(f). Then, we detect among the points in the closest
ring around the car those belonging to the ground. To achieve
this, we first locate the ring R around the car applying a mor-
phological external gradient defined as: Ir = δB(Ic) − Ic,
where B is a structuring element of size 1m2. The ring is the
set R = {(x, y) | Ir(x, y) = 255}. Then we compute

z = min
(x,y)∈R

Imax(x, y),

the smallest z value in Imax on the set R. Finally, we as-
sign as ground only the pixels (x, y) in the ring R such that
|Imax(x, y)− z| < 0.5m. Figure 3 illustrates in red the result-
ing detected ground.

3.2 Build Dartboard and Interpolate image

In the second step, we interpolate information contained in Imax

image. This is a necessary step in the method because it fills in-
formation on void pixels. Namely, we define a polar grid and
then we map pixels of Imax image onto its elements. To bet-
ter explain our choice, let us analyze how points are spatially
located in an ideal environment where the ground is a plane or-
thogonal to the axis of the scanner. The scanner spins around
its vertical axis. Looking at points for a fixed yaw angle, as in
Figure 4, we can see that the distance of the points from the
scanner grows with the tangent of φi. Thus, in this context,
a polar grid on the xy plane, where the length of intervals in
the radial axis increases with a tangential trend, would be better
suited than the Euclidean grid to prevent disconnections.

Figure 4. The distance between points and the scanner depend
on the tangent of the inclination angle (φi) of the layer i and the

scanner height h.

To define the intervals in the radial axis, let first consider l1, . . . , ln
layers in the scanner, and let 0 ≤ φ1 ≤ . . . ≤ φn ≤ π

2
their

respective inclination angles. Furthermore, let h be the distance
between the scanner and the ground. In the hypothesis of an
ideal environment, we can estimate the radial distances ri of
the scanned points as:

ri = h · tan(φi), ∀i = 1, . . . , n.

Hence, we split the radial axis with intervals [ri, ri+1), for i =
0, . . . , n + 1, where r0 = 0, and rn+1 = ∞. In this way, the
profile of the ground in the grid remains connected because for
each cell we have at least one point that falls in. Differently
from the radial axis, we choose 0 ≤ θ1 ≤ . . . ≤ θm ≤ 2π
angle to evenly split the polar axis. Thus, each element S
of the dartboard is defined as the set of pixels in the product
[ri, ri+1) × [θj , θj+1). Figure 5 shows the dartboard obtained
for the KITTI Benchmark (Geiger et al., 2012) (scanner height
h = 1.73m).

Once generated the dartboard, it is used to interpolate inform-
ation on void pixels in Imax image and obtain the interpolated
image Îmax. Then for each pixel x, y in the euclidean grid we



Figure 5. Dartboard: each radial sector is covered by a different
scanner layer.

compute its polar coordinates r, θ as:{
r =

√
(x− x0)2 + (y − y0)2,

θ = arctan((y − y0)/(x− x0)).

where (x0, y0) is the scanner location. The coordinates (r, θ),
determine a circular sector S in the polar grid. In this way,
we map each element in the Imax domain to an element in the
dartboard. Now, let us define the image Î obtained assigning
the minimum in each dartboard circular sector

Î(x, y) = min
(i,j)∈Sk

Imax(i, j).

where Sk is the circular sector containing pixel (x, y). Only
Imax null (empty) pixels are interpolated. Thus, the final in-
terpolated image Îmax is computed as the maximum between
Imax and Î:

Îmax(x, y) = max(Imax(x, y), Î(x, y)),

Figure 6 illustrates an interpolation example. Observe how peri-
pheral pixels that were disconnected in Imax image (figure 6
(a)) are reconnected in Îmax (figure 6(b)).

3.3 Compute λ-flat zones and extract ground on BEV im-
age

λ-flat zones are computed on Îmax image. Similarly to (Hernández
and Marcotegui, 2009), we use λ = 0.20m. An example of the
obtained λ-flat zones is illustrated in Figure 6. Note that in this
example, the car is navigating through a narrow street and the
road is divided into two main λ-flat zones. To merge the two
connected components the marker extracted in section 3.1 is
used. Figure 6 (d) shows a zoom of the obtained segmentation
around the car. The red ring in the center of the image is the
ground marker detected in section 3.1. The detected ground is
composed by the union of λ-flat zones whose intersection with
the detected ground marker is not empty. At the end of this
step, the method returns a binary label BEV image Ig , whose
non-zero pixels represent the detected ground.

(a) Example of Imax (b) Interpolated image Îmax

on the dartboard

(c) Quasi-flat zones with λ =
0.2m.

(d) Zoom around the car. Red
pixels represent the ground
detected in section 3.1.

Figure 6. Example of analysis in interpolated image obtained on
the frame 3721 in sequence 08 of SemanticKITTI dataset.

3.4 Back project labels

Finally, the detected ground pixels must be projected back to 3D
point clouds. As said before, ground is detected on Imax image
instead of Imin image proposed in the original method (Hernández
and Marcotegui, 2009). Even though the two approaches seem
similar, there is a significant difference between them that has
to be considered before the back projection of the labels. Using
the Imax image, ground points close to objects or under them
(such as ground under a tree) are not detected as ground. The
reason of this problem is that Imax refers to the object eleva-
tion and the λ flat zone propagation can not reach it from the
ground. An example of this issue is illustrated in figure 7. Red
points represent true positive ground points, blue points rep-
resent true negative and white points represent false negative
points, ground points close to objects. This effect is stronger
for lower resolutions. To solve the problem, ground pixels are
extended on Imin λ-flat zones. First of all we compute λ-
flat zones on Imin image. Then, let us define Īg the extended
ground image as:

Īg(C) = max
(x,y)∈C

Ig(x, y),

for each quasi flat zone C obtained from Imin. Intuitively, we
propagate ground labels on λ-flat zones computed on Imin im-
age. In this way, we assign as ground pixels containing both
ground points and points belonging to objects. Hence, dur-
ing the back projection, we need to separate this last group of
points. To achieve this, let us consider F = {(x, y)|Ig(x, y) =
1} subset of the image domain made by pixels initially marked
as ground, and let us consider F̄ = {(x, y)|Ig(x, y) = 0 ∧
Īg(x, y) = 1} subset of the image domain made by pixels
where the ground label has been extended. Let p be a point and
let (xp, yp) the pixel in the image domain where p is projected.
If (xp, yp) ∈ F ∪ F̄ then the point p may belong to the ground.



To decide if p belongs to the ground or not, we consider the
difference between its elevation and the corresponding value in
Imin image, i.e. |pz − Imin(xp, yp)|. Two different threshold
values, respectively δF = 20 cm and δF̄ = 5 cm, are defined
according to whether an object has been detected in the pixel
initially detected as ground (F) or not (F̄). If so, the tolerance
is lower in order to prevent the inclusion of the lower part of the
object into the ground. The label l(p) assigned to the point p is:

l(p) =


1 if (xp, yp) ∈ F ∧ |pz − Imin(xp, yp)| ≤ δF ,

1 if (xp, yp) ∈ F̄ ∧ |pz − Imin(xp, yp)| ≤ δF̄ ,

0 otherwise.

(a) Ground detected on Imax. Ground points close to vertical
objects are missing.

(b) Results obtained while including the ground expansion on
Imin before the back projection.

Figure 7. 3D ground detection results. Red points (TP), blue
points (TN) and white points are false negative points.

4. EXPERIMENTS ON GROUND DETECTION

The proposed method is compared against two state of the art
algorithms and a naive RANSAC method on the Semantic KITTI
dataset (Behley et al., 2019). We include RANSAC in the ana-
lysis as a baseline benchmark. Cloth Simulation Filter (CSF)
(Zhang et al., 2016) proved great adaptability to a wide range
of different environments, either urban and rural. In addition,
we use a FCNN method similar to the one proposed in (Velas et
al., 2018). The main difference with the original is the network
used. Instead of employing the architecture proposed by the au-
thors, we use a U-Net architecture (Ronneberger et al., 2015),
for its great versatility to different applications. In order to train
and validate the U-Net model, we select one scan over ten in
the sequences from 0 to 10 except for the sequence 08. We ad-
opt this last sequence as a test set for all the methods. The split
between training and test has been done following directives in
(Behley et al., 2019).

Since the dataset does not contain an explicit ground class, we
derived it by aggregating multiple classes (Road, Parking, Side-
walk, Other-Ground, Lane-Marking and Terrain). Furthermore,
to have an overview of classification errors made in the pre-
dictions we created a total of eight categories aggregating all
classes. The categories that we created are Ground, Building,
Vehicles, Cycles, Person, Vegetation, Fixed-Objects, and Mov-
ing Objects.

We use the following metrics to benchmark our experiments,
P = TP

TP+FP
as precision, R = TP

TP+FN
as recall, A =

TP+TN
TP+TN+FP+FN

as accuracy, and Intersection over Union (IoU)
also called Jaccard Index IoU(A,B) = |A∪B|

|A∩B| where TP , TN ,
FP , FN indicate respectively the number of true positives, true
negatives, false positives and false negatives, and A,B are any
two sets. The sets used to compute the Jaccard Index are the
set of predictions and the ground truth. In all the cases the
scores have been measured using the predictions on the 3D
point clouds.

Table 1 lists the scores obtained by the methods. The table is di-
vided in two parts: the first lists the unsupervised methods and
the second the supervised approach. All the methods analysed
achieve great performances, and the FCNN achieves the highest
score in almost all the metrics. Note that our proposed BEV λ-
FZ method shows a good trade off between precision and recall,
and among the unsupervised methods is the one with the highest
Jaccard Index. Moreover, this method needs just a few paramet-
ers to work and this makes it much easier to explain why it fails
compared to FCNN. Along with these metrics, we analyze the
confusion matrix in order to evaluate which categories are con-
fused with the ground . Thus, Figure 8 shows the confusion
matrices. The vegetation is the class with the highest rate of
points classified as ground. This category contains low plants
and separating them from terrain with propagation approaches
is cumbersome.

Method F1 Recall Precis. Acc. IoU
RANSAC .922 .917 .927 .930 .856
CSF .937 .976 .900 .940 .881
BEV λ-FZ .945 .960 .930 .949 .895

FCNN .951 .921 .982 .957 .907

Table 1. Quantitative results obtained on sequence 08 of
SemanticKITTI dataset for the ground detection task. CSF

(Zhang et al., 2016). FCNN (Velas et al., 2018) BEV λ-FZ is the
method proposed in this paper.

Let now analyse qualitatively the results and see some examples
in which our proposed method fails. To visualize the predic-
tions in the following figures we use the color code hereby,
green for TP , red for FP , blue for FN and gray for TN .

Figure 9 shows stairs classified as ground by our method (λ
value is larger than the step height). CSF and FCNN meth-
ods do not prevent completely this error. Figure 10 misses the
detection of a garden because it is behind a bush. This bush
prevents the garden λ-FZ to reach the ground marker around
the car. From an autonomous driving application this is not an
issue. It can even be seen as an advantage, as the garden be-
hind the bush is not reachable by the car. Moreover, this kind
of missing detection happens only in isolated zones of the scene
that cannot be easily reached. This is confirmed also by the high
recall rate of the method. Finally Figure 11 shows an example



(a) RANSAC (b) BEV λ-FZ

(c) CSF (d) FCNN

Figure 8. The confusion matrices: (a) Naive RANSAC (b) BEV
λ-quasi flat zones (c) CSF (d) FCNN based approach.

in which our method detects a terrain zone while FCNN method
misses it.

5. CONCLUSIONS

In this paper we propose a BEV grid in the form of a dart-
board with radial sectors of increasing size with the scanner
distance. This grid fits the acquisition system, taking into ac-
count the height of the scanner with respect to the ground as
well as the number of laser layers and their corresponding in-
clination angles. The resulting representation is ideal for fur-
ther processing, avoiding object splitting due to low resolution
of faraway objects as well as losing details for nearby objects.
The improved BEV representation is a better starting point for
any BEV analysis approach. We revisit a simple ground detec-
tion method based on the assumption of small elevation vari-
ations. We introduce the dartboard grid and we demonstrate
good performances. We have compared our method with two
state of the art methods (CSF and FCNN) and a naive RANSAC
on the SemanticKITTI dataset. Results show that our method is
comparable with other state of the art algorithms, even though
FCNN is more precise. In our opinion, the few parameters used
and the greater explicability in case of error compared to FCNN
make our algorithm a good candidate for potential applications.
Moreover, the proposed BEV representation can also be used in
other learning strategies.
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(a) BEV λ-FZ (b) CSF (c) FCNN

Figure 9. Qualitative results. Green points are true positives, red ones are false positives, blue false negatives and gray ones are true
negatives. BEV λ-FZ includes stairs nearby the road as ground. The λ used is larger than the step. FCNN misses some nearby ground

points.

(a) BEV λ-FZ (b) CSF (c) FCNN

Figure 10. Qualitative results. Green points are true positives, red ones are false positives, blue false negatives and gray ones are true
negatives. BEV λ-FZ considers as ground the biggest flat zone in the projection image. In this example a piece of the garden is

missing because it is behind a bush.

(a) BEV λ-FZ (b) CSF (c) FCNN

Figure 11. Qualitative results. Green points are true positives, red ones are false positives, blue false negatives and gray ones are true
negatives. Predictions obtained by the three analysed methods. In this example FCNN fails to detect some terrain points.
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