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Abstract

Classically, connectivity is a topological notion for sets, often in-

troduced by means of arcs. A non topological axiomatics has been

proposed by Matheron and Serra. The present paper extends it to

complete sup-generated lattices. A connection turns out to be charac-

terized by a family of openings labelled by the sup-generators, which

partition each element of the lattice into maximal terms, of zero in-

fima. When combined with partition closings, these openings generate

strong sequential alternating filters. Starting from a first connection

several others may be designed by acting on some dilations or sym-

metrical operators.When applying this theory to function lattices, one

interprets the so-called connected operators in terms of actual connec-

tions, as well as the watershed mappings. But the theory encompasses

the numerical functions and extends, among others, to multivariate

lattices.

Keywords : connectivity, complete lattices, mathematical mor-

phology, connected operators, filters by reconstruction, watershed.
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1 The connectivity concepts

1.1 State of the art before 1988

In mathematics, the concept of connectivity is formalized in the framework
of the topological spaces and is introduced in two different ways. First, a
set is said to be connected when one cannot partition it into two non empty
closed (or open) sets [1]. This definition makes precise the intuitive idea that
[0, 1] ∪ [2, 3] consists of two pieces, while [0,1] consists of only one. But this
first approach, extremely general, does not derive any advantage from the
possible regularity of some spaces, such as the Euclidean ones. In such cases,
the notion of arcwise connectivity turns out to be more convenient. According
to it, a set A is connected when, for every a, b ∈ A, there exists a continuous
mapping ψ from [0, 1] into A such that ψ(0) = a and ψ(1) = b. Arcwise
connectivity is more restrictive than the general one ; however, in Rd, any
open set which is connected in the general sense is also arcwise connected.

In image analysis, the digital connectivities transpose the arcwise corre-
sponding notion of the Euclidean case, by introducing some elementary arcs
between neighboring pixels. This results in the classical 4- and 8-square con-
nectivities, as well as the hexagonal one, or the cuboctahedric one in 3-D
spaces. During the seventies, these connectivities have been extensively used
to design thinning and thickening operations [2][3][4].

In the same decade arose another development of digital connectivity,
which seemed apparently similar. The initial algorithm, due to J-C. Klein [5],
concerned the partial reconstruction of a set A from an inside point marker
x. The technique consists in iterating the dilation of x by the elementary
disc B (i.e. the 6-pixel hexagon, or the 9-pixel square), but restricted to A
at each step:

γx(A) = (..({x} ⊕B) ∩ A...)n times (1)

For n large enough, the expansion of x inside A stops (see fig. 1b), and
γx(A) extracts the connected component of A containing x.

In rel. (1), the successive steps (and not only their limit) are instructive
by themselves. They indicate the progression of a wave front which emanates
from A. Their study was formalized by Lantuejoul and Beucher [6] under the
name of ”geodesic” methods.
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a) b)

Figure 1 a) set X and marker x;
b) In black and in grey, the connected component marked by point x

according two different connections

1.2 State of the art since 1988

As the basic disc B changes, does rel. (1) cover all arcwise digital connectivi-
ties ? The answer is yes, in the sense that each of the latter is associated with
a specific unit disc. But rel. (1) encompasses more. Replace, for example, B
by 10B in rel. (1), then γx(A) extracts clusters of particles for 9 pixels apart
(see fig. 1b). To which extent may these clusters be considered ”connected
units” ?

The question will make sense if there exist image transformations which
involve connectivity, and whose good properties remain true when the no-
tion of connectivity is more than ”a one piece object”. (Here, we may think
of the watershed transformation, in particular, which involves minima, i.e.
connected components, and, above all, of morphological filtering).

But, first of all, what could be an appropriate definition for such pur-
poses ? When G. Matheron and J. Serra proposed a new one, in 1988, they
used to aim at strong filters [7][8]. However, their definition is rather general
and stated as follows.

Definition 1 Let E be an arbitrary space. We call connected class C a family
in P(E) such that

(i) Ø ∈ C and for all x ∈ E, {x} ∈ C
(ii) for each family {Ci} in C, ∩ Ci 	= Ø implies ∪Ci ∈ C.

3



As we can see, the topological background has been deliberately thrown
out. The classical notions (e.g. connectivity based on digital or Euclidean
arcs) are certainly particular cases, but the emphasis is put on another aspect,
that allows to cover also cases such as fig. 1a (the clusters). And this
emphasis is clarified by the following theorem [9, Chap. 2] :

Theorem 1 The datum of a connected class C on P(E) is equivalent to the
family {γx , x ∈ E} of openings such that

(iii) for all x ∈ E, we have γx(x) = {x}
(iv) for all A ⊆ E, x, y ∈ E, γx(A) and γy(A) are equal or disjoint
(v) for all A ⊆ E, and all x ∈ E, we have x /∈ A⇒ γx(A) = Ø.

The theorem provides a theoretical status which is perfectly convenient
to the reconstruction algorithm (1). But historically speaking it did much
more, and the number of applications or of theoretical developments which
was suggested (and permitted) by this theorem is considerable. The references
[8] to [27] show that it has opened the way to an object-oriented approach
for the compression and comprehension of still and moving images. They
also show how fruitful are the exceptional properties of the connected filters
(see in particular [8] [10] [11] and [26], to which are associated the names of
G. Matheron, J. Serra, Ph. Salembier, J. Crespo, and R.W. Schafer), and
their uses in segmentation, as shown in particular by S. Beucher, F. Meyer,
B. Marcotegui and C. Vachier [12], [19], [21], [23].

1.3 Purpose of the present study

There is a paradox in that. On the one hand connected filtering has proved
its efficiency in pyramidal segmentation [13] [15] [23], object based coding
[17] [28], motion prediction [25] [22][21], and sequences enhancement [18],
namely in applications which always hold on grey or color images. But on
the other hand, the underlying axiomatics for connectivity (i.e. definition
1 above), is strictly binary. An alternative (and equivalent) axiomatics has
been proposed by Ch. Ronse [20] ; it contains, as a particular case, another
one by R.M. Haralick and L.G. Shapiro [28] ; however, both approaches are
still set-oriented.

How could we express connectivity for lattices, in general ? More specifi-
cally, can we equip the function lattices with connected classes ? If so, what
are the interesting ones ?

4



Here are the questions this paper seeks to solve.

2 A few basic notions and notations

2.1 Reminder on lattices, atoms, co-primes and sup-

generators

In this paper, the term ”lattice” always means ”complete lattice” and is de-
noted by the generic symbol L. The elements of L are given small letters,
such as x, y, a, b... , whereas the capital letters such as X, Y, A, B, ... , cor-
respond to families in L, i.e. to the elements of P(L) (Birkhoff’s notation
[29]). The minimum and the maximum element of L are indicated by 0 and
m respectively. Symbols M a and Ma stand for the lower bounds and for the
upper bounds of element a, i.e. :

Ma = {x : x ∈ L , x ≤ a} ; Ma = {x : x ∈ L , x ≥ a}

The notation
∨
A (resp.

∧
A) designates the supremum (resp. the in-

finum) of family A :

∨
A =

∨
{a : a ∈ A} ;

∧
A =

∧
{a : a ∈ A} A ∈ P(L)

(Matheron’s notation [30]). Birkhoff-Matheron notation, very partical in
the general case, is less suitable for P(E) lattices. In these cases, the two
levels of E and P(E) are usually distinguished by affecting small letteres to
the elements of E and capital ones to sets in P(E). Therefore, in this case
only, we shall introduce letter C to stand for connected classes, i.e. subparts
of P.

A non zero element a of lattice L is an atom if x ≤ a implies x = 0 or
x = a. For example, when L is of the type P(E), the points of E are atoms
in P(E). An element a ∈ L, a 	= 0 is said to be co-prime when a ≤ x

∨
y

implies a ≤ x or a ≤ y , in a non exclusive manner. We will complete these
two classical definitions (see Heijmans [31], or Gierz et al. [32]) with a third
one, from Matheron [30], according to which a ∈ L is strongly co-prime when
for any family B in L (finite or not), a ≤

∨
B implies the existence of a

b ∈ B with a ≤ b.

5



Definition 2 Let L be a lattice and X ⊂ L a family in L. The class X is a
sup generator when every element a ∈ L is the supremum of the elements of
X that it majorates :

a =
∨

(X ∩Ma) =
∨
{x ∈ X, x ≤ a} .

Lattice L is said to be atomic (resp. co-prime, strongly co-prime) when it is
generated by a class of atoms (res. co-prime, strong co-primes).

Clearly, every atom and every strong co-prime belong to every sup-generating
family. Here, two results are worth mentioning.The first one, due to G. Math-
eron [30, p. 179] combines the notions we have just introduced with that of
complementation.

Theorem 2 For a lattice L, the four statements are equivalent :
a/ L is co-prime and complemented
b/ L is atomic and strongly co-prime
c/ If Q, Qa and Qf denote the classes of co-primes, atoms and strong

co-primes respectively, then

Q = Qa = Qf

and T is isomorphic to lattice P(Q).

The second one (Ch. Ronse, verbal communication), is stated as follows.

Proposition 1 Any strong co-prime lattice is isomorphic to a complete sub-
lattice of P(S), where S is the sup-generating family of co-primes (N.B. The
isomorphism is given by the map a→ S ∩M a).

These two results show how demanding is the assumption of strong co-
primarity, which in fact restricts the approach to the set-oriented case.

In this reminder, and in the study which follows, the emphasis is put
on the supremum. But it is clear that each of the above notions admits a
dual form. It suffices to consider the dual lattice L∗ of L (where inequalities,
and sup and inf are inverted). Atoms, co-prime, strong co-prime and sup-
generators on L∗ define, on L, dual atoms (also called anti-atoms), prime,
strong prime and inf-generators respectively.
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2.1.1 Distributivity

Several useful properties involve distributivity, or rather, distributivities. Re-
member that a lattice L is distributive if

x
∧(

y
∨

z
)

=
(
x
∧

y
)∨(

x
∧

z
)

x
∨(

y
∧

z
)

=
(
x
∨

y
)∧(

x
∨

z
)

for all x, y, z ∈ L. The two equalities are equivalent. When the collection of
elements between parentheses is allowed to extend to infinity, i.e. when

x
∧

(
∨
yi , i ∈ I) =

∨
{(x
∧
yi) , i ∈ I} (infinite

∨
-distributivity)

x
∨

(
∧
yi , i ∈ I) =

∧
{(x
∨
yi) , i ∈ I} (infinite

∧
-distributivity)

for any collection {yi} ∈ L and for x ∈ L, then lattice L is infinite distribu-
tive. There exist more severe distributivities, and in particular the complete
distributivity [29], which has been discussed by G. Matheron [30, p. 77] under
the name of total distributivity. It governs the function models we shall use
in part 4. If A stands for a family of subsets of an arbitrary set E, we denote
h(A) the class of those parts H of E which are obtained by taking one point
in each A ∈ A. Then a lattice L is totally distributive when

∧
B∈B

∨
B =

∨
H∈h(B)

∧
H (B ∈ P (L))

or equivalently

∨
B∈B

∧
B =

∧
H∈h(B)

∨
H (B ∈ P (L))

Total distributivity implies the two other ones, and can be identified with
the very strong property of monoseparation [30, p. 121]. In particular, every
class of functions which is closed under numerical sup and inf forms a totally
distributive lattice.

Coprimarity and distributivity in lattices are related to each other. Half
of Matheron’s monography [30] is devoted to this matter. More modestly, we
shall restrict ourselves to the three following results.

a/ Any co-prime lattice is infinite
∧

-distributive [30, th. 8-11]
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b/ In a distributive lattice, every atom is co-prime [31, prop. 2-37].
c/ In an infinite

∨
-distributive lattice, every atom is strong co-prime.

Examples

There are numerous lattices associated with image processing. The reader
will find in Ronse’s paper [19], for example, a comprehensive list. The ones
we quote below are instructive because they illustrate differently atoms, co-
primes and distributivity. They will be completed, in sect. 4-1, by some
others about function lattices.

(1) Lattice of the open sets in the Euclidean space ( R2 for example). It
does not admit atoms, but the complements of the points are dual atoms.
They are not co-prime, but form a inf-generating family, and indeed this
lattice is not infinite

∧
-distributive (property a).

(2) Lattice P(E) of the subsets of an arbitrary set E. The points of E are
atoms, strong co-primes and sup-generators of P(E) ; P(E) is also comple-
mented, hence strongly co-prime, and totally distributive : it accumulates all
nice features.

a) b)
Figure 2 a) Two large particles and two atoms in the lattice of the dilates by

a disc,
b) In light grey, the corresponding intersections, and in dark grey, the inf in
the dilates lattice sense. Since the two small discs have an empty inf, they
are seen as disjoint particles in the dilate lattice, whereas they intersect

with each other.

(3) Lattice of the Minkowski dilates by a disc B, in R2, i.e.

L =
{
X ⊕B,X ∈ P(R2)

}
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Here, the sup coincides with the usual union, but the inf is the opening by B

of the intersection (Fig. 2a). The discs Bx, x ∈ R
2, are sup-generating atoms,

but not co-primes.Again, property b/ appears (in a contraposed form) since
this lattice does not satisfy any distributivity.

(4) Lattice of all functions f : E → L from an arbitrary space E into a
lattice T . The pulse functions :

{
ix,t(y) = t if y = x

ix,t(y) = 0 if x 	= y
(2)

associated with each x ∈ E and t ∈ L are sup-generating co-primes but
not atoms (except when L = {0, 1}) and generally not strong co-primes.
However, when L is discrete (L finite, or L = Z, etc.), then the pulses are
strong co-primes ; this lattice is totally distributive, but not complemented.

(5) Lattice of the upper semi-continuous functions f : R2 → [0, 1]. Its
pulses are sup-generating co-primes, but not strong ones ; in this lattice,
the inf of a family {fi} is the function which admits, at each point x ∈ R2,
the numerical inf of the fi(x)′s, but the sup is the function whose umbra is
the topological closure of the union of the umbrae of the fi

′s. This lattice is
distributive, and infinite

∧
-distributive, but not infinite

∨
-distributive.

The comparison of the five models is instructive. Some of them admit co-
prime but not atoms (nos 4-5) or vice-versa (no 3). Sup-generating families
exist, which do not consist of atoms or co-primes (no 1). Distributivity is also
a deep distinction between lattices. We will see in the following that a lattice
L may be equipped with connections when it is sup-generated, and that
these connections satisfy nice properties when L is infinite

∨
-distributive (or∨

-distributive for finite L’s).

2.2 Connected class and characteristic openings

This section generalizes def. 2.7. and theorem 2.8 in [9], which are devoted
to the case of P(E). The approach follows similar steps, but the distinction
between points and sets is replaced by the introduction of sup-generators.

Definition 3 Connection. Let L be a lattice. A class C ⊆ L is said to be
connected, or to define a connection, when

(o) 0 ∈ C

(i) C is sup-generating: ∀ a ∈ L, a =
∨

(C ∩M a)
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(ii) C is conditionally closed under supremum

X ⊆ C ,
∧

X 	= 0 ⇒
∨

X ∈ C (3)

Class C is generally neither closed under
∨

or
∧

. However, if Cx stands
for the subclass of C that contains the upper bounds of a given x ∈ C\ {0} ,
i.e.

Cx = {c : x ≤ c, c ∈ C} = C ∩Mx

then, the supremum of each non empty family of elements of Cx is again in C

because of (ii). In other words, the class Cx ∪ {0}, closed under supremum,
characterizes the invariant sets of a unique opening γx, which is called the
connected opening of origin x. For all x ∈ C\ {0}, we have

γx(a) =
∨
{c : c ∈ C, x ≤ c ≤ a} a ∈ L. (4)

We then say that γx(a) is the connected component of a marked by x, and
that x (which is itself a connected component) is called a marker. Clearly
for x, y ∈ C\ {0} such that x ≤ y, we have Cx ⊇ Cy, hence γx ≥ γy. We will
summarize these results in proposition 1 :

Proposition 2 Let C be a connection on a lattice L. For every x ∈ C\ {0},
the mapping γx : L→ L defined by

γx(a) =
∨

(C ∩Mx ∩M
a) a ∈ L

is the opening of invariant elements Bx = (Mx ∩C)∪ {0}, and of marker x.
Moreover, if x, y ∈ C\ {0} with x ≤ y then γx ≥ γy.

Proposition 3 For all x ∈ C\ {0} ,and for all a ∈ L, the following equiva-
lences are satisfied:

γx(a) 	= 0 ⇔ x ≤ a ⇔ x ≤ γx(a) ∈ C (5)

Proof. Relation (4) implies that γx(a) = 0 when x 	 ≤a. On the other hand,
when x ≤ a we always have, from (i), x = γx(x) ≤ γx(a) hence γx(a) 	= 0,
and from (ii), we get γx(a) ∈ C. Q.E.D.

Indeed, the family of openings {γx ; x ∈ C\ {0}}, induced by the con-
nected class C characterizes it, as shown by the following central theorem
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Theorem 3 Let C be a sup-generator in a lattice L. Class C is a connection
if and only if it coincides with the invariant elements of family of openings
{γx , x ∈ C\ {0}} such that
(iii) for all x ∈ C\ {0} , we have γx(x) = x ,
(iv) for all a ∈ L, x, y ∈ C\ {0} , γx(a) and γy(a) are equal or disjoint, i.e.

γx(a)
∧
γy(a) 	= 0 ⇒ γx(a) = γy(a) ,

(v) for all a ∈ L and for all x ∈ C\ {0}, we have x 	≤ a ⇒ γx(a) = 0.

Proof. Let C be a connection. Points (iii) and (v) have been proved in
proposition 3. From (ii) we observe that γx(a)

∧
γy(a) 	= 0 implies c =

γx(a)
∨
γy(a) ∈ C. On the other hand,

x ≤ γx(a) ⇒ x ≤ c⇒ c ∈ Cx ⇒ c ≤ γx(a) ⇒ γy(a) ≤ γx(a).
We show the reverse inequality, and thus equality, in the same way. Hence

(iv) follows. It is clear that C is the family of all γx(a) for x ∈ C and a ∈ L.
Conversely, suppose that C is a family of elements of L, and that C is

also the family of the invariant elements of family {γx , x ∈ C} of openings
that satisfy axioms (iii) to (v), i.e.

C = {γx(a) , x ∈ C , a ∈ L}

For a = 0, we find by (v) that γx(0) = 0 ∈ C. C is sup-generating
by hypothesis, i.e. axiom (i) is satisfied. Now let ci be a family in C with
non empty inf, and x ∈ C \ {0} with x ≤

∧
ci. As ci ∈ C we can find a

marker yi for each i such that ci = γyi(ci). But x ≤ ci ; therefore, from
(iii) x ≤ γx(x) ≤ γx(ci). Thus γyi(ci) and γx(ci) majorate x, and from (iv)
we have ci = γyi(ci) = γx(ci) ≤ γx(

∨
ci), hence

∨
ci = γx(

∨
ci). Thus

∨
ci

belongs to C\ {0} and (ii) is satisfied.
We still have to prove that the connected openings γ ′

x associated with
class C coincide with the γx themselves ; a necessary and sufficient condition
is that for every x ∈ C\ {0}, γx and γ ′

x have the same invariant sets, i.e.

Cx = { γx(a) : γx(a) 	= 0 , a ∈ L} x ∈ C\ {0}
C ′

x = {γy(a) , y ∈ C , a ∈ L , x ≤ γy(a)} x ∈ C\ {0}

Let γy(a) ∈ C ′

x . From (iii) x ≤ γy(a) ≤ a implies x ≤ γx(x) ≤ γx(a),
thus, from (iv), γy(a) = γx(a). Hence C ′

x ⊆ Cx . Conversely, if γx (a) ∈
Cx , then, from (v), γx(a) ≥ x, so that γx (a) ∈ C ′

x , thus Cx ⊆ C ′

x , which
achieves the proof. Q.E.D.
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Corollary 1 For all x, y ∈ C\ {0} and for all a ∈ L, we have

y ≤ γx(a) ⇔ γx(a) = γy(a) 	= 0 ⇔ x ≤ γy(a)

Proof. If y ≤ γx(a) then by (v) we also have y ≤ a, therefore y ≤ γy(a).
From (iv), we draw γy(a) = γx(a) 	= 0. Conversely if γx(a) = γy(a) 	= 0, then
we have y ≤ γy(a) = γx(a). Q.E.D.

Proposition 4 Let S be a sup-generating family on L. To every part P of L
containing S corresponds the connections C containing P ; we write C(P ).
The set of connections containing S is closed under intersection ; it is thus
a complete lattice ; in this lattice the infimum and supremum of a family of
connections Ci , (i ∈ I) are given respectively bu their intersection ∩Ci and
by the connection generated by their union C (∪Ci ,i ∈ I) .

Proof. Consider a family {Ci ,i ∈ I} of connection which contain S. Their
intersection obviously satisfy axioms (0) and (ii). Axiom (i) is also satis-
fied because class S is a sup-generator included in ∩C. The family {Ci } is
thus closed under intersection. Consequently, the family of all connections
containing S is an inf semi-lattice, whose minimum element is their inter-
section. But this family also admits a maximum element, namely lattice L
itself. Thus, it is a lattice.

In this lattice, consider now the family of all connections that contain a
given part P of L, with P ⊇ S. The intersection of these connections is said
to be the connection generated by P , and is written C(P ). In particular, if
we take for P the union ∪Ci , i ∈ I, of an arbitrary family in the lattice,
then the least connection C (∪Ci ) is nothing but the supremum of the Ci’s.
Q.E.D.

This said, for anyone who wants to generate connected classes, proposi-
tion 4 is more formal than practical. We shall propose other ways, based on
dilations and more operational, in section 3.

Proposition 5 All atoms and all strong co-prime of L belong to any con-
nection C.
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Proof. If element a 	= 0 is an atom, then M a = {0, a}, and a =
∨
{C ∩Ma}

implies a ∈ C. If q is a strong co-prime, then q =
∨
{C ∩M q}implies

q ∈ MC∩Mq

,i.e. there exists a connected element q′ ≥ q and such that
q′ ∈M q hence q = q ′. Q.E.D.

This proposition follows from the fact that every atom and every strong
co-prime belong to every sup-generating family. One may notice also that if
the co-prime q is not strong, then it does not necessarily belong to C.

2.3 Canonic markers

The generalization we have just developed avoids to favour any sup-generating
class of co-primes in lattice L. In this sense, it differs from the set case where
the points are supposed to belong to all connections. Now the major ap-
plication we have in mind here concerns function lattices (grey tone, color,
equi-continuous, etc.), where one can assume that a basic sup-generator class
belongs to all connections. It will be, for example, the class of the pulses for
the numerical functions, or that of the cones for the Lipschitz functions (see
fig. 3).

This circumstance suggests to slightly reduce the generality of the previ-
ous approach by chosing a sup-generating class S in L, with 0 /∈ S, and by
replacing assumption (i) in definition 3 by the following one:

assumption (vi): Ccontains the sup-generator S.

By so doing, we restrict the possible connections on L to those that
contain S only. The sup-generator S, which is not itself a connection, will
be called canonic. The interesting fact is that the canonic markers S are
sufficient to label all openings, for all connections on L. Indeed we can state.

Proposition 6 : When a canonic sup-generator S has been chosen in lattice
L, then every connection C on L is identified to the invariant elements of
the openings γs , s ∈ S, such that

γs (a) =
∨
{x ∈ C,s ≤ x ≤ a} s ∈ S a ∈ L

Proof. Consider a given, but arbitrary, connection C, and let a ∈ L and
x ∈ C such that γx (a) 	= 0. From prop. 3, we have
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x ≤ a and x ≤ γx (a) ∈ C .

On the other hand, there exists at least one s ∈ S smaller that x, since class
S is sup-generating. Now, by assumption (vi), s ∈ C, hence

s ≤ x ≤ a ⇒ s ≤ γs (a) .

Both γs (a) and γx (a) containing s 	= 0, we draw, from (iv) in theorem
3, that γs (a) = γx (a). We have supposed γx (a) 	= 0 for some x ∈ C\ {0}.
If not, we have γx (a) = γs (a) = 0 for any s ∈ S, which achieves the proof.
Q.E.D.

Conceptually speaking, we realize an economy since the bijection now
holds on the connections C and on the families {γs , s ∈ S} of openings, for
a reduced class S of labels which is common to all connections. Note also that
proposition 4 becomes more significant, since when applied to the canonic
sup-generator S it holds on the lattice of all connections that exist on the
lattice L under study.
Examples

There is a number of interesting lattices. The brief list which follows is
(a) In a topological space, both connectivities based on disjoint closed

sets, and on arcs.
(b) arcwise connectivities on digital spaces.
(c) connections based on extensive dilations (theorem 4 below).
(d) set segmentation according to a fixed partition of the space [9, p. 54].
(e) lattice of the Minkowski dilates, as presented above in section 2.1. In

this lattice, two discs which intersect (in the set sense) nevertheless form two
disjoint particles ! (see fig. 2a and 2b). We find just the opposite effect of
the clustering by an extensive dilation of fig. 1, where a group of seemingly
disjoint objects was seen as a unique particle.

(f) In [19], Ch. Ronse proposes, among several other ones, the instructive
following example. In P (R2), the class generated by the points and the con-
nected sets opened by a disc B forms a new connection. If x ∈ X ◦ B, then
γx (X) is the topologically connected component of X ◦B containing x, and
when point x ∈ X\X ◦ B , then γx (X) = x. This connection, illustrated
in fig. 5 below, is useful, not only for possible practical uses, but also for
building instructive counter examples (see prop. 17 below).
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2.4 Sup-generating markers and partitioning

A number of attractive properties of the connected classes come from their
ability to partition each element of L into its components. In order to describe
them, we will first define the notion of a partition D (D as ”division”) for a
lattice element.

Definition 4 Partition: Let L be a complete lattice, and C be a connection
on L. A partition of a ∈ L is a mapping Da from C ∩Ma into Ma such that
(i) for all x ∈ C ∩M a : x ≤ Da(x) ≤ a

(ii) for all x, y ∈ C ∩Ma : Da(x) = Da(y) or Da(x)
∧
Da(y) = 0

Da(x) is called the class of the partition of origin x. As connection C is
sup-generating, the supremum of all classes Da(x) restitutes a:

a =
∨
{Da(x), x ∈ C ∩Ma} (6)

The kinship between the disjunction axioms for partitions ((ii) in definition
4) and for connected classes (axiom iv) is highlighted by the following result :

Proposition 7 Let C be a connection on L. For each a ∈ L the family Da

of the maximal connected elements in C ∩Ma is a partition, whose classes
are the connected components of a.

Proof. For any a ∈ L, the class C ∩Ma is never empty from axioms (o) and
(i). By definition of γx (a), for x ∈ (C\ {0})∩M a, the maximal connected
components Da coincide with the γx (a), which are disjoint, according to
theorem 3. Q.E.D.

Corollary 2 Let Da be as in Prop. 7. If b 	= 0 is connected and b ≤ a, then
y ∈ Da implies either b ≤ y or b

∧
y = 0.

Clearly, we meet again the connected openings, since given x ∈ C and
a ∈ L, γx(a) is nothing but the element y ∈ Da larger than x. But proposition
7 investigates the connection C from the point of view of the lattice elements,
whereas theorem 3 starts from the markers.

Corollary 3 Opening γx partitions any a ∈ L into the smallest possible
number of components belonging to the class C, and this partition is increas-
ing in that if a ≤ a′, then any connected component of a is majorated by a
connected component of a′.

[Proof identical to that of corollary 1, p. 53, in [9].
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3 Connectivity and increasing mappings

3.1 Dilations and connectivity

The dilations that we will consider here map lattice L into itself. We remind
that a dilation is defined as an operator δ on L which commute with the
supremum [33][31][34]:

δ(
∨

ai) =
∨

δ(ai) {ai} ∈ L .

Similarly, an erosion ε on L is an operator which commutes with the
infinum:

ε(
∧

ai) =
∧

ε(ai) {ai} ∈ L .

With every dilation δ is associated a unique adjoined erosion ε, by the fol-
lowing equivalence

ε(a) ≥ b ⇔ a ≥ δ(b) a, b ∈ L .

The composition product γ = δ ◦ ε is an opening, it is said to be derived
from dilation δ. By many respects, dilations and connected classes interact.
In this section and in the next one (i.e. 3.2), we propose to analyze some of
these effects.

Proposition 8 Let L be a complete lattice, and S be a sup-generating family
of co-primes in L. Suppose that L is equipped with a connected class C that
contains S. If an extensive dilation preserves the connectivity over class S,
i.e. if δ(x), x ∈ S, is connected, or, equivalently δ : S → C, then δ preserves
connectivity over the whole connected class C, i.e. δ : C → C.

Proof. For z ∈ C and x ∈ S ∩M z, we have x ≤ δ(x)
∧
z and as both

δ(x), z ∈ C, we deduce that δ(x)
∨
z ∈ C. Now z =

∨
(S ∩M z), so that

δ(z) =
∨
{δ(x), x ∈ S ∩M z} and as δ is extensive, z ≤ δ(z), so that

δ(z) = δ(z)
∨
z = (

∨
{δ(x), x ∈ S ∩M z})

∨
z

=
∨
{δ(x)

∨
z, x ∈ S ∩M z}

(7)

As z ≤
∧
{δ(x)

∨
z, x ∈ S ∩M z} and each δ(x)

∨
z ∈ C, we deduce that the

right member of eq. 7 is connected, that is δ(z) ∈ C. Q.E.D.
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Remark 1. The extensivity of δ is not always necessary. For example, in
the Minkowski addition

δ(X) = X ⊕A, = ∪ {x+ a ; x ∈ X, a ∈ A} X,A ∈ P(Rd),

translation invariance compensates for extensivity. Indeed, choose a ∈ A;
then A−a contains the origin and dilation by A−a is extensive. If X and A

are connected, then so are Xa and A−a, and by Proposition 8, X ⊕ A = Xa

⊕A−a is connected. We can state

Proposition 9 Let E be Rd or Zd, equipped with an arbitrary connected
class C. When A and X belong to C, then X ⊕A is C-connected too.

Remark 2. We will illustrate proposition 8 by taking the case of binary
standard dilations. They are used in all morphological software packages as
substitutes for Minkowski additions, whereas they are not translation invari-
ant. In two dimensions for example, Z stands for a rectangle in the 2-D space,
provided with the usual connectivity. Then the standard dilation of X by A

is defined by the relation

δ (X) = [(X ∩ Z)⊕A] ∩ Z = ∪ [Ax ∩ Z, x ∈ X ∩ Z] , X ∈ P (Z) .

It is a dilation in the lattice-theoretical sense, i.e. it distributes the supremum
operation ∪.

Proposition 10 In Rdor Zd the extensive standard dilations by convex sets
preserve connectivity on P (Z).

Proof. Let A be a convex set, take a ∈ A and write B = A−a ; for every
X ∈ P (Z) , δ (X) = (B ⊕Xa) ∩ Z is the union of all By ∩ Z for y ∈ Xa.
As By and Z are convex, their intersection By ∩ Z is connected. Now Xa ∈
P (Za), and applying prop. 8 to P (Za), it follows that δ preserves connectiv-
ity on subsets of Z. Q.E.D.

Among other things, the proposition teaches us that the implicit assim-
ilation of Minkowski addition to standard dilation, which is often found in
literature, turns out to be somewhat improper as soon as the structuring
elements are not convex.

We will conclude this section by extending a classical result of Euclidean
morphology, but which remains valid for any C-connectivity.
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Proposition 11 Let L be a complete lattice, equipped with a connection C.
Then, for any dilation δ on L, that preserves connectivity and for all a ∈ L,
the adjoined erosion ε and opening γ treat the connected components of a

independently of one another.

Proof. Let a ∈ L, having connected components ci, i ∈ I. By increasingness,
we have

∨
ε (ci) ≤ ε (a). To show the reverse inequality, consider x ∈ C, with

x ≤ ε (a). By adjunction, we have δ(x) ≤ a. But δ(x) is connected, i.e. from
corollary 3, δ(x) ≤ ci for some i. Hence by adjunction x ≤ ε(ci) ≤

∨
ε (ci),

and, since class C is sup-generating, ε (a) ≤
∨
ε (ci). This achieves the first

part of the proof. From γ = δε, and since δ distributes the supremum, we L

γ (a) = δ
(∨

ε (ci)
)

=
∨

δε (ci) =
∨

γ (ci)

Q.E.D.

3.2 Second generation connectivity

Dilations can be used to remodel connected classes. Starting from a first
class C, of connected openings {γx , x ∈ C}, we may try and cluster some
disjoint connected components into new ones. The approach which follows
generalizes, and improves, Serra’s proposition 2.9, in [9]. We will begin with
a general, and rather immediate, property.

Proposition 12 Let C be a connection on lattice L, and δ : L → L be an
extensive dilation that preserves C (i.e. δ (C) ⊆ C). Then the inverse image
C ′ = δ−1 (C) of C under δ is a connection on L, which is richer than C.

Proof. By definition, class C ′ is the family of elements x′ such that δ (x′) ∈
C. Since δ preserves C, we have C ′ ⊇ C hence 0 ∈ C ′ and also C ′ is sup-
generating. Let x′i ∈ C ′ , with

∧
x′i 	= 0. By extensivity of δ,

∧
δ(x′i) ≥

∧
x′i

is a fortiori 	= 0. Since δ(x′i) ∈ C, we have δ(
∨
x′i) =

∨
δ(x′i) ∈ C, therefore∨

(x′i) ∈ C ′ . Q.E.D.

This first result may be made more precise by introducing the adjoint
erosion ε and opening θ = δε, whose family of invariant elements is Bθ.
Remark that Bθ is nothing but δ (L), i.e. the et of the δ (a) for a ∈ L. Since
δ distributes the supremum, for every sup-generating family S of L, δ (S) is
a sup-generating family of Bθ = δ (L).

18



Proposition 13 When C ′ is the connection defined by proposition 12, then
δ (C ′) equals Bθ ∩ C and is a connection over Bθ.

Proof. x′ ∈ C ′ ⇒ δ (x′) ∈ C, moreover, as a dilate, δ (x′) is also an invariant
set of θ, hence δ (C ′) ⊆ C∩ Bθ. Conversely, if z ∈ Bθ ∩ C, then z = δ (a) ∈
C for an a ∈ L, hence a ∈ C ′. Hence δ (C ′) = Bθ ∩ C.

To prove that δ (C ′) is a connection over Bθ, note first that since C ′ ⊇ C

is sup-generating, by the above remark δ (C ′) is also sup-generating (and
0 = δ (0) ∈ Bθ ∩C). Let bi ∈ δ (C ′) with ⊥bi 	= 0, where ⊥ stands for the inf
symbol in Bθ. Since ⊥bi = θ (

∧
bi), we have a fortiori

∧
bi 	= 0, hence

∨
bi ∈

Bθ ∩ C = δ (C ′), which achieves the proof. Q.E.D.

The last two propositions are already instructive, but they do not inform
us about the relations between the connected component of some a ∈ L and
its image δ (a). To go further, we need an assumption of distributivity over
L, as it appears in the following lemma.

Lemma. If lattice L is infinite
∨

-distributive, and if C and C ′ are two con-
nections on L with C ⊆ C ′, then for all elements y ∈ L, every connected
component x′ of y (according to C ′) is the supremum of the connected com-
ponents xi (according to C) that it majorates.
Proof. Let x′i, i ∈ I and xj, j ∈ J the C ′ and C connected components of
y. Since C ⊆ C ′, each xj ∈ C ′, hence is majorated by one and only one
C ′-connected component, say x′

i(j), and xj
∧
x′i = 0 for i 	= i(j) (corollary

of theorem 3). Conversely, each x′i majorates the xj, j ∈ J(i) and remains
separated from the others. Thus we may write :

x′i = x′i

∧
y = x′i

∧(∨
xj

)

and , since L is infinite
∨

-distributive:

x′i =
∨

(x′i
∧

xj , j ∈ J) =
∨

(x′i
∧

xj , j ∈ J (i)) =
∨

(xj , j ∈ J (i))

which achieves the proof. Q.E.D.

We now come back to the dilation of propositions 12 and 13, and we
try to interpret the connected components of δ (a) in terms of images of the
connected components of a. We will proceed in two steps :
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Proposition 14 Suppose that L is infinite
∨

-distributive. Let a ∈ L and
y = δ (a). Then the δ (C ′)-components of y (in lattice Bθ) coincide with the
C-components of y in lattice L.

Proof. Let z∗i , i ∈ I be the δ (C ′)-components of y in Bθ and zj, j ∈ J

be the C-components of y in L. Since the z∗i ∈ C for each j ∈ J, we have
either z∗i ≤ zj or z∗i

∧
zj = 0. Put I(j) = {i, i ∈ I, z∗i ≤ zj} . Given j, for

i ∈ I\I(j) we have zj
∧
z∗i = 0 so that

zj = zj
∧

(
∨

z∗i , i ∈ I ) =
∨

(zj
∧

z∗i , i ∈ I ) =
∨

(zj
∧

z∗i , i ∈ I (j)) .

Now z∗i ∈ Bθ which is closed under
∨

, hence zj ∈ Bθ and also zj ∈ Bθ ∩C =
δ (C ′) . But if zj ∈ δ (C ′) , we have (in lattice Bθ) zj ≤ z∗i for one of the
δ (C ′)-components of y. Therefore, class I(j) comprises one index i only, and
we have zj = z∗i for that index i. Q.E.D.

Theorem 4 Let C be a connection on an infinite
∨

-distributive lattice L,
and δ : L → L be an extensive dilation with δ (C) ⊆ C. Then the C-
component of δ (a) , a ∈ L, are exactly the images δ (y′i) of the C ′-components
of a, where C ′ is the connection C ′ = δ−1 (C). Thus, δ induces a bijection
between the connected components of C ∩B0 and those of C ′.

Proof. Let us compare z∗i , as defined in the previous proposition, with the
C ′-components y′j of a. Since δ

(
y′j
)
∈ δ (C ′), we observe, as previously, that

z∗i =
∨{

δ
(
y′j
)

: δ
(
y′j
)
≤ z∗i

}
= δ

∨{
y′j : j ∈ J ′

i

}

By putting y∗′i =
∨{

y′j : δ
(
y′j
)
≤ z∗i

}
, we obtain δ(y∗′i ) = z∗i ∈ Bθ∩C. There-

fore y∗′i ∈ δ−1(Bθ ∩ C) = C ′. Since y∗′i ≤ a, this implies that y∗′i is one of the
y′j , j ∈ J ′

i , which achieves the proof. Q.E.D.

Corollary 4 If γx stands for the connected opening associated with connec-
tion C and νx for that associated with C ′, we have

νx (a) = γxδ (a)
∧

a when x ≤ a ; νx (a) = 0 when not
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Proof. Let x ∈ C\ {0} such that x ≤ a. By theorem 4, δνx (a) is a C-
connected component of δ (a), and as δ is extensive, x ≤ νx (a) ≤ δνx (a). So
δνx (a) = γxδ (a). As νx (a) ≤ δνx (a) and νx (a) ≤ a, we get νx (a) ≤
δνx (a)

∧
a. Let y ∈ C\ {0}, with y ∈ δνx (a)

∧
a. Then δνy (a) = γyδ (a)

as before.Thus, 0 < y ≤ γxδ (a
∧
γyδ (a)), and so γxδ (a) = γyδ (a), that is

δνx (a) = δνy (a). But δ is a bijection (theorem 4), hence νx (a) = νy (a), and
y ≤ νx (a). Since C is sup-generating, we get δνx (a)

∧
a ≤ νx (a), and the

equality follows. If x 	≤ a, then νx (a) = 0 by axiom (v), which achieves the
proof Q.E.D.

Comments

a) b)
Figure 3 a) Partial view of the city of Nice b) Isolated houses

1/ Although the lemma does not really require infinite
∨

-distributivity, the
next two steps demand it. As a counter example, consider the lattice of the
u.s.c. functions R→[01] and take its impulses for connection C. Let δ be the
dilation defined by

δ(ix,t) = ix,1 when x is rational

δ(ix,t) = ix,t when not

(Impulsions have been introduced in eq. 2, above). Dilation δ satisfies the con-
ditions of theorem 4, and the connection C ′ = δ−1 (C) it induces is identical

21



to C. Under δ, the function f = 0, 5 everywhere become f = 1 everywhere,
however for x ∈ R irrational, we have

δ(ix,0,5) = ix,0,5

i.e. the image of the pulse is not the pulse of the image. Theorem 4 does not
apply because of the lack of infinite

∨
-distributivity for the lattices of u.s.c.

functions.

2/ The connected openings νx of corollary 4 not only give the theoretical
access to their connected class, but also provide the actual algorithm which
extracts the components of a given X.

In practice, the openings νx characterize the clusters of objects from a
given distance d apart. Consequently, such an approach also provides a means
to extract the objects which are isolated. Imagine, for example, that we want
to detect in the city map of Nice X (fig. 3a) the houses whose distances
to their neighbours are ≥ 2d (the houses with large gardens, say). The two
necessary pieces of information are the dilate X ⊕ dB of map X, and the
skeleton by zones of influence skiz(X), which is made of all segments at
midway from neighbouring houses. If Y1 denotes a particle of X ⊕ dB which
is marked by skiz(X), then Y1 ∩ X is a cluster of houses, and if Y0 is a
particle of X ⊕ dB which misses skiz(X), then X ∩ Y0 is a house whose all
neighbours are at least from 2d apart. Fig. 3b shows the set of such houses
among those of fig. 3a.

We now illustrate theorem 4 by a second example on motion analysis. Fig.
4a comes from a time sequence of thirteen images. The camera is fixed and
the hand moves slightly up and down to make the ping-pong ball rebund.
In each image, the connected component ”ping-pong ball” is extracted and
followed in the space time projection of fig. 4b.

In the space × time product, this ball is obviously connected. It will turn
out to be also the case in fig. 4b if we use a dilation based connection (in the
sense of theorem 4) by a time segment of size 15. But if we take a smaller
size, 10 say, we generate three clusters (in grey in fig. 4b). They correspond
to the positions when the speed is low. The remainder is made of six isolated
particles, corresponding to a higher speed of the ball motion.
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a) b)
Figure 4 a) First image of a sequence;

b) Space×Time repesentation of the ”ping-pongball” connected components.
In a dilation based connection,

the three clusters in grey are considered as particles. They correspond to the
slow motions

3.3 Filtering and connections : semi groups

We noticed, in introduction, the considerable use of connectivity for filtering
purposes, in the recent past years. This is due to two series of properties
which are satisfied in that case, namely semi-groups and strong filters. In this
section, we approach the first ones in the general framework of the lattices.
The second ones will be developed in the next section, in the set oriented
case.

First of all, we will introduce the two major notions that we need for the
following, namely reconstruction openings (and closings) and clean operators.

Definition 5 Let C be a connection on lattice L, and γT be a trivial opening
on L (i.e. such that either γT (a) = a or γT (a) = 0). Then the supremum of
the γT γx over class C, i.e.

γ =
∨
{γTγx , x ∈ C} (8)

is an opening called reconstruction opening with respect to criterion T . (This
follows from the fact that γTγx is clearly an opening, and that the supremum
of openings is still an opening.) The reconstruction closings are introduced
similarly, by duality.
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In set oriented cases, the various operators that can only keep or remove
particles according to markers, or according to their sizes, their inscribable
discs, or again some Ferret diameters, belong to the family of the reconstruc-
tion openings. Similarly, when numerical functions are treated via their cross
sections, the area openings in L.Vincent’s sense [16], or the volume ones,
in C. Vachier’s sense [23] are also examples of reconstruction openings. A
number of properties of the γx extend to these openings, as we will see.

We focus now on the increasing operators that modify or possibly suppress
connected components, but never create new ones.

Definition 6 Given a connection C on lattice L, an operator ψ : L→ L is
clean when for all a ∈ L and all x ∈ C\ {0}, the following implication is true

x ≤ ψ(a) ⇒ a
∧

γxψ(a) 	= 0 . (9)

Typically, in P(E), the complement mapping X → Xc, X ⊆ E is not
clean. But there exist also increasing operations

a) b) c) d)

Figure5 Set X is the tomahawk a) and set B a square. For connection
C,whose elements are the sets open by B, plus the points, set X is not con-
nected, but composed of the two upper squares in dark grey in b), plus an
infinity of isolated points, in light grey in b). Let γ (resp.ϕ) stand for the
opening (resp.closing) by reconstruction that removes the point grains (resp.
pores) in connection C. The filtered version ϕγ(X) of set X is shown in c);
it differs from ϕγ(X ∨ ϕγ(X)), which is shown in d) Thus, operator ϕγis
not idempotent.

that are not clean. Take for example the above connection (f), of section
2-3, and apply it to the binary tomahawakof fig. 5a by taking for B the unit
square. If we close the set in dark gray, in fig. 5b by a square large enough,
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the central channel is filled up, see fig. 5c. However, for the connection we
have chosen, the two initial particles are not clustered, and each point of
central channel constitutes a distinct connected particle, i.e. which is not
adjacent to the other points of the channel. Implication (9) is not satisfied
for any x belonging to the channel.

When dealing with closings ϕ, for example, it is always possible to build
clean operators. It suffices to take the restriction of ϕ(a) to those of its
components which are larger than a component of a. This restriction, clean
by construction, is still a closing. One will notice also that a same operation
on L may be clean or not according to the connection to which it refers.
Coming back to the closings, we may state the following proposition.

Proposition 15 Let C be a connection on an infinite
∨

-distributive lattice
L, ϕ be a closing and γ be a reconstruction opening, both on L. If ϕ is clean,
then

γϕγ = ϕγ or equivalently γϕ ≥ ϕγ or again ϕγϕ = ϕγ (10)

Proof. Since γ is extensive, relation (9) of cleanness of ϕ may be rewritten
as follows

γxϕ (a) 	= 0 ⇒ ∃y : y ≤ γy (a) ≤ γxϕ (a) = γyϕ (a)

Take γ (b), b ∈ L, for element a, and compose both sides of the last inequality
by γT , we obtain

γT γyγ (b) ≤ γT γxϕγ (b) (11)

Now by idempotence of γ, we have γ (b) = γ2 (b) =
∨

z
γTγzγ (b) ; by

infinite
∨

-distributivity γyγ (b) = γyγ (b)
∧
γ (b) gives

γyγ (b) = γyγ (b)
∧[∨

z

γT γzγ (b)

]
=
∨
z

(
γyγ (b)

∧
γT γzγ (b)

)

and by axioms of connected openings, this gives

γyγ (b) = γyγ (b)
∧

γTγyγ (b)
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that is γyγ (b) = γT γyγb 	= 0. Therefore the right member of (11) is non zero,
i.e.

γT γxϕγ (b) = γxϕγ (b)

hence γϕγ (b) =
∨
{γTγxϕγ (b) , x ∈ ϕγ(b)} =

∨
γxϕγ (b) = ϕγ(b). Finally,

according to criterion 6.6 in [35], γϕγ = ϕγ is equivalent to ϕγϕ = γϕ, and
to γϕ ≥ ϕγ. Q.E.D.

This proposition governs the semi-group structure of the alternating se-
quential filters Mi and Ni based on reconstruction granulometries {γi}and
clean anti-granulometries {ϕi}. One knows [9, ch. 10] that given a granulom-
etry {γi} and an anti-granulometry {ϕi} , both operators

µi = γiϕi and νi = ϕiγi

are filters, and satisfy the inequalities [33, p. 205]

j ≥ i⇒ µj µi ≤ µj µi µj ≥ µj ; νj νi ≥ νj νi νj ≤ νj

Are also morphological filters the composition products :

Mi = µi µi−1.... µ1 ; Ni = νiνi−1.... ν1 .

The latter are called alternating sequential filters. They satisfy the absorption
law [33, p. 208][24]:

j ≥ i ⇒ MjMi = Mj and MiMj ≥Mj

NjNi = Nj and NiNj ≤ Nj

(12)

In the present situation these properties are reinforced by the following
ones

Proposition 16 Let C be a connection on an infinite
∨

-distributive lat-
tice L, {γi} be a granulometry by reconstruction on L, and {ϕi} be an anti-
granulometry of clean closings. Then we have µi ≥ νi and

j ≥ i implies µiµj = µj and νiνj = νj

and the alternating sequential filters Mi and Ni satisfy a semi-group structure
of law

MiMj = MjMi = Mmax(i,j) (id. for Ni) (13)
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Proof. We showed in Proposition 15 that for every i, j we have γjϕi ≥ ϕiγj ;
in particular for j = i this gives µi ≥ νi. We have then for j ≥ i

γjϕj = γiγjϕiϕj ≥ γiϕiγjϕj ≥ γjϕj

that is γjϕj = γiϕiγjϕj , in other words µj = µiµj . Similarly, νj = νiνj. Com-
bining this with (12), (13) follows. Q.E.D.

Proposition 16 has been stated for discrete increments i. When the ϕi’s
and γi’s are ↓continuous, it extends to real positive parameters by using the
technique developed in [9, Chap. 10]. Physically speaking, the semi-group
gives a meaning to the notion of slice [i, j], or of power spectrum, in the
sense that if i ≤ k ≤ j, then filtering Mk is not affected by smaller filterings
(MiMk = Mk) and does not modify larger ones (MjMk = Mj) .

3.4 Connected filters on P(E)

In this section, we restrict ourselves to lattices L = P(E), where E is an
arbitrary space. The properties we aim at finding, such as the strength for
filters, extend from the sets of E to the functions f : E → T where T is an
arbitrary lattice. Indeed, as soon as they are satisfied on the cross sections
of such functions, they are also true for the corresponding flat operators.

When P(E) is equipped with a connection C, every set A ⊆ E forms
a partition of E into its own connected components, called the grains, and
those of its complement Ac, called the pores. This partition is not completely
free, for two grains, as well as two pores, cannot be too close from each other.
For example, if two connected components are described as adjacent when
they are disjoint but admit a connected union, then neither two grains nor
two pores can be adjacent (each of them is a maximum element) [26]. Below
we will use adjacency in the case of connected filters, which are introduced
as follows :

Definition 7 An operator ψ : P(E) → P(E) is said to be connected for
connection C when for each A ∈ P(E), the partition associated to ψ(A) is
coarser than that of A. In other words, we have for any x ∈ E :

γxψ (A) = [∪γi (A) , i ∈ I] ∪ [γj (Ac) , j ∈ J ] (14)
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for some families of points I ⊆ A and J ⊆ Ac. In particular when ψ is
increasing and idempotent (i.e. a morphological filter), one says that ψ is a
connected filter.

The connected filters turn out to be the corner stone in a number of seg
mentation problems. The term, and the above definition, have been intro-
duced by Serra and Salembier [10], but some of these operators go back to the
beginning of the 80’s (e.g. the geodesic operations in [6] or the reconstruction
openings in [4]). The more recent developments on grain operators, due to
H. Heijmans [41] belong to this class of notions.

Proposition 17 Consider a closing by reconstruction ϕ1 on P(E) which is
clean for a connection C and similarly, an opening by reconstruction γ1 on
P(E) which is the dual of a clean closing . Then, the alternating filters
γ1ϕ1 and ϕ1γ1 and the derived sequential alternating filters are also clean for
connection C.

Proof. Saying that point x ∈ γ1ϕ1 (A) is equivalent to saying :
1/ x ∈ ϕ1 (A), which implies A ∩ γxϕ1 (A) 	= ∅ (ϕ1 clean)
2/ the grain of ϕ1 (A) marked by x is not eliminated by γ1, i.e.:

γxϕ1 (A) = γ1γxϕ1 (A) = γxγ1ϕ1 (A) .

By combining the two statements, we have

x ∈ γ1ϕ1 (A) ⇒ A ∩ γxγ1ϕ1 (A) 	= ∅

(Similar proof, by duality, for ϕ1γ1).
Consider now two pairs {ϕ1, γ1} and {ϕ2, γ2} of such filters, with ϕ2 ⊇ ϕ1

and γ2 ⊆ γ1. A point x belongs to γ2ϕ2γ1ϕ1(A) iff x belongs to a grain of
ϕ2γ1ϕ1(A) which is not suppressed by γ2. Now, γxϕ2γ1ϕ1(A) contains at
least one grain of ϕ1 (A) since ϕ2 is clean. Let it be γzϕ1(A). Since ϕ1 is
clean, we have γzϕ1(A) ∩A 	= ∅, hence γxϕ2γ1ϕ1(A) ∩ A 	= ∅ ; and since
γxϕ2γ1ϕ1(A) = γxγ2ϕ2γ1ϕ1(A), the proof is achieved. (Similar induction
when more than two indices). Q.E.D.

Remind that a morphological filter is defined as strong [35] when

ψ = ψ
(
I
∨

ψ
)

= ψ
(
I
∧

ψ
)
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or, equivalently, when for any A,B ⊆ E, such that

A ∩ ψ (A) ⊆ B ⊆ A ∪ ψ (A)

we have ψ (A) = ψ (B). This second formulation reveals the exceptional
robustness of the strong filters, which has no equivalent in the domain of
linear filtering. The following theorem relates the cleanness of some filters
by reconstruction with their strength.

Theorem 5 Let C be a connection on a lattice P(E), {γi} be a granulometry,

and {ϕi} be an anti-granulometry both clean and by reconstruction. Then

the alternating sequential filters Mn and Nn, of primitives {γi} and {ϕi} are

strong.

Proof. According to proposition 17, filter Mn is a clean operator. Hence,
every grain γxMn (A) contains a non empty collection {Gj} of grains of
A, plus possible pores of A, say {Pk}. If there are no pores, then clearly
Mn [A ∩ γxMn (A)] = Mn γxMn (A) = γxMn (A).

Suppose that family {Pk} is non empty. Since each pore Pk is adjacent to
a grain Gj, each time a Pk disappears under the action of some ϕi(1 ≤ i ≤ n),
it is absorbed by a Gj . In turn, this Gj may vanish, but it will be permanently
reconstituted by a further ϕi, since the internal elements of Mn (A) evolve
independently of the outside ones, and precisely lead to the unique grain
γxMn (A). Therefore, in any case we obtain, finally :

Mn (A ∩ γxMn (A)) = γxMn (A)

By summing up in x over Mn (A), one can write :

Mn(A∩Mn (A)) = Mn [∪(A ∩ γxMn (A))] ⊇ ∪Mn(A∩γxMn (A)) = Mn (A) .

One proves similarly that Nn (A ∩Nn (A)) ⊇ Nn (A) ; thus the proof is
achieved. Q.E.D.

Theorem 5 gives a better understanding of the connected filters, and
also of some undesirable connections. For example, it rejects the closing by
reconstruction based on the above connection (f), of section 2-3:

C =
{
x, x ∈ R2

}
∪{A⊕B, A ⊆ E, A ⊕B arcwise connected component}
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where B is the closed unit disc. Such connections cannot serve for building
strong alternating filters because they may generate point grains without
adjacent pores (see fig. 5).

The general result of theorem 5 admits weaker forms. In particular, if the
closure ϕi’s are clean, but not necessarily connected, then Mn is a

∧
-filter

and Nn a
∨

-filter. Also, the theorem is still true when the ϕi’s are clean and
connected, but with respect to a connection C ′ ⊆ C, where C is the connection
associated with the γi’s.

Another result of interest, that we give here without proof is the follow-
ing. Take a granulometry {γλ , λ > 0} of clean openings by reconstruction
(in connection C) and an anti-granulometry {ϕ′

λ , λ > 0} of clean closings by
reconstruction (in connection C ′). If C ′ ⊆ C, then

∧{
γµϕ

′

µ , 0 < µ ≤ λ
}

and∨{
ϕ′

µ γµ , 0 < µ ≤ λ
}

are strong filters. This result extends a beautiful the-
orem established by J. Crespo in [26], when C = C ′.

This impressive collection of strong filters is valid, not only for the set
oriented case, but also for the filters which are derived from them for the
functions f : E → L (L arbitrary lattice), via the cross sections. And the
extension does not require the need of any connectivity over the functions
f : E → L.

4 Application to lattices of numerical func-

tions

4.1 Numerical lattices of numerical functions

This section is a search for nice connections and connected operators, in the
important case of numerical functions. The arrival space is thus a totally
ordered set. We shall suppose it either finite, or isomorphic to R or to Z (e.g.
[0, 1], [0,+∞], etc.). We will denote L this numerical lattice. Concerning the
starting space E, we assume that it is metric, with distance d, and that P(E)
is equipped with connection C. These definition and properties, about L and
E, are valid for the whole section 4.

The set LE of all mappings f from E into L, when provided with the
product order :

f ≤ g iff f(x) ≤ g(x) for all x ∈ E,
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becomes in turn a complete lattice, where the sup and the inf are defined by
the relations

(
∨

fi) (x) =
∨

fi (x) (
∧

fi) (x) =
∧

fi (x) (15)

(we keep the same symbols for ordering, supremum and infinum in both
lattices L and LE). The support of a function is the set of points x where
f(x) > 0 (strictly). The support of function f = 0 is the empty set; that of
a pulse is reduced to one point.

We are often more interested in some sublattices of LE, rather than in LE

itself. A sublattice L′ ⊆ LE is a class of functions which is closed under
∨

and
∧

of LE and which admits the same extrema as LE itself. For example,
the Lipschitz functions Lk of module k are defined by

f ∈ Lk ⇔ |f (x)− f (y)| < kd (x, y) ∀ x, y ∈ E .

It can be proved [1][30] that class Lk is a complete sublattice of LE. More
generally, if we replace kd(x, y) by ϕ(d(x, y)) in the above inequality, were
ϕ : R+ → R+ is continuous at the origin, we delineate the class of the so-
called ”ϕ-continuous functions” [1]. For each ϕ, the associated ϕ-continuous
functions form a complete sub-lattice of LE, i.e. a lattice where

∨
and
∧

are generated by the numerical supremum and infimum at each point. It has
been proved that under broad conditions, usual operators, such as dilations,
openings, morphological filters, etc. map every ϕ-continuous lattice into an-
other one [40], and that

∨
and
∧

are continuous operators [30]. Moreover,
every function lattice where

∨
and
∧

are generated by the numerical ones
is totally distributive. As a consequence, theorem (4) on second generation
connections, or prop. (16), on semi-groups of filters do apply to them. We
shall call numerical lattices (of numerical functions) these types of lattices.

In contrast, in the same context, the class F of the upper semi-continuous
functions forms a complete lattice, where ordering and infinum are the same
as for LE, but where the supremum of {fi}is the closure of

∨
fi. Therefore,

F is not a sublattice of LE, and does not satify the conditions for theorem
(4) and prop. (16).

4.2 Two straightforward connections

For providing a connection with LE, the first straightforward approach con-
sists in extending to LE the connectivity associated with E, by taking as

31



connected functions (in LE) those with a connected support (in E). This
class comprises function f = 0 and the pulses, and satisfies axiom (ii). But it
is rather coarse : applied to visual scenes, it is likely to attribute them a sin-
gle component almost always (except perhaps for the stars in a sky scenery,
at midnight). In addition, the connected components γx (Xt (f)) , t ∈ L, of
the horizontal cross-section of f generate a function which completely differs
from the connected component of f at point x.

The second straightforward approach takes as a connected class all pulses
plus function f = 0. The three axioms of a connection are obviously satis-
fied. Then, for any pulse located at point x and of intensity t ≤ f (x), the
associated connected component of f is the pulse (x, f(x)).

Although they are formally correct, as connections, both miss the target
of being a shape and features descriptor.

4.3 Weighted partitions

In definition 4 of a partition, as given before, if we take P(E) for lattice
L, set E for element a, and the connection reduced to all points of E, we
meet again the classical definition of a partition D [9, p. 15], namely D is a
mapping from E into P(E) such that

∀ x ∈ E , x ∈ D(x)
∀ x, y ∈ E , if D(x) ∩D(y) 	= Ø then D(x) = D(y)

Partitions divide the space, but, by themselves, they do not tell anything
about possible parameters, or numerical entities, which may be associated
with their classes. To overcome this aspect, we will introduce now the notions
of a weighted set and of a weighted partition, in the framework of a given (but
arbitrary) numerical sublattice Gϕ of LE.

Given a modulus ϕ, associate, with every pair (D,g) ∈ P(E) × Gϕ, the
restriction gD of ϕ-function g to set D, i.e.

gD (u) = g (u) when u ∈ D

gD (u) = 0 when not

Thus, the usual indicator function of set D is replaced by the non constant
weight g. The numerical function gD may be considered as a weighted set.
As the doublet (D, g) spans P(E) × Gϕ, the set generated by the gD ’s is
denoted by Pϕ(E).
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Proposition 18 The set Pϕ(E) forms a complete lattice for the numerical
ordering ≤ ; in this lattice the supremum ! (gD)i of family {(gD)i} , i ∈ I,
is the smallest upper bound of

∨
(gD)i in Gϕ and the infimum is given by

" (gD)
i

= (
∧
gi)∩Di

.

[easy proof]
The notion of a weighted partition derives from that of a weighted set

just as a usual partition from that of a set

Definition 8 A weighted partition x→ (gD)x is a mapping ∆ from E into
Pϕ(E) such that

(i) ∀x ∈ E, x ∈ D (x)
(ii) ∀x, y ∈ E, either (gD)

x
= (gD)

y
or (gD)

x

∧
(gD)

y
= 0

The sub-mapping x → (gD)
x

is a partition D in the usual sense, and
f =

∨
{ (gD)

x
, x ∈ E} is a numerical function. Therefore, one can denote

the weighted partition ∆ by ∆ = (D, f). However, conversely, any function
f : E → T admits several representations as

∨
(gD)x. For example, for

ϕ = 0, any subset of the flat zone of f that contains a given point x may
serve as class D(x) jointly with the constant function g = f(x).

Theorem 6 Let Gϕ be a numerical lattice of functions E → L and L the
class of the weighted partitions of E, of base G. Then L is a complete lattice
for the product ordering

(f,D) # (f ′,D′) ⇔
f ≤ f ′ in LE

D ≤ D′ in D

In this lattice, the infimum "(fi,Di) of a family {fi,Di, i ∈ I} is given by the
doublet

(∧
fi
(
in LE

)
,
∧
Di (in D)

)
. The supremum !(fi,Di) admits

∨
Di

for partition, and in each class (
∨
Di) (x), is equal to the smallest function

of lattice G which is above the fi involved in (
∨
Di) (x).

Proof. Concerning the infimum ", we observe that partition
∧
Di is defined

by the intersections of the classes of the Di’s. In each class of this intersec-
tion, all fi are assimilable to elements of Gϕ. Since the inf in lattice Gϕ is
the numerical one, the restriction of

∧
fi to each class of

∧
Di is assimilable

to an element of Gϕ. Concerning the supremum, we observe that its small-
est possible partition is

∨
Di. Now, in every class (

∨
Di) (x), there exists a
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smaller element of Gϕ that is above
∨
fi, and since Gϕ admits a pointwise

supremum, this smaller element depends only on the fi that intervene on
class (

∨
Di) (x). Q.E.D.

The role of the pointwise supremum (or infimum) will be better under-
stood by means of a counterexample. Consider in R1, the family of functions
{fr , r > 0}, which are equal to 0 in ]−r,+r[ and to 1 outside. Take for par-
tition Dr all the points of ]−r,+r[ plus the outside (as a unique class). At
point x = 0, the supremum

∨
fr has a value 0. If we interpret functions

f = 1 and f = 0 as elements of the lattice G of the constant functions, then
! (fr,Dr) equals 0 at point x = 0. However, if both functions f = 1 and
f = 0 are interpreted as s.c.s. functions, then ! (fr,Dr) equals 1 at point
x = 0 : theorem 6 is no longer applicable.

In order to build connections on the weighted partitions lattice L, a con-
venient class is provided by the G-cylinders.

Proposition 19 Definition 9 Let G be a numerical lattice of LE, and C
a connected class on P(E). For any Y ∈ C and g ∈ G, the weighted partition
of function

hy,g(y) = g(y) when y ∈ Y

hy,g(y) = 0 when not

and of partition classes Y and {z} (for z ∈ Y c) defines the G-cylinder of
(connected) base Y and of values g.

In particular the pulses, equipped with the minimum partition d, are
G-cylinders for all lattices G.

Consider now the supremum in L of a family {hi = hyi,gi, i ∈ I} of G-
cylinders, whose infimum is not zero. Since ∩Yi is not empty ∪Yi is connected.
Now the partition whose classes are ∪Yi and all the points of (∪Yi)

c, is nothing
but

∨
Dhi

. By adjoining the function equal to the smaller G-bound of the hi

on ∪Yi, and equal to 0 elsewhere, we obtain the supremum in L of the hi.
Since this weighted partition is itself a G-cylinder and since the G-cylinders
form a sup-generating family (they contain the pulse cylinders) we may state

Theorem 7 Let G be a numerical sublattice of LE. The class Cg of the
G-cylinders, plus function 0, constitute a connection on lattice L.
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a) b)
Figure 6 a) Infrared image of a gaz burnern partly covered by a grid; b)
Mosaic image of connected regions in which the grey fluctuation does not

exceed 24 levels

The approach which has been developed here recovers as particular cases,
the two straightforward connections presented at the beginning of the section.
But it opens the way to a number of other connections, which turn out to
be extremely pertinent descriptors of the images. For example, take for G

the class G1 of the numerical ϕ-continuous functions whose modulus reaches
range h at a finite distance, d0 say. Each function of class G varies between
two bounds from h apart. Therefore, by applying base G to a numerical
function f , we obtain a segmentation of f into connceted zones where the
grey fluctuation is ≤ h. Fig. 6 illustrates such a ”jump connection” in the
digital framework by taking d0 = 1 and h = 24(between two neighbour
points, the function cannot jump by more than 24 levels).

Another interesting use of theorem 7 is the search for continuous zones in
a numerical function. Take for G the class G2 the functions whose modulus is
≤ αρ2, until ρ = ρ0, and is linear afterwards. Such a base allows to segment
numerical functions into zones in which the variation is continuous, in the
sense ”smaller than αρ2, for distances ≤ ρ0”. To illustrate this continuous
base G, we will take (fig. 7a) an image where one phase is relatively more
continuous than the others. But the histograms of the grey tones, taken from
the two phases are almost the same. Indeed, the segmentation of fig. 7a
according tothe above jump connection with h = 12, leads to the mediocre
result fig. 7b, whereas base G2 allows a better, but not perfect, segmentation

35



of the ”flat spots” (fig. 7c).Now by taking the the inf of these two connections,
which corresponds to class G = G1∩G2, we obtain the more satisfacory result
of fig 7d.

a) b)

c) d)

Figure 7 a) Electron micrograph of minerals; b) in white, the components
where the fuctuation is≤ 13 (poor selectivity) ; c) in white, the components
where the function is continuous d) in white, the components for the infimum
of the two previous connections ( which turns out to be a new connection)

Other similar illustrations could easily be provided (think for example to
Lipschitz functions for class G, or to colour image lattices). We will rather
conclude this section by taking for G the class of the constant functions.

Proposition 20 When the numerical lattice G is the class of the constant
functions from E into L, then the associated connection on L is formed by
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the zero function and the cylinders (stricto sensu) of connected bases, i.e. by
functions

hc,t(t) = t when y ∈ C

hc,t(t) = 0 when not

t ∈ L, C ∈ C.

The operations ! and " on the lattice L associated with the constant
functions are illustrated in fig. 8. Fig. 9 shows the cylindric supremum of
two cylinders, and also that the notion of a connection does not extend by
duality.

In the lattice L associated to constant functions, the openings by recon-
struction suppress cylinders according to some criteria. The results look like
sky scrapers on a flat plain. However, in the present situation, since we deal
with flat zones, we can alternatively introduce openings and closings by re-
construction, based on set connections. These set operators extend to flat
operators for the function of lattice L, as well as their nice filtering properties,
such as propositions 15 and 16 for example [10][26].

Such a favourable situation may occur only because the underlying con-
nection is based on the constant functions G. One can note also that the
passage from connected set operators to flat operators on numerical functions
do not really require increasingness for the said operations. Salembier and
Oliveras [27] on the one hand, and Breen and Jones, on the other hand [14]
have developed this point.

5 Hyperconnections, hypoconnections

5.1 Hyperconnections

Given a metric space E, the watersheds of a numerical function f : E → R

partition space E, and the restrictions of function f to each class of the
partition, namely the catchment basins, have a flavor of connected objects.
Can we transcribe this intuition by means of the above concepts? If we want
that the connectivity concept extends to notions such as the watersheds, we
need to relax axiom (ii) in the definition 3 of a connection. Instead of the
condition that the

∧
is not empty, we will replace

∧
by another increasing

mapping ⊥ from P(L) into L, which is smaller than
∧

, i.e. we will introduce
a more general axiom by putting
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(ii) To constraint ⊥, class C is conditionally closed under the supremum

X ⊆ C , ⊥X 	= 0 ⇒
∨

X ∈ C (16)

Note that every connection may be considered as a hyperconnection, but
the contrary is false. It is easy to check that axiom (iv), in theorem 3, which
characterizes the connection by means of openings, no longer applies. This
major feature makes the difference between this broader approach and that
of definition 3 : in the present case, all the properties involving partitions,
(those which are grouped in sect. 2.4) do vanish.

We will now use the notion of a hyperconnection to try and define formally
the watersheds of a relief. In order to be consistent with the role of

∨
in (eq.

16), we consider the watersheds of the maxima, and not of the minima, as is
usual in practice. To be sure of the existence of such maxima, we model the
reliefs as upper semi-continuous functions f from a compact zone K of the
Euclidean space Rd into [0,∞]. These functions are structured in a complete
lattice F , say, for the usual ordering [9]. Denote X(t) = {x : f(x) ≥ t} the
cross sections of f , and consider the class W of those functions f ∈ F
which admit a unique maximal connected component, called ”maximum”.
The horizontal cross sections of functions f ∈ W are either connected, for
the usual arcwise connectivity, or empty. Therefore, given a family {wi , i ∈ I}
in W , we have

∀t ∈ [0,∞] , (i∩Xi(t) 	= ∅ ⇒ i∪Xi(t) is connected) (17)

and

(∀t ∈ [0,∞] , i∪Xi(t) is connected) ⇒ i
∨
wi ∈ W (18)

We observe, in addition, that function f = 0 and all pulses belong to
W , and that ∀t ∈ [0,∞] , ∩Xi(t) 	= ∅ under the previous conditions is more
demanding than

∨
wi 	= 0. Hence, if we take the two conditions (17) and

(18) as constraint ⊥, we can state.

Proposition 21 In the lattice F of the u.s.c. function f : K → [0,∞], those
that admit a unique maximum generate a hyperconnection.

Since W is a hyperconnection, the connected components wi, i ∈ I of a
given function f may overlap. But we can restrict, conventionally, wi to its
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connected part wi
∗ which reaches the i-th maximum and which is higher than the other wj of
f , j 	= i.

Then the wi
∗ are nothing but the usual catchment basins of f , and their supports are
the watersheds, whose complement of the union generates the divide zones.
Note that these zones may be thick ; for E = R

2 for example, they are not
reduced to lines, as soon as a large flat zone separates two catchment basins.
Also, the mapping f → wi is an opening (unlike f → w∗

i ), and this may allow
to construct watershed based filters.

One may remark the simplicity and the generality of the present approach.
First of all it is formal, and not a concealed algorithm, as several definitions
for the watershed. Second, it does not assume derivability conditions for
functions f (as in Najman and Schmitt approach [38]), neither a metric on
E (as in Meyer approach [39]), and it treats the question of the flat stairs,
that all other formal approaches have avoided. Finally, it generalizes the
notion introduced by Salembier and Oliveras [27] for the distance functions,
under the name of ”pseudo-connectivities”.

5.2 Hypoconnections

Instead of relaxing axiom (ii) of a connection, we can also think of relaxing
axiom (i). This may be useful in particular when we deal with lattices of
mappings, such as the lattice L′ of the increasing transformations ψ from
an initial lattice L into itself. In this kind of lattices, the condition for a
connection to be sup-generating may be too demanding. We will see how to
weaken it, and, as a counterpart, what do we lose by weakening it. Subdivide
the two roles devoted to a connection, namely to serve as markers, and to
be conditionally closed under sup, by dispatching them to the two different
classes of markers and of a hypoconnection.

Definition 10 Let L be a complete lattice. A class M ⊆ L is said to be
marking when 0 /∈ M and when every non zero element A ∈ L contains at
least one x, x ∈M . The elements of M are called markers.

The marker class M , sufficient to point on every element of lattice L,
opens the way to the notion of a hypoconnection.
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Definition 11 Let L be a complete lattice, and M be a marking set on L.
A hypoconnection C over L is a class in L such that

(o) 0 ∈ C
(i) C contains the markers : M ⊆ C
(ii) for each family {Ci} in C, if

∧
Ci 	= 0 then

∨
Ci ∈ C.

Note that a connection C is a hypoconnection with C as a marking set.
Just as in the case of connections, class C is associated with a characteristic
opening family {γx}. More precisely, we have the following theorem

Theorem 8 The datum of a hyperconnection C, of markers M , is equivalent
to the family of openings γx, x ∈ M , such that (iii) for all x ∈ M we have
γx(x) = x

(iv) for all a ∈ L, and all x, y ∈ M , the open elements γx(a) and γy(a)
are equal or disjoint,

(v) for all a ∈ L and for all x ∈M , we have x 	≤ a⇒ γx(a) = 0.

We find again theorem 2 of the connections. Similarly, corollary 1 and
proposition 3 extend to hypoconnections. The trouble comes with the parti-
tioning properties, that now fail. An element of L cannot always be segmented
into its hypocomponents. This negative property also affects the second gen-
eration and the filtering (above sections 3.2 and 3.3 respectively).

It would remain to establish an inventory of the properties which are
still valid, and of their adequation to lattices of operators. We shall not do
it here. Nevertheless, the two attempts of hyperconnections and hypocon-
nections show that the notion of a connection realizes a good compromise
between the amount of the assumptions needed and the pertinence of the
properties obtained .
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This last result confronts us with a sort of reverse problem, since what is
given, in practice, is only a numerical function f . Some partition(s) D acting
on f has (have) to be found. But how ?

Consider a function f ∈ LE, and join it to the coarse partition of E, in
order to generate an element of L. Given x ∈ E, denote by Gx the class of
the G-cylinders whose weight hy,g is equal to f over their supports Y , i.e.

hy,g (y) = f (y) y ∈ Y .

Class Gx is not empty, since it contains the pulse G-cylinder ((x, f (x)), d).
Let {Yi} = {Yi (x)} the family of the associated supports. All Yi (x) contain
point x. According to Zorn theorem, each ordered family {Yi,j} in {Yi} admits
a maximal element Yj . Denote D(x) the intersection ∩Yj of all maximal
element Yj associated with family {Yi}. We have x ∈ D(x) ; moreover if
z ∈ D(x), and if D(z) stands for the homolog maximal intersection for z,
then D(x)∪D(z) is connected, and function f is assimilable to a G function
over the support D(x)∪D(z). Therefore all maximal elements Yj(x) contain
D(x)∪D(z), as well as the maximal element Yj, (z), which results in D(x) =
D(z). Hence we may state

Theorem 9 Let f ∈ LE be a numerical function, G be a numerical sublattice

of LE, and {Yi (x)} , x ∈ E, be the family of the connected zones containing

x, and where f is assimilable to a G-function. Then the intersection D(x) of

the maximal element of {Yi (x)} is the class at point x of a partition D which

segments f into piecewise G-functions.

It follows directly from the theorem that the weighted partition (f,D)
admits as connected components the G-cylinders of bases Dx and weights :
f(y), y ∈ Dx. So theorem 7 provides at once both a partition and the corre-
sponding connected components. The obtained partition is neither optimal
nor necessarily unique, but it carries an actual physical soundness.
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