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Abstract

Classically, connectivity is a topological notion for sets, often intro-
duced by means of arcs. An algebraic definition, called connection, has
been proposed by Serra to extend to complete sup-generated lattices. A
connection turns out to be characterized by a family of openings parametrized
by the sup-generators, which partition each element of the lattice into
maximal components. Starting from a first connection several others may
be designed, e.g. by applying dilations.

The present paper applies this theory to numerical functions. Every
connection leads to segmenting the support of the function under study
into regions. Inside each region, the function is ¢-continuous, for a mod-
ulus of continuity ¢ given a priori, and characteristic of the connection.
However, the segmentation is not unique, and may be particularized by
other considerations (self duality ; large, or low, number of point com-
ponents, etc.). These variants are introduced by means of examples for
three different connections : flat zones, jumps, and smooth regions. They
turn out to provide remarkable segmentations, depending only on a few
parameters.

In the last section,some morphological filters based on flat zone con-
nection, are described, namely opening by reconstruction, flattenings and
levellings. Keywords : connec-
tivity, complete lattice, mathematical morphology, connected operator,
flattening, leveling, grain operator, segmentation.

1 The concepts of connectivity

1.1 Classical connectivity and image analysis

In mathematics, the concept of connectivity is formalized in the framework
of topological spaces and is introduced in two different ways. First, a set is
said to be connected when one cannot partition it into two non empty closed
(or open) sets [ CHOG66]. This definition makes precise the intuitive idea that
[0,1]U[2, 3] consists of two pieces, while [0, 1] consists of only one. But this first



approach, because it is very general, does not derive any advantage from the
possible regularity of some spaces, such as the Euclidean ones. In such cases,
the notion of arcwise connectivity turns out to be more convenient. According
to this notion, a set A is connected when, for every a,b € A, there exists a
continuous mapping % from [0,1] into A such that ¥(0) = a and (1) = b.
Arcwise connectivity is more restrictive than the general one ; however, in R%,
any open set which is connected in the general sense is also arcwise connected.

A basic result governs the meaning of connectivity ; namely, the union of
connected sets whose intersection is not empty is still connected :

{A; connected} and {NA; # O} = {UA; connected} (1)

In image analysis, one often defines digital connectivities based on the Eu-
clidean notion of arcwise connectivity, by introducing some elementary arcs
between neighboring pixels. This results in the classical 4- and 8-square connec-
tivities, as well as the hexagonal one, or the cuboctahedric one in 3-D spaces.
During the seventies, these connectivities have been extensively used to design
thinning and thickening operations [ ROS70] [ DIG78] [ SER82].

Is such a topological approach to connectivity well adapted to image analy-
sis? We can argue that

a/ each topology, hence each metric, imposes a unique connectivity, so that
by changing the unit disc in the digital plane (square, hexagon or diamond) we
obtain three different connectivities. However, they all suppose to represent a
same and unique Euclidean concept ;

b/ The plane sectioning of 3-D sets, or the time sampling in image sequences,
tend to disconnect objects, or trajectories. Topological connectivity, or its dig-
ital avatars, does not help very much to reconnect them on sections ;

¢/ In applied sciences, a ”good” definition should be operating, i.e. should
introduce specific operations for image processing, such as segmentations and
filterings. The criterion of ”connectivity preservation”, used in thinnings may
be quoted here, but it is a passive one and cannot by itself characterize any
connectivity ;

d/ The whole classical approach (i.e. discrete and more general cases) holds
on sets. In Image Analysis, we also deal with numerical and vector functions,
to which a convenient approach should also apply.

1.2 The notion of a connection

The previous three criticisms led G. Matheron and J. Serra to propose a new
approach to connectivity, in 1988 [ SER88] where they take not (1) as a conse-
quence, but as a starting point.

Definition 1 (G. Matheron and J. Serra) Let E be an arbitrary non empty
space. We call connected class or connection C any family in P(E) such that
(o) D ecC
(i) forallz € E, {z} €C
(i) for each family {C;} in C, N C; £ implies UC; € C.



Based on this definition, any set C' of the connected class is said to be
connected. In addition, the empty set as well as the singletons {z},z € E are
always connected.

As we can see, such a definition does not involve any topological background.
The classical notions (e.g. connectivity based on digital or Euclidean arcs) are
indeed particular cases, but the emphasis is put on another aspect, that indicates
the following theorem ([ SER88], Chap.2) :

Theorem 2 The datum of a connected class C on P(FE) is equivalent to the
family {~,,x € E} of openings such that

(#i3) for all x € E, we have v, (z) = {z}

(iv) for all AC E, x,y € E, v,(A) and v,(A) are equal or disjoint

(v) for all AC E, and all x € E, we have v ¢ A= ~,(A) = 0.

In addition, each v, , as an opening on P(FE), is an increasing, anti-extensive
and idempotent oprator. Fig.la illustrates Theorem 2 : the set A under study
is shown in gray, and its connected component 7, (A4) at point z , also called
”grain”, appears in white. Many other connections could have been defined on
the same space, such as

(a) Connections based on extensive dilations (Theorem 10 ), or on closings
(Proposition 11). Both of them act by clustering the grains defined by a previous
connection. An example of connection by dilation is given in fig.2a and b, and
a connection by closing (but for numerical functions) is presented in fig.10 ;

(b) Given a partition of the space, all the subsets of each class of the partition
generate a connected class [ SER88]. This technique is used for obtaining the
”smooth path connection” in section 5, and is illustrated by fig.8a and b ;

(¢) In [ RON98], Ch. Ronse starts from a first connection in P (R?) and
proposes a new connected class generated by the points and the connected sets
opened by a disc B. If x € X oB, then v, (X) is the initial connected component
of X o B containing =, and when point € X\ X oB , then v, (X) = z. A digital
version of this so called ”connection by opening” is shown in fig.12a below, in
P (Z2) , with B the square of side two.

The reader will find a number of other instructive connections in [ RON98Jand
in [ HEI97]. Historically speaking, the number of applications or of theoretical
developments which was suggested (and permitted) by Theorem 2 during the
nineties is considerable. The references [ PAR92] [ SER93| [ VIN93] [ MARY4|
[ MEY94] [ CRE95] [ BREY6], among others, show that it has opened the way
to an object-oriented approach for segmentation, compression and understand-
ing of still and moving images. They also show how fruitful are the exceptional
properties of the connected filters.

But there is a paradox in that. On the one hand connected filtering has
proved its efficiency in applications which hold on grey or color images, but on
the other hand, the underlying axiomatics for connectivity (i.e. Definition 1
above), is strictly binary. An alternative (and equivalent) axiomatics has been
proposed by Ch. Ronse | RON98]; it contains, as a particular case, another one
by R.M. Haralick and L.G. Shapiro [ HAR92]; however, both approaches are
still set-oriented.



An extension from sets to the general framework of complete lattices has
been proposed by J. Serra [ SER98a]. The roundabout way which goes from
sets to functions via complete lattices is understandable : one of the tasks
was to generalize correctly the role of the points of the set case, and the sup
generators, which replace the points, are not, in turn, more generalized when
we go from functions to complete lattices.

The present paper aims at studying connections on numerical functions.
Such a goal may approach from two points of view. We can enter the scope
of the axiomatics developed for complete lattices and specify it for numerical
functions. This will be proposed in section 4. Alternatively, we can consider
that the above notion of a set connection is powerful enough, as it is, to yield
convenient segmentations (section 5) and filters (sections 6 to 8) on numerical
functions. But before exploring both ways, we remind briefly, in the second
section, the lattice notions needed in the following and, in the third one, we
summarize the major results concerning connections on complete lattices.

All proofs involved in sections 3 and 4 can be found in [ SER98a], except
that of proposition 11, which is new.

2 Reminder on lattices

A common feature to sets and numerical functions is that both satisfy the
algebraic structure of a complete lattice. Recall that a complete lattice L is
a partly ordered set in which every family {a; : ¢ € I} of elements admits a
least upper bound \/ a; called supremum of the a;’s and a greatest lower bound
N a; called infimum of the a;’s. Both bounds belong to L. In particular, the
supremum of all elements of L is called the unit and will be denoted by m ; the
infimum of all elements of L is called the zero and will be denoted by 0.

In this paper, the term ”lattice” always means ” complete lattice” and is de-
noted by the generic symbol L. The elements of L are denoted by small letters,
such as z, y, a, b... , whereas capital letters such as X, Y, A, B, ..., denote sub-
sets of L, i.e. elements of P(L). Such a notation, very practical in the general
case, is less suitable for P(E) lattices. In these cases, the two levels of E and
P(E) are usually distinguished by using small letters for elements of E and
capital ones for subsets of E. Therefore, in this case only, we shall introduce
letter C to denote a connection in P(E). Here are now a few classical definitions.

- A non zero element a of lattice L is an atom if x < a implies x = 0 or
x = a. For example, when L = P(E), the points of E are atoms in P(E).

- An element a € L, a # Ois said to be co-prime when a < z \/y implies
a <z or a <y in a non exclusive manner.

- A subset X C L is called a sup-generator when every element a € L is the
supremum of the elements of X that it majorates:

a:\/{wEX,xga}



Lattice L is said to be atomic (resp. co-prime) when it is generated by a class
of atoms (resp. co-prime).

- A subset L’ of L is called a sub-lattice if it is closed under V and A and
contains 0 and m

- A lattice L is complemented when for every a € L, there exists one b at
least such that a\/b=m and a Ab=0.

Distributivity
Several useful properties involve distributivity, or rather, distributivities.
Recall that a lattice L is distributive if

sAEV2) = @A)V (A7)
eV (A2) = (Vo) A(= V)

for all z, y, z € L. The two equalities are equivalent. When the collection of
elements between parentheses is allowed to extend to infinity, i.e. when

cANVyi,iel)=V{(zAy),i €I} (infinite \/-distributivity)
e\ (Ayi,iel)=AN{(zVVy),i €I} (infinite A -distributivity)

for any subset {y; : i € I'} C L and for « € L, then lattice L is infinite distribu-
tive.
Basic operators
An operator 1 : L — L is said to be a morphological filter on L when it is
increasing :
a,be L, a<b=yP(A) CyY(B)

and idempotent :
¥((a)) = 1(a).

In particular, a filter ¢ that is extensive, i.e.
a C ¢(a), acl
is called a closing. Dually, a filter v that is anti-extensive, i.e. :
v(a) C a, aCL

is called an opening.
An operator § : L — L that commutes under supremum is called a dilation,
ie.

S(Va;) = Vo(a;), i€l

Examples

There are numerous lattices associated with image processing. A series of
them will be introduced in section 4, in association with connections for numer-
ical functions. Here, we just recall the three usual ones, which are of interest for
the present study, namely sets, functions and partitions.



(1) Consider the lattice P(E) of the subsets of an arbitrary set E. The points
of E are atoms, co-primes and sup-generators of P(E). The lattice P(E) is also
complemented, and totally distributive: it accumulates all nice features.

(2) Lattice of all functions f : E — L from an arbitrary space F into a
lattice L. The pulse functions or pulses :

ix,t(y) =t Zf y=x
{ ioa(y) =0 if x4y @)

associated with each z € E and t € L are sup-generating co-primes but not
atoms (except when L = {0,1}); this lattice is infinite distributive, but not
complemented.
(3) Given an arbitrary set E, a partition D of E'is a mapping D : E — P(E)
such that, for all z,y € E, we have
x € D(x)
if D()ND(y)#©® then D(z)= D(y)
The set D(z)is called the class of point x. The family D of all partitions
D form a complete lattice [ SER88|. A partition D is smaller than partition D’
when, for any point z we have D(z) C D’'(z). The infimum of a family {D;} is
obtained by taking at each point x the intersection of the classes that contain z,
i.e. D(z) = ND;(z). The supremum of the D;’s is the smallest partition D for
which each class of each D; is contained in a class of D (Fig.1b). In particular
the coarsest partition has set FE itself as a unique component, and the finer one
is the pulverization of all points of E into different components.
Lattice D of the partitions is not distributive and does not admit co-primes.

3 Connections on lattices

We will now introduce the notion of a connection on lattice L. We previously
observed that (1), which is a consequence of the topological definition of connec-
tivity, does not involve topology by itself, but exclusively unions and intersec-
tions. Hence, by replacing unions and intersections by sup and inf respectively
we can try and start from (1) to define a connectivity concept on lattices. In
addition, another idea has to be axiomatized, namely that any lattice element
can be decomposed into connected components (just as for the setwise case).
This results in the following definition.

Definition 3 Let L be a lattice. A class C C L is said to be connected, or to
define a connection, when

(0)0eC

(i) C is sup-generating: Va € L, a=\(c:c<a,ce)

(i) C is conditionally closed under supremum

xcc , ANX#0 = \/xecC (3)



Generally, class C is neither closed under \Jor A. However, if C, stands for
the subclass of C' that contains the majorants of a given z € C\ {0}, i.e.

Cy ={c:z<¢c, ceC}

then, the supremum of each non empty family of elements of C) is again in C
because of (#). In other words, the class C; U {0}, closed under supremum,
characterizes the invariant sets of a unique opening +,, which is called the
connected opening of origin z (fig.1a). For all x € C\ {0}, we have

vz(a):\/{c:ceC,xgcga} a€L. (4)

We then say that v,(a) is the connected component of a marked by x, and
that = (which is itself a connected component) is called a marker. Clearly for
z,y € C\ {0} such that x <y, we have C; 2 C,, hence v, > 7,

Indeed, the family of openings {~, ; © € C\ {0}}, induced by the connected
class C characterizes it, as shown by the following key theorem.

Theorem 4 Let C be a sup-generator in a lattice L. Class C is a connection if

and only if it coincides with the invariant elements of a family {~, ,z € C\ {0}}

of openings such that

(ii3) for all x € C\ {0}, we have v, () = =,

(i) for alla € L, z,y € C\{0},7,(a) and v,(a) are equal or disjoint, i.e.
72(0) A7y (@) £ 0 = 71,(a) = 7y(a)

(v) for all a € L and for all x € C\ {0}, we have x £ a = ~v,(a) =0.

3.1 Partitioning

A number of attractive properties of the connected classes come from their
ability to partition, or to segment, each element of L into its components.

We have previously defined partitions for sets. The approach extends to the
notion of a partition D, for an arbitrary element a of lattice L. Denote M the
family of the minorants of element a

M*={z:ze€L, x<a}

Then a partition of element a is a mapping D, from C N M*® into M® such
that

(i) forallz €e CNM*: 2 < Dy(z) <a

(ii) for all z,y € C N M%: Dy(z) = Do(y) or Do(x) A Da(y) =0

D, () is called the class of the partition of origin z. The two key following
results highlight the partitioning effect of a connection C' on all elements of
lattice L.

Theorem 5 Let C' be a connection on L. For each a € L the family D, of the
mazximal connected elements in C N M* a partition of a, whose classes are the
connected components of a. This partition is increasing in that if a < a’, then
any connected component of a is majorated by a connected component of a’.



Proposition 6 If lattice L is infinite \/-distributive, and if C' and C’ are two
connections on L with C C C’, then for all elementsy € L, every C'-component
of y is the supremum of all C-components of y that it majorates.

3.2 Canonic markers

The generalization we have just developed avoids to favour any sup-generating
class in lattice L. Indeed, the lattice of the open sets in R2, for example, may be
sup-generated by the open square, or, as well, by the open discs, although the
intersection of these two classes is empty. In this sense, such a case differs from
the set situation where the points belong to all sup-generating classes. Now the
major application we have in mind here concerns function lattices (grey tone,
color, equi-continuous, etc.), where one can assume that a basic sup-generator
class belongs to all connections. It will be, for example, the class of the pulses
for the numerical functions.

This circumstance suggests to slightly reduce the generality of the previous
approach by choosing a sup-generating class S in L, with 0 ¢ S, and by replacing
assumption (i) in Definition 3 by the following one:

assumption (vi): C contains the sup-generator S. (5)

The sup-generator S, which does not need to be itself a connection, will be
called canonic. By so doing, we restrict the possible connections on L to those
that contain S only. In return, the connected openings are better specified, and
the family of all connections on L has more structure. First, the canonic markers
S are sufficient to label all openings, for all connections on L. Indeed we can
state the following result.

Proposition 7 Given a canonic sup-generator S, every connection C on L
consists in the invariant elements of the openings v, ,s € S, such that

Vs(a):\/{mec,sgmga} se S acL

Second, one can define a new connection C' by specifying all v, for z € S,
having the required properties. Third, the class of all connections on L turns
out to form a complete lattice; more precisely, we have

Proposition 8 The set of all connections on L is closed under intersection ; it
is thus a complete lattice ; in this lattice the infimum of a family {C;, i € I} of
connections is given by the intersection NC; whereas the supremum is given by
the least connection containing the union UC;.

3.3 Second generation connection

Operations such as dilations or closings can be used to remodel connected
classes. Starting from a first class C, of connected openings {v,, z € C}, we
may use a clustering approach to define a new connection. Here, the first result
we can quote is the following [ SER98a].



Proposition 9 Let C be a connection on lattice L, and § : L — L be an
extensive dilation that preserves C (i.e. 6 (C) C C). Then the inverse image
C' = 671(C) of C under §is a connection on L, which is larger than C (i.e.
ccco).

The proposition is already instructive, but it does not give any information
about the relations between the connected component of some a € L and its
image § (a). To achieve this, we need an assumption of distributivity over L,
which then allows to state the following theorem.

Theorem 10 Let C be a connection on an infinite \/-distributive lattice L, and
d: L — L be an extensive dilation that preserves C. Then the C-component of
d(a), a € L, are exactly the images & (y') of the C’'-components y' of a, where
C’ is the connection C' =6~ (C).

If ~, stands for the connected opening associated with connection C and
~.. for that associated with C', we have

Y (a) = 7,6 (a) /\a when z<a ; ~,(a)=0 otherwise.

Examples

The connected openings 7, of theorem 10 not only give the theoretical access
to their connection, but also provide the actual algorithm which extracts the
components of a given a.

In practice, the openings '’ characterize the clusters of objects which lie
a given distance d apart (fig.2a and 2b). Consequently, such an approach also
provides a means for extracting the objects which are isolated. Imagine, for
example, that we want to detect the particles (or components) in set X of (fig.2a)
whose distances to their neighbours are > 2d. The two pieces of information we
need for this problem are the dilate X @ dB of set X, and the skeleton skiz(X)
by zones of influence, which is made of all points that have the same distance to
at least two particles of X. If Y7 denotes a particle of X ¢ dB which intersects
skiz(X), then Y1 N X is a cluster of particles. If Yj is a particle of X ¢»dB which
does not intersect skiz(X), then X NYy is a particle whose all neighbours are
at least distance 2d apart. Fig.2c shows the set of such isolated objects among
those of fig.2a.

Other types of dilation may also be useful. To illustrate this point, we con-
sider a sequence of sixty successive optical sections of an osteocyte, in confocal
microscopy (kindly provided by Dr. V. Howard Liverpool). The whole volume
contains three cells located at different depths, that one wishes to extract. Fig.3a
is a 8-bit image of section n° 15 of the series. A high threshold (level 200, in a
range of 256) easily extracts the osteocytes of the section, but also a number
of artifacts. But we have another indirect piece of information : confocal mi-
croscopy generates a sort of halo around the thick objects. Indeed by selecting
with a low threshold (60), we extract the halo and we take the union Z of all
halos for the images of the series. Set Z is presented in Fig.3b. Finally, an os-
teocyte is recognized as a connected component ., when the initial 3-D set is



the high thresholded sequence, and when the dilation is restricted inside mask
Z. A perspective view of the result is given by Fig.3c.

3.4 Clustering by closings

Dilations are not the only possible operators to provide second generation con-
nections. We can use also closings, as the following result shows.

Proposition 11 Assume that a given closing ¢ on a lattice L preserves the
connection C, i.e.

p(0) =0 and p(C) € C (6)

Then the inverse image C' of C under ¢ is also a connection on L, which
is larger than C.

Proof. By definition
a el & p(d)eC

Let a} € C', i € I, with A\a; # 0. We have to prove that \/a, € C’ . By
extensivity of ¢, we have

o) > ai > Nai £0 hence \/p(a)) €C,

and by inclusion (6), we have ¢ (\/ ¢ (a})) € C. Now

\/90 (a;) > ai = ¢ <\/<,0 (ai)) > <\/ ag) (increasingness)

and

® <\/ aé) > \/<,0 (a}) = ¢ <\/ ag) = pp <\/ aé) > @ <\/g0 (a;)) (idempotence)
hence ¢ (\/a;) = (\/gp(a;)) €C, ie. \/ag el

The two other axioms for a connection are clearly satisfied, hence C’ is a
connection. W

This result is related to Proposition 9 for dilations, but unlike that dila-
tion case, we have here no equivalent of Theorem 10 here. Note also that for
any dilation § on L we have §(0) = 0, so that the relation (6) of connection
preservation is the same as that introduced in Proposition 9. An application
of Proposition 11 is provided in section 6 below, and illustrated by fig.10. The
proposition is applied to the lattice of the weighted partitions by flat zones.

10



4 Connections on lattices of numerical functions

In this section, we look for interesting connections in the important case of
numerical functions from a space E into a totally ordered set L. We assume
the latter either finite, or isomorphic to R or to Z (e.g. [0,1], [0, +o0], etc.).
Concerning the domain space F, we assume that it is metric, with distance
function d, and that P(F) is equipped with connection C. These definition and
properties concerning L and E are assumed to be valid throughout this entire

section.

4.1 Numerical lattices of numerical functions
The set L of all mappings f from E into L, provided with the product order :
f<g iff f(z) < g(z) for all z € E,

becomes in turn a complete lattice, where the sup and the inf are defined by
the relations

Vi) @=\Ffi@) (A =N\ (7)

(we keep the same symbols for ordering, supremum and infinum in both lattices
L and LF). The support of a function is the set of points = where f(z) > 0. The
support of function which is identically zero is the empty set; that of a pulse is
reduced to one point.

We are often more interested in sublattices of L¥, rather than in L% itself.
A sublattice L’ C LF is a set of functions which is closed under \/ and A of L¥
and which contains the zero and the unit. For example, the Lipschitz functions
Ly of module k, which are defined by

felke & |f(x)—f@l<kd(z,y) VzyckE

turn out to generate a complete sublattice of L. More generally, if we replace
kd(z,y) by p(d(z,y)) in the above inequality, where function p : Ry — R, is
continuous at the origin, we delineate the class of the so-called ” p-continuous
functions” [ CHOG66]. For each p, the class of the p-continuous functions consti-
tutes a complete sub-lattice of LT, i.e. a lattice where \/ and /\ are nothing
but the numerical supremum and infimum at each point. It has been proved
(under rather general conditions), that usual operators, such as dilations, open-
ings, morphological filters, etc. map every p-continuous lattice into another one
[ SER92Db], and that \/ and A are continuous operators [ MAT96]. Moreover,
every function lattice where \/ and A are generated by the numerical ones is
infinite distributive. Henceforth, we refer to such lattices of numerical functions
as numerical lattices.

4.2 Two straightforward connections

To define a connection on L, the first straightforward approach consists in
extending to L¥ the connectivity associated with E, by taking as connected

11



functions (in LF) those with connected support (in E). This class comprises
function f = 0 and the pulses, and satisfies axiom (7). But it is rather coarse: for
example, if £ = R? and if function f stands for the values of a grey tone
photograph of a landscape, it is likely to attribute function f a single component
most of the time. In addition, the connected components {v, (X;(f)),t € L},
of the horizontal cross-sections X; (f) of f at level t generate, as ¢ varies, a
function which completely differs from the connected component of f at point
x.

The second straightforward approach takes as a connected class all pulses
along with the function f = 0. The three axioms of a connection are obviously
satisfied in this case. Then, for any pulse located at point x and of intensity
t < f(z), the associated connected component of f is the pulse at x with
intensity f(x). Although, mathematicallty speaking, both cases correspond to
connections, they lack the property of being a shape and feature descriptor.

4.3 Numerical functions as weighted partitions

Such a drawback comes from the underlying lattice L”, which is too poor, and
does not allow to express structural partitions of the grey tone functions. On
the other hand, partitions divide the space, but, by themselves, they do not
say anything about possible parameters, or numerical entities, which may be
associated with their classes. To overcome this shortcoming, we will introduce
now the notions of a weighted set and of a weighted partition, in the framework
of an arbitrary, but fixed, numerical sublattice of L¥.

Given a modulus p, associate, with every pair (D,g) € P(E) x G, the
restriction gp of a p-function g to set D, given by

gp (u) = g(u) when ueD
gp (u) = 0 othewise

Thus, the usual indicator function of a set D is replaced by the non constant
weight g. The numerical function gp may be considered as a weighted set. For
example, if we take for G, the class of the constant function, which corresponds
to p = 0, then each weighted set gp is nothing but the cylinder of base D and
of height the weight of gp . If we take for class G, the k-Lipschitz functions,
each weighted set gp turns out to be the restriction of a k-Lipschitz function
to set D. As the doublet (D, g) spans P(E) x Gy, the set generated by the gp’s
is denoted by P,(E).

Proposition 12 The set P,(E) forms a complete lattice for the numerical or-
dering < ; in this lattice, the supremum U (gp); of family {(9p);}.i € I,
is the smallest upper bound of \/ (gp); in G, and the infimum is given by

M(9p); = (A 9gi)np, -

Fig.4 illustrates the proposition. Two cylinders (fig.4a), and two Lipschitz
functions (fig.4b) are represented in dotted lines. Their infima in P, are given
by their numerical infima over the intersection of the supports (dash zones)

)

12



whereas their suprema in P, are the smallest cylindric, or Lipschitz, extensions
of the functions, restricted to the unions of the supports.

The notion of a weighted partition derives from that of a weighted set just
as a usual partition derives from that of a set.

Definition 13 A weighted partition with connected classes © — (gp), s a
mapping A from E into P,(E) such that

(i) VYrxeE, xe€D(x)

(i) Vax,y € E, either (g9p), or (9p), A\ (9p), =0

(i) Vx € E class D(z) is connected set of B

The sub-mapping x — D(zx) is a partition D in the usual sense, and f =
V{(9p), = € E} is a numerical function. Therefore, one can represent the
weighted partition A as a pair (D, f) which determines A completely. However,
any function f : E — L admits several representations as \/ (¢p),. For example,
for p = 0, any subset of the flat zone of f that contains a given point x may
serve as class D(x) jointly with the constant function g = f(z).

By considering the numerical functions under study as weighted partitions,
we will be able to provide them with connections which are descriptive. But first
of all, we must be sure that the weighted partitions fit into enter the convenient
framework for connections, i.e. that they satisfy a complete lattice structure.
Indeed, we have the following result| SER98a]

Proposition 14 Let G, be the lattice of p-continuous numerical functions E —
L and L the class of the weighted partitions with connected classes of E, of base
Gp. Then L is a complete lattice for the product ordering

f<f in LF

D DY e p oD

In this lattice, the infimum MN(f;, D;) of a family {f;, D;,i € I}is given by the
doublet (/\ fi (m LE) , \ D; (in D)) . The supremum U(f;, D;) admits \/ D; for
partition, and in each class (\/ D;) (), is equal to the smallest function of lattice
G, which is above the f; involved in (\/ D;) ().

(Easy proof). Here, the infimum AD; of a family of partitions of E with
connected classes is the partition whose class at point = € E is the connected
component of ND;(z) that contains point x.

In order to build connections on the weighted partitions lattice £, a conve-
nient class is provided by the so-called G-cylinders.

Definition 15 Let G be a numerical lattice of L¥, and C a connected class on
P(E). For any Y € C and g € G, the weighted partition of function

hyqoy) = gly) when yeY
hygoly) = 0 when not

and of partition classes Y and {z} (for z € Y°) defines the G-cylinder of
connected base Y and of values g.
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In particular, the pulses, equipped with the minimum partition d, are G-
cylinders, for all lattices G.

Consider now the supremum in £ of a family {h; = hy, g,,7 € I} of G-
cylinders, whose infimum is not zero. Since NY; is not empty UY; is connected.
Now the partition whose classes are UY; and all the points of (UY;)®, is noth-
ing but \/ Dy,. By adjoining the function equal to the smaller G-bound of the
h; on UY;, and equal to 0 elsewhere, we obtain the supremum in £ of the h;.
This weighted partition is itself a G-cylinder and since the G-cylinders form a
sup-generating family (they contain the pulse cylinders), hence we may state.

Theorem 16 Let G be a numerical sublattice of L¥. The class Cg of the G-
cylinders, together with function 0, constitutes a connection on lattice L.

Fig.4 shows two examples of suprema and of infima of connected G-cylinders,
based on constant functions and on Lipschitz functions respectively. Note that
the smallest element of £, namely the weighted partition whose all classes are
reduced to points, and function constant minus infinity, is itself a G-cylinder
whose base is a point and having minus infinity on it. Note also that the theorem
does not extend to weighted partitions with possibly not connected classes. Such
classes could not be generated by the G-cylinders of Definition 15.

4.4 Two examples of connections

As particular cases of the approach developed here we obtain the two straight-
forward connections presented at the beginning of the section. However, this
approach opens the way to a number of other connections, which turn out to be
extremely pertinent descriptors for images. Two of them are presented below;
the associated moduli p are drawn in fig.5.

Flat zone connections
Take for p the function p = 0. Class G, is then that of the constant functions,
for which the following result holds.

Proposition 17 When the numerical lattice G is the class of the constant func-
tions from E into L, then the associated connection on L is formed by the zero
function and the cylinders (stricto sensu) of connected bases, i.e. by functions

he(t) =t when yeC
het(t) =0 when not

te L, Cel(.

The operations LI and M on the lattice £ associated with the constant func-
tions are illustrated in fig. 4a , which shows the LI supremum of two cylinders.
We saw that given module p, there is generally an infinity of variants for
modelling a numerical function f as a weighted partition. However, in the flat
zone case (i.e. p =0), the class of these variants is closed under the supremum

14



in £. The corresponding non weighted partition Dy is the largest partition of
FE where f is constant in each class.

Fig.10 describes the action of a closing ¢ : £ — £ , when L is the lattice
of weighted partitions by flat zones. The evolution of one individual connected
component is indicated by a dark contour (comments are given in section 6.1).
In practice, the flat zones connection yields significant results when the images
under study exhibit large zones with uniform grey tones. It is typically not the
case for faces, for example, since the variation of the skin orientation creates a
continuous gradation of the grey tones. Indeed, in the case of fig.6a, there are
114,519 flat zones for a total amount of 167,424 pixels in the photograph.

Jump connection

Such a counter example shows that the requirement of a strict flatness is too
demanding, and should be relaxed. We shall weaken it by taking for class G of
the numerical p-continuous functions whose modulus reaches range h at a finite
distance dp, as shown in Fig.5b. Each function in G varies between two bounds
which are h apart. Therefore, by applying base G to a numerical function f,
we obtain a segmentation of f into connected zones where the grey fluctuation
is < h. Fig.6 illustrates such a ”jump connection” in the digital framework by
taking dg = 1 and h = 10 (between two neighbour points, the function cannot
jump by more than 10 levels). As a matter of fact, this example deals with a
color image. In the 3D Euclidean space of red, green and blue axes, the ”gray”
at point [red(x), green(x), blue(x)] has been defined by the distance from this
point to the origin. After segmentation of the gray image according to the jump
connection, the three colors are averaged in each class, so that the final result
is still a color image.

Unlike the case of flat zone connection, there are no longer largest segmen-
tations. This is not necessarily a disadvantage, since we can play with differ-
ent partitions. For example, we can extract the largest connected zone Z (),
around each minimum f (zg), where |f (z) — f(z0)| < h, 2 € Z(xp), and
iterate this procedure. By taking the union of the Z (zg)’s when xo spans all
minima of the function, we extract a binary version of the grains. The following
example illustrates the use of such a transformation. Fig. 7a represents alumine
grains, Fig.7b the partition of the space under jump connection, and Fig.7c the
superposition of its skeleton by zones of influence and the initial image.

5 Induced binary connections

Smooth path connection

In this section, we investigate the access to segmentation of numerical func-
tions f : E — L when a connection C is defined on P(FE) only. This approach is
more limited than the previous one, but it has the twofold advantage of being
simpler, and of leading to rather powerful results.

Indeed, if our current goal is to segment a unique function f : £ — L, it
becomes cumbersome to consider it as a variable element of the lattice L¥. The
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question should reformulated as follows : ”is there a largest partition of space
FE into connected classes such that function f satisfies a given criterion inside
each class ?

For example, the above segmentation of f by flat zones may alternatively be
presented in this new framework. Given point z € E, denote by Z, the subclass
of those elements of C that contains point {z}, and over every element of which
function f is constant, i.e.

Zy={ze€ZCCyecZ= f(x)=f(y)}.
Class Z, is closed under union, so that its supremum
Zy=U{Z € Z,}

is the largest connected component containing point z and on which function f is
constant. Consequently, the mapping x — Z(z) is the largest partition of space
E into flat zones of f, and further, family {Z, U} defines the invariant sets of
a connected opening at point z. This means that any set Y C FE is partitioned
into the classes Z(z) MY, as x spans E. By so doing, we have generated a new
connection on F, by combining the initial one with some features of function f.

Unfortunately, the technique we used here does not necessarily extend to
other types of p-continuous functions. For example, if we replace the modulus
p = 0 (flat zones connection) by that of a bounded variation, shown in fig.5b
(jump connection), we are no longer able to define a largest connected compo-
nent containing point z and on which function f is p-continuous : class Z, is
no longer closed under union.

However, there exist other criteria, which fulfill closure under union, and
of great interest. Provide, for example, P(R™) with the arcwise connection.
Consider an arbitrary, but fixed, function f € LP®") and the class C made of

- 1) all singletons plus the empty set ;

- 4i) and all open connected sets Y of P(R™) such that function f is k-
Lipschitz, for the induced arcwise metric, along all paths included in set ¥ (in
practice, this metric is often called ”geodesic metric”).

It is easy to see that class C defines a second connection on P(R™), where
the variation of f over each set of class i) is ” smooth” in the k-Lipschitz sense.

In Z2, the implementation of this ”smooth path” criterion is particularly
easy. If H, stands for the unit disc at point x (five, seven, or nine points), then
the partition has for non point classes the arcwise connected components of all
sets X such that

X =u{zeZ2V{|f(z) - f(y)l,y € Ho} < k}.

An example of smooth path connection is given in fig8. Fig.8a represents
an electron micrograph of concrete made of three phases : a white one and
two grey ones. The histograms of the two grey phases are almost identical, but
one is more continuous than the other. By segmenting fig.8a according to the
smooth path connection, with a slope £ = 6, we obtain a correct pre-extraction,
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which has to be amended by some filtering. For the same image, the best jump
connection is obtained by taking a range h = 15, and yields the rather poor
result depicted in fig.8c.

6 A few connected filters

The development of connected filtering, for the past ten years, has been directly
related to indexing and coding. References [ PAR94|, [ MARY6], [ SAL96],
among others, show that connected filters have opened the way to an object-
oriented approach for compression and understanding of still and moving images.

Our purpose here is not to provide an exhaustive list of relevant applications,
nor to reproduce existing theories. We just would like to relate these operations
to the previously defined connections, and to complete them with some addi-
tional properties, in the case of leveling. We will restrict this overview to the flat
numerical filters. A profound theorem due to H. Heijmans says that there exists
a unique binary operator that allows us to construct the grey tone one, via the
cross sections (see below, sect. 5.2.3). Moreover flat filters are by far the most
commonly used, and the set formalism allows easy geometrical interpretations.

Throughout section 6 to 8, F is an arbitrary set, and P(E) is assumed to
be equipped with connection C. For every set A € P(FE), the two families of
the connected components of A (the "grains”) and of A® (the "pores”) yield
a partition of the underlying space E. An operation ¢ : P(E) — P(E) is
said to be connected when the partition associated with (A) is coarser that
that of A [ SER93]. Clearly, an operator that takes the complement of a set, or
removes some grains, or fills pores, is a connected operator. The major class of
mappings we have in mind are the morphological filters, as defined in section 2,
when in addition they are connected, and particularly the strong ones and the
granulometries. Let us briefly recall these last two concepts.

A granulometry is a family {v,, d > 0} of decreasing openings (i.e. d >
d = v; Cv4 ) and an anti-granulometry is a family {¢,, d > 0} of increasing
closings, both depending on a positive parameter. Every granulometry and
every anti-granulometry satisfy a semi-goup structure of law

Yntby =Vpn =1, if p>n (8)

A morphological filter ¢ is said to be strong if it satisfies the following
robustness condition

PA)NACP(B) CP(AUA = ¢(B)=1y(4)

for A, B C E. In particular, openings and closings are strong filters.

Set opening by reconstruction and some derivatives

A comprehensive class of connected filters derives from the classical opening
by reconstruction. Its definition appears in [ SER88], ch.7.8. Significant stud-
ies which use this notion may be found in the literature, such as [ SER93]
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(connected operators), [ VIN93] (area criteria), [ MEY94], (spanning trees),
[ CRE95], (connected filters)[ HEI97], (grain oprators).

An opening by reconstruction is obtained by starting from an increasing
binary criterion 7 (e.g. ”the area of A is > 10”), to which one associates the
trivial opening

v~ (A) = A when A satisfies the criterion
v (A) =10 otherwise

The corresponding opening by reconstruction v is then generated by applying
the criterion to all grains (or connected components) v, (A) of A, independently
of one another, and by taking the union of the results :

Y(A) =U{rv7,(4), ze€FE}

The closing by reconstruction ¢ (for the same criterion) is the dual of ~ for
the complement, i.e. if C stands for the complement operator, then

P

For example, in P(R?), if we let 7 to be the area criterion mentioned above,
that is 7(A) = 1 if the area of A is larger than a given threshold S and 0
otherwise, then v(A) equals the union of grains of A whose area is > S, and
©(A) is the union of A and all its pores whose area is > .S. Similarly, if criterion
T is expressed by ”intersecting a given marker set M”, then y(A) is the union
of the grains that hit M, whereas ¢(A) is composed of A and of all pores that
miss M .

Consider now a family {v;,7 € I'} of openings by reconstruction associated
with criteria {7;}. Clearly, their infimum = Ny, is still an opening, where a
grain of A must fullfill all criteria 7; to be retained. Since, on the other hand,
the supremum of any collection of openings is also an opening, we may state
the following result:

Proposition 18 In the lattice of the increasing and anti-extensive operators
from P(E) into itself, the openings and the closings by reconstruction constitute
a complete sub-lattice. By duality, the same result holds for the closings by
reconstruction.

Assume now that we have a decreasing sequence of criteria {7;; ¢ > 1}, that
is
Tit1 < Ti, 1 >1
this can be interpreted by saying that the criteria are increasingly restrictive. It
is obvious that the corresponding sequence of openings -, is decreasing as well :

Yit1 < Vis 12>1

In other words, the family {v;} is a granulometry, called granulometry by recon-
struction. Two theorems govern the specific properties we obtain in that case.
The first one is due to J. Crespo et al. [ CRE95].
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Theorem 19 Let {v,;, i > 1} and {g;, i > 1}, be respectively a granulometry
and an anti-granulometry by reconstruction, and define

U, =A{g;7;, 1<i<n} and U} =V{vp,, 1<i<n}

The operators W, and U} are strong filters, and satisfy
U, W, =W, and VW7 = WU forp > n.

Although the families {¥,} and {U#*} are both ordered, they do not satisfy
the semi-group relationship 8 (namely the stronger filter imposes its law). To
achieve this, we must introduce the so called alternating sequential filters.

P = PnVn - PiYi- 171 and  On =V, @pees ViPi - V101,

The following result holds

Theorem 20 Let {v,, i > 1} and {p;, i > 1}, be a granulometry and an anti-
granulometry by reconstruction. Then the alternating sequential filters p,, and
on of primitives {7;} and {;}, generate, as n varies, a semi-group of law the
relationship (8) .

When this theorem appeared, in [ SER93], it was also stated, in addition
that the p,,’s and o0,’s were strong filters. It has been shown in [ HEI97] that
this is true under the assumption of finite paths connecting each pair of points
in any connected component. Note that this condition is fulfilled by all usual
connections, and by those they induce by dilation or by closing.

Anyway, Theorem 21 turns out to be a central pillar in compression schemes
based on morphological operators. It allows to build pyramids of filters where
the additional information to get finer levels is concentrated in the flat zones
[ SAL92] and where the non-zero gradients may only be reduced to zero or kept
unchanged. An example of such a behaviour is presented in Fig.9. Although
the algorithm does not work level by level, each cross section of the grey tone
image results in a set which is processed by an alternating sequential filter by
reconstruction, according to rel.(19) below. The underlying binary criterion is
the size of the disc inscribable in each grain.

Similarly, any set closing by reconstruction ¢ can be extended to numerical
functions. Moreover, in such a case ¢ turns out to close not only the numerical
functions, but also the partitions induced by the flat zones of the functions. In
other words, ¢ is a closing on the lattice £ of the weighted partitions by flat
zones. Then, according to Proposition 11, closing ¢ generates a new connection
of clustering type. This approach is illustrated in fig.10 which treats a vortex of
clouds over the Atlantic Ocean. For a more efficient effect, only the four higher
bits of the initial image have been processed, and the closing used here is the dual
version of the reconstruction from the erosion by a disc of size 12. Under closing,
the sky is segmented into more regular, hence more representative, clouds than
those of the initial image.
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7 Set flattening and leveling

Flattenings and leveling have been introduced by F. Meyer as grey tone con-
nected operators on digital spaces| MEY98al, [ MEY98b]see also [MEY99] and
[MAR99]. Meyer chooses the connection defined by the classical arc-connectivity
on digital grids. In [ MAT97], G. Matheron proposes a generalization to the
functions f : E — T, when F is an arbitrary space (hence, without a priori
connection). In his approach, the connection arrives as a final result, and is
generated by an extensive dilation.

In both approaches, leveling, and flattenings (when the latter are increasing),
turn out to be flat operators, i.e. that treat each grey level independently of the
others. This circumstance suggests to try and generalize F. Meyer’s approach
by focusing on set flattenings and leveling, but re-interpreted in the framework
of an arbitrary set connection C. We will enter this way of thinking by taking
one of the characteristic properties of the flattenings (Theorem 7 in [ MEY98al)
as their definition.

Independently of Meyer and Matheron approach, H.Heijmans has introduced
and studied the class of the ”grain operators” in[ HEI97]. Flattenings and lev-
eling, in the sense of definitions 22 and 30 below, are particular grain operators.
However, for reasons which will be discused in section 7.3, we prefer to restrict
ourselves to openings and closings which are based on markers (for example, we
will not accept or reject a particle according to its area).

Definition 21 (21) Let E be an arbitrary set, and C be a connection on P(E).
Let v be an opening and ¢ a closing, both by marker reconstruction, from P(FE)
into itself. The operator 6 : P(E) — P(E), given by

0=vU(Cng)=¢n(Cun) 9)

is called the flattening of primitives v and . Here C stands for the complement
operation on P(E).

The set 8(A) satisfies the relations

ANO(A) =AnN~v(A) (10)
A°NOA) =A°Ne(A) (= AUO(A) = AUyp(A))

i.e. 8(A) acts as an opening, and inside A as a closing. System (10) also relates
to the activity lattice, where a mapping 1 on P(E) is said to be less active than
7, when 9'(A) changes more points of A than 1(A), VA € P(E), (see chapter
8 in [ SERSS]). If Id stands for the identity operator, the activity ordering is as

follows
Idny 2O Idnv/

Iduy C Iduy

and one notes 1 < ¢/. The activity ordering gives rise to a complete lattice
structure, where the supremum and the infimum of a family {y,, ¢ € I} are
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given by
Y, = [Cn(Uy,)] U]
Ay = [Id N (Ug)] U [NYy]

When applying this system to the family {v, ¢} of the two flattening primi-
tives, we draw from (9) that

YY =40 yAhp=1Id.

An interesting situation occurs when v and ¢ are dual under complement
i.e.when ¢ = CyC. Then we have

CoC =C ['yl:U (Idﬂgol:)] :cpﬂE(Idﬂgol:) =9,
which means that 6 is self -dual with respect to the complement.

Proposition 22 Any flattening 0 : P(E) — P(E) s the activity supremum of
its two primitives v and @. When these primitives are dual from each other,
then the corresponding flattening is self-dual.

7.1 Markers based flattenings

When we established Proposition 22, we did not use the reconstruction structure
of operations v and . However, since it will be directly involved in what follows,
we now give explicit expressions for 7 and ¢, based on markers M and N¢
respectively, ¢.e.

Y(A) =7 (A) =U{1,(A), z € E, 7,(A) N M # 0} (11)
¢°(A) = [one(A)]° = U{1,(A%), 2 € B, 7,(A°) N N® £ 0}
Therefore, opening 7,,(A) is the union of those grains of A that hit marker M,

and the complement of closing ¢ pe(A) is the union of those pores of A that hit
marker N€¢, hence

A Npne(A) = U{7, (A, z € E, 7,(A%) C N} (12)

so that
0(A) =vm(A) UA°Npye(A)]

Therefore 8(A) is the union of all grains of A that intersect marker M and of
all pores that are included in marker N.

Consider now a family {6; , i € I} of flattenings with markers {M; , Nf } .
We have

(Uy;)(A) = { all grains of A that hit UM;}
(Ny;)(A) = {all grains of A that hit each of the M;}.

Similarly for the closings, we have that
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(Ng;)(A) = {A and all pores of A included in NN;}
(Up;)(A) = {A and all pores of A included in one of the N;}.

Now, we conclude from Proposition 18 that the first two operators are open-
ings and that the last two are closings. Hence, we may state

Proposition 23 The class of flattenings 0 on P (E) provided with the actiwity
ordering constitutes a complete lattice. Given two families of primitives {v,}
and {;}, i € I, the infimum and the supremum of the associated flattenings
admit the following expressions:

Ay = (Uy;) U [C N (Ney)]
Y0; = (M) U LN (Ugy)].

Note that the opening Ny, (resp. the closing Ug;) involved here is no longer
based on a single marker : each grain (resp. each pore) is still judged individ-
ually, but with respect to several markers. As A, M and N vary, 0(A, M, N)
is a mapping from [P (E)]* into P (E). We will now see under which condition
this mapping is increasing. Part of Theorem 24 has already been established in
[ HEI97], namely when M and N are fixed. But for extending increasingness
from sets to numerical functions, we need to vary M and N.

Theorem 24 The flattening 6 : [P (E)]3 into P (E) is increasing if and only if
the two operands M and N are ordered by N C M.

Proof. We begin with the proof of the ”if” part. Firstly, we observe that,
given A, when M C M’ and N C N’ more grains of A are hit and more pores
of A are covered, hence

0(A, M, N) C (A, M', N') (13)

Consider now the variation of 6 as a function of A only, and assume that
N C M. The first term in (9)an opening, hence increasing. As for the second
one, it suffices to prove that, when A C A’, the inclusion v, (A°) C N implies
that v,(A°) C 0(A’, M, N). Now, for every point z € ~,(A4°) C N, only two
cases may occur

i/ v,(A€) # 0, then z belongs to a pore of A’®. But since A’ C A¢, we have
72(A) € 7.(A%) =7,(A°) € N, hence z € 0 (A", M, N) ;

ii/ v.(A’®) = 0, then z belongs to the grain v,(A’) of A’. Now 2z € N C M,
hence v,(A") N M # 0 so that z € 0(A’, M, N).

Finally, we have

ACA ; NCM = 6(A M,N)C6A, MN) (14)

The ”only if” part may be proved by means of a counterexample. Indeed, if
N ¢ M, take for set A a grain that misses M and that contains a pore included
in N, and take for A’ the same grain, but without its pore (fig.11a). We see
that
ACA =+ 6O(A M,N)CHA M,N).

22



The proof is then achieved by combining rel.(13) and (14). |

An interesting feature of flattening concerns self duality. Indeed, flatten-
ings have been introduced by F. Meyer with the goal of finding self dual con-
nected operators. Firstly, we may consider the behaviour of the triple mapping
(A,M,N) — 0(A, M, N) when taking the complements. We have

[0(A°, M, N°)° = [y (A)] N [AN [rn (A7 = @are(A) N AUy (A)],
hence
[Q(Ac) M, Nc)]c = 'VN(A) U [Ac N @are (A)] = 9(‘4’ N, M)

Therefore self duality of 6(A, M, N) is reached if and only if the two markers N
and M are identical (a result that also follows from proposition 8.3 in [ HEI9T7]).
Since, in addition, condition M = N implies the inreasingness of 6, we arrive to
the following result

Proposition 25 The flattening (A, M, M) — 0(A, M, M) is an increasing self
dual mapping from P(E) x P(E) into P(E).

In this approach, we implicitely supposed that the data of A end of M are
independent pieces of information. In practice, it often occurs that marker M de-
rives from a previous tranformation of A itself, M = p(A), say. Then the propo-
sition shows that the flattening 6 : P(E) — P(E) , with 6 = 0 (4, u(A), n(A4))
is self-dual if and only if the operator y is already self dual.

We now consider the question of idempotence for flattenings.

Proposition 26 Given two sets M and N in P(E), with N C M, the flattening
A—0(A,M,N)=0un(A), fromP(E) into itself, is idempotent.

Proof. The set §(A, M, N) comprises three types of connected components,
namely some 7,(A), some 7v,(A°) and unions of some v,(A) and 7,(A°). By
construction, components of type one and three intersect M, and since N C M,
components of type two (which are included in N), do intersect M. Therefore
none of them is removed i.e.

6(A, M, N) C 0(0(A, M, N), M, N].

In particular, we also have 0(A°¢, N¢, M¢) C 0[0(A°, N¢, M¢), N¢, M¢], hence
by duality

(A, M,N) D 0[0(A°, N¢, M°)¢, M,N]| = [(#(A,M,N), M, N|
which concludes the proof. [ |

This result is to be related with Theorem R-2 in[ MAT97]. There, Matheron
establishes the idempotence of some asymptotic operator which coincides with
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the flattening § when the connection C is obtained as the limit under iteration
with a given extensive dilation.

In the same way, as for Proposition 26, one also proves easily that, given A,
mapping M — (A, M, M) = 0 (M) is idempotent. Therefore, by combining
these results with Theorem 24, and by putting 67,5 (A) = (A, M, N) we arrive
to the following result

Theorem 27 When N C M, the two flattenings A — Oy n(A) and M —
04(M) are connected morphological filters from P(E) into itself.

Since flattenings turn out to be morphological filters, the following question
arises. The flattenings have been introduced using openings «;, and closings
@pye. Now, both products v,;¢n- and @yev,, are themselves morphological
filters (as products of openings and closings) which in addition satisfy the in-
clusion y,0ne 2 @nevar (as filters by reconstruction). Does there exist any
relationship between these two product filters and the flattening 6 of same prim-
itives 7 Unfortunately the answer is negative. To make it clear that, take, for
example, A to be a single grain with an internal pore B, and take M = N = B
(fig.11b). Clearly, we have

but Ym(A) =2 = oy Ym(4) =0

whereas 6(A) = M is neither v,;¢7¢(A) nor @yevar(A). Moreover, the ex-
ample shows that 6(ANO(A)) = @ and that 6(AUO(A)) = AU M. This implies
that € cannot be decomposed into the product of an opening by a closing or vice
versa (Theorem 6-11, corollary 2 in[ MATS88c]). Finally, note that in the exam-
ple of fig.11b the boundary between the grain and its internal pore is preserved,
but not the sense of variation (i.e. grain G becomes a pore whereas a pore
adjacent to G becomes a grain). As a matter of fact, such a "flip-flop” effect, as
well as other drawbacks, are due to pathological cases when M contains a pore
of A, but misses the surrounding grain(s).

Therefore, to improve the situation, we have to slightly modify the marking
criteria involved in v,; and in @ye.

7.2 Set leveling

F. Meyer [ MEY98b] defines a leveling as a flattening on grey tone functions
which preserve the sense of variation on every two neighboring pixels of a digital
grid. When transposed in terms of set mappings acting in the framework of an
arbitrary connection C, this condition concerns uniquely the pairs (X,Y") of sets
that are adjacent.

Definition 28 Let C be a connection on P(E), and let X,Y € P(E). Sets X
and Y are said to be adjacent when X UY is connected, whereas X and 'Y are
disjoint.
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Definition 29 Given a connected component A € C and a set M € P(E), one
says that A touches M, and one writes A || M when either A intersects M or
18 adjacent to a subset of M. By duality, one says that A lies in M when A does
not touch M€; one writes A S M orA Jf M€ .

The duality under complement provides the two following equivalences
A M= AL M and A} M < ACS M*

Note that relation A || M (A touches M) is less demanding than AN M #
@ (A intersects M), since it accepts in addition that A and M be adjacent.
Similarly, A & M (A lies in M), is more severe than A C M , since none of the
grains of A and of M must be adjacent to each other.

When v, (A) # v,(A) for an arbitrary A € P(E), one cannot have v,,(A) ||
v, (A) since v, (A) is the largest element of C included in A. But v,(A) may
not touch some pores Y; of A and, nevertheless, touch their union UY;. For
example, for the connection by opening introduced in section 1.2, none of the
two point pores of the lateral gulf, in fig.12a, is adjacent to set A, whereas their
union touches it. The most powerful connections are those which prevent this
perverse effect, i.e. which fullfill the following condition

Condition 30 A connection C on P(E) is adjacency preventing when, for any
element M € P(E) and any family {B; ,i € I} inC , to say that M is adjacent
to none of the B; is equivalent to saying that M is not adjacent to UB;.

Let us return to the flattenings 6. Replace opening «v,,, as defined by relation
(11) by
Tu(A) =U{v,(4), z € E, v,(A) f# M}

Operator 7,, is still a marker-based opening by reconstruction. For sake of
duality, we have to provide . with a similar structure, hence to replace it by

[ (D)] = U149, @ € B, 7,(4% N}
This results in the following definition of a leveling

Definition 31 A flattening of primitives 7,; and Py M, N C E, 15 called
leveling M\, i.e.
A=y Ulng,.) - (15)

This definition recovers Meyer’s one, in the digital case. Notice that in the
situation of fig.11b it yields A(A) = A (neither the grain nor its internal pore
are modified). Mapping A is thus less active than 6. One can easily verify that,
mutatis mutandis, Propositions and Theorems 21 to 27 are still valid for leveling.
Furthermore, Theorem 27 is strengthened by Theorem 33 below, according to
which the leveling A may be written as the product of 7,, by ¢ e composed in
an arbitrary order, hence is a strong filter.
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Lemma 32 Let C be an adjacency preventing connection on P(E), let AN €
P(E), and let Y be a pore of A. IfY lies in N, then all those grains of A which
are adjacent to Y intersect N. By duality, if a grain X of A does not touch set
N, then none of the pores of A adjacent to X is included in N .

Proof. Consider a pore Y of A, with Y € N, and a grain X of A which
is adjacent to Y. The assumption of adjacency prevention implies that there
exists at least one point x € X which is adjacent to Y ; moreover, since N°¢
is not adjacent to Y , (hence none of its points is adjacent toY ), z belongs
necessarily to N , i.e. X NN # 0.

Now take a grain X of A that does not touch N, i.e. such that X € N¢. We
draw from the first part of the proof that every pore Y of A that is adjacent to
X meets N¢, hence is not included in N. m

Theorem 33 Let C be a connection on P(E). Given M, N C E with M C N,
the leveling Am,n © P(E) — P(E) of primitives 7y, and ¢, s a strong
connected filter, and admiaits the double decomposition

if and only if connection C is adjacency preventing.

Proof. For the ”if” proof, we have to show that the three following opera-
tions are identical:

i/ to take the union of the pores Y of A lying in N and of the grains X of
A touching M;

it/ to take the union A/ of the grains of A touching M, and to add this
union to the pores of A/ that lie in N ;

i1t/ to add to A all its pores lying in N, and to extract from the result the
union of all grains touching M.

We begin by showing that operations 7/ and 74/ are identical. Clearly, every
grain of i/ 1is also a grain of i/. But a grain of i/ is either a grain X of
A that touches M (hence it belongs to union 4/) , or the union of a pore ¥
of A lying in N and of all its adjacent grains X; in set A. Then according to
the lemma, each of these grains X; intersects set IV, and a fortiori set M, since
N C M, and consequently belongs to the result of operation ¢/ . Therefore the
two processings i/ and i/ are identical. The proof is achieved by observing
that i/ is a self-dual procedure, and that #/ and iii/ are dual of each other.

The ”only if” part may be proved by means of a counterexample. Equip Z?2
with the connection by square openings of size 2 x 2, and consider the set A of
72 represented in fig.12a. This set is composed of five grains, namely two 2 x 2
squares, plus three points. The marker N = M is composed of the two points
located between the two squares of A ( they are surrounded by a rectangle in
fig.12a) . We have o Y = Vs # T Loye = Ly as shown in fig.12b and
fig.12c respectively. Hence a non adjacency preventing connection yields a result
that does not satisfy relation (16). m
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Relation (16) can alternatively be obtained by introducing the notion of a
stable operator [CRE93] and by applying proposition 10.3 of Heijmans study
[ HEI97]. Our above approach focuses on a characteristic property of the con-
nection itself, and not of some particular types of operators. To conclude this
section, we examine some possible laws of variation for leveling and flattenings.
First, we draw from the double decomposition of a leveling that

My O M,

= /\Ml,Nl'/\Mz,Nz = /\Mz,Nz)‘Ml,Nl = )\MZ,NI'
N1 C Ny

But if we also require the self duality for A\, i.e. M = N, then the above
semi group property reduces to one element, which limits its interest. However,
we can take the problem differently, and more realistically, by making M vary,
giwen A. For sake of simplicity, we take M = N, although self-duality is not
required here. The relevant formalism to develop the point is that of the activity
ordering for sets (and no longer for set mappings)[ MAT97]. As a matter of fact,
any fixed set A generates an ordering on P(E) denoted by =<4:

My <4 Mo if MiNnADMyNA and My N A° C My A°

From this ordering derives the so-called A-activity lattice, where the supre-
mum and the infimum of a family {M;,i € I} of sets are given by

YaM; = [A°N(UM;)] U [NM;]
AaM; = [An(UM;)] U [NM;]

A itself is the least element, and A€ as the greatest element (Note that these
concepts are very similar to those presented earlier for the operator activity
lattice).

Given A, consider the operators M — Aa(M) = MA, M) and M — 04(M) =
6(A, M) from P(E) into itself. These operators turn out to be openings on the
A-activity lattice. Indeed, according to relations (10), 8 4(M) coincides with
Yu(A) (or Aa(M) with 7,;,(A)) on A. Hence, it suffices to reduce A N M for
reducing ANA4 (M), and similarly to increase A°N M for enlarging A°NA4(M).
In other words, we have

My =4 My = Xa(M7) 24 Aa(Mz) and 04(Mi) <4 04(M)

i.e. 4 and M4 are increasing on the A-activity lattice. They are also anti-
extensive, since we can write

ANM C ANy (A) = ANOA(M) C ANF(A) = AN Aa(M)

and, similarly, AN M 2O A°NOs(M) 2D A°NAa(M).
Equivalently, we can write

QA(M) =aM and Ag(M) <4 M.
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The third and last axiom, i.e., idempotence, derives from Theorem 27.

A pyramid, as defined in [ SER93], is a family {¢y,A > 0} of operators
from a space E into a space F, which depend on a positive parameter \ such
that for each A > p > 0, there exists a v > 0 with ¢,¢, = ¢, ( for any
A > p, the operator i, can be obtained either directly, or by starting from
¥, and composing it by ¥,). Is it possible to generate pyramids by means of
such openings ? The answer is yes. Consider two markers M; and My with
My <4 My, and perform the opening ~y,5 on the result 6 4(M;) of the smaller
flattening. As M7 N A D MsN A, the grains of A that are intersected by My are
exactly the grains of 4 (M) intersected by Ma, so that

ANOg, ) (M2) = ANy, [0a(M1)] = AN vy, (A) = AN 0 4(M2).
By duality, we can write also
AN 0y, )(Ma) = A°N 0 a(Ma)
i.e., finally
O (a1 )(Mz2) = 0 4(Mz).

If we start with the stronger flattening, we find similarly
0.4 (a1) (M) = 04 (Mz).

Since the approach is also valid for leveling, we can combine all these results in
the following theorem

Theorem 34 Given set A, the flattening M — 04(M) and the leveling M —
A (M) from the A-activity lattice of P(FE) into itself are openings. Moreover,
if My <4 Ms we have

09 (an) (Mz) = 09, (ar) (M1) = 0 4(M2)
Ma(a) (Ma) = Ay, (ar) (M1) = Aa(Ma).

This last granulometric type pyramid is specially useful in practice, for it
allows us to grade the activity effects of markers: it means that we can directly
implement a highly active marker, or, equivalently, reach it by intermediary
steps. An example is given in fig.14a and b. Notice that the first part of the
theorem has already been established by Matheron (Theorems R-2 and R-4 in
[ MAT97]) for flattenings, among various other algebraic properties.

7.3 Discussion

We are now in a better position to compare the Meyer-Matheron approach,
based on flattenings and leveling, with the more general grain operators of
Heijmans, where the binary criteria for changing the status of a grain or a pore
are not a priori submitted to any condition such as increasingness, or existence
of markers.
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What happens if we accept, in a flattening § = v U (CN¢), openings and
closings by reconstruction in the broad sense of section 6 7 Then 6 depends on
two binary increasing criteria, m for the opening and n for the closing, say. The
constraint for increasingness becomes the condition that the supremum of m and
n is identically one (proposition 8.5 in [ HEI97]). This means, in case of markers
M and N°¢ that every set of P(E) must hit M or N° (which is true iff N C M).
But such a condition is hardly compatible with the area criteria. For example,
take m(A) = [area(A) > a] and n(A) = [area(A) > b], then the supremum
m(A) Vm(A) is not identically one in general, and if we change the sense of one
of these two inequalities, we no longer deal with openings (or closings). Finally,
markers based operations seem to provide the most convenient type of primitives
for increasing flattenings. Among others, they directly yield the self-dual ones.

However, there exist other ways than flattenings to obtain self-dual con-
nected filters. When v and ¢ are by reconstruction (in the broad sense), then
v and @7y are strong filters and v O ¢, hence the center a = (Id N yp)U
@7y is in turn a strong filter which becomes self-dual as v and ¢ are dual of one
another. However, experience shows that this operator, which was the first to
be developed (chapter 7.8 in[ SER88]), does not allow a wide range of activities
[ SER93].

8 Function flattenings and levelings

8.1 From sets to functions

We now return to the function lattice L¥. An increasing operator ¥ on L is
said to be flat if there exists an increasing set operator ¢ such that

X(W(f),t) = 0 [X(f,9)] (17)

s<t

where X (f,t) stands for the thresholding of function f at level ¢, i.e. :
X(ft)={e:2€B, f(r)>1) (1)

H. Heijmans [ HEI91] has shown that every increasing flat function operator
U admits a unique set generator . Moreover, when the set generator v is
|-continuous, then (17) takes the simple form | SER82]

X[@(f),t] = [X(f). 1] (19)

In particular, in the finite cases of digital imagery, relation (18) is sufficient to
characterize the function operator ¥ associated with an increasing set operator
1. From these two relations, and Theorem 25, we define the numerical versions
O and A of the increasing flattenings and levelings using their cross sections. We
start with the discrete case.
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Definition 35 Let f,g,h, be three functions from Z™ into L, and let g < h.
The relations

X[0(f),t] =0[X(f,1)], X(g,t), X (h, )]
X[A(f)vt] :)\[X(f,t)],X(g,t),X(h,t)]

define one and only one flattening O(f) as well as one and only one leveling
A(f) on LZ".

If connection C is obtained using iterations of an elementary dilation 8, with
adjoint erosion ¢, then a digital algorithm for ©(f) and A(f) as functions of f,g
and h has been given by Matheron in the self dual case, i.e. for g = h [ MAT97].
According to this algorithm, the flattening ©(f) and the leveling A(f) turn out
to be the limits of the recursive sequence

In = (f \ 6.gn—l) A 5gn—1 = (f A 6gn—1) V EGn—1

with g1 = (fAd(gAf)Ve(gV f) for flattenings
g1= (fNdg)Veg for levelings

For the same type of connections, but for any pair (g, h) with g < h, one can
obtain the leveling by applying the decomposition Theorem 31, and computing
the opening by reconstruction go(f) and successively A(f) = hoo[goo(f)]. The
first operation is thus given by the limit of the sequence

gn = (f Nogn—1)  with g1 = (f Adg)
and the second one by

b = [goo(f) V €hp_1] with h1 = [goo(f) V €]

This second technique is usually better than the previous one, since the
two primitives are implemented by fast recursive algorithms in most of the
morphological packages. One can check numerically that the two factors h,
and goo do commute in algorithm A(f) = hoo[goo(f)] (Theorem 31).

Let us now consider the case of non discrete grey tone values. We will
suppose for the sake of simplicity that F is a separable topological space, and
that C is a connection such that for each z € E, the connected 7, opening is
|-continuous on the closed sets of E, and T-continuous on the open sets of E.
If we consider

- an upper semi continuous function f: E — L,

- a marker g whose cross sections X (g,t) are compact,

- and a second marker h smaller or equal to g,
then the definition of the discrete case extends directly (without these assump-
tions, we should have to consider the whole stack of sections).
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8.1.1 Self-duality

All properties concerning self-duality, found in the binary case, such as Proposi-
tion 26, extend directly to numerical cases. If 0 and m stand for the two extreme
bounds of the grey axis L, we have for example

m*A(m7f7mig7mig):A(f’g’g)

which means that the leveling f, g — A(f, g) is always a self-dual mapping (here
the complement operation is replaced by its function analogue f — m — f). In
addition, if the marker is computed with a self-dual operator, i.e. g = g(f)
where the operator g satisfies

m—g(m— f) = g(f)
for every f, then the leveling f — A(f, g(f),g(f)) is self-dual and we have

The same comments apply to flattenings as well. Operators g, such as convo-
lution, or median operators do provide self-dual markers. The reader will find
another provider of self-duality for markers in the example of fig.14a and 14b
below. Notice that the above relation of self-duality for g is distinct from that
of invariance under complementation, namely

glm —f) = g(f)

This latter relation is satisfied by every symmetrical function of the minima
and of the maxima of f, or by any function of the module of its gradient, for
example. But it does not imply the general self-duality of A(f,g,9).

)

8.1.2 Examples

In practice, the role of the marker is crucial. In fig.13 to 15, three markers g are
compared when the planar digital connection is that of the hexagonal grid. For
the three markers we take h = g. The first marker g is an alternating sequential
filter of size two of f, starting with the opening (observe that it is not self-dual).
The corresponding leveling is presented in fig.13b.

The second pair of markers is obtained by replacing f by zero on the ex-
tended maxima and minima of f, and by leaving f unchanged elsewhere.

To compute the extended maxima of f , we take the following steps. Perform
the opening by reconstruction ~,..(f) of f from f — k, where k is a positive
constant. Then the maxima of v, (f) define the so called extended mazima of
f, and those points = where f(z) — v,..(f)(z) = k define the (non extended)
maxima of f of dynamics > k ; the extended minima are obtained by duality.

The corresponding levelings are shown in fig.14a and 14b, for markers gsq
and ggp, of dynamics 30 and 60 respectively (over 256 grey levels).

These two markers are self-dual by construction, and satisfy the condition of
activity increasingness of Theorem 32. Their progressive leveling action appears
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clearly when confronting fig. 14a and 14b. Notice the relatively correct preser-
vation of some fine details such as buttons, eyes, eyebrows, fingers, etc.. These
details are preserved because of their high dynamics. We also point out that,
in the current example, there is no visual difference between these levelings and
the corresponding flattenings.

Alternatively, we could have replaced ¢3¢ and ggo by the suprema of those
maxima and minima of f which have dynamics greater than 30 and 60, re-
spectively. The contrasts would have been better protected, but the self-duality
would have been lost in this case.

One can compare the above three processings by computing the total area
occupied by the flat zones which have non empty interiors. In the initial image,
which is composed of 58,240 pixels, the area of such flat zones is 24,568. Under
the leveling action, they increase up to 41,670 ; 41,621 and 43,173 pixels for
images 13b, 14a and 14b, respectively. Hence, for a same compression rate in
terms of flat zones, the asf marker is perceptually worse, since it loses more fine
structures.

In the third example, the initial image has been corrupted by Poisson noise
(fig.15a). A gaussian convolution reduces the noise, but also smoothes all tran-
sitions (fig.15b). However, if we use the convolved image 15b as a (self-dual)
marker acting by leveling on the corrupted image, this second operation recovers
the initial sharpness of the edges, while keeping down the noise (fig.15¢).

A last word. The approach we have followed in this paper emphazises the
increasing operators. Alternatively, we could have dropped this condition from
the flattening step. Then, starting from any (binary) grain operator, one can
always extend it to the numerical case by using equation (16). A number of
the above propositions would disappear, but the algorithms may present some
practical interest.
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a) set A and ~,(A) b) sup of two partitions

Figure 1: a) lattice P(E) of the sets of E, and connected component 7, (A)
of A at point x; b) an example of partition lattice: two partitions and their
supremum.

a) b) ¢)
figure 2: a) initial set, made of 28 grains;
b) for the connection according to a disc dilation (here of radius
8) there are 5 grains only;
¢) the isolated grains are those which are the same in a) and b),
i.e. whose dilate misses the skeleton by zones of influence of set a).



a) Osteocytes b) mask ¢) 3D cells

Figure 3: a) section n°15 in a stack of 60 microscopical confocal sections.
Three osteocytes appear;

b) mask obtained by the union of a low thresholding over the 60
sections ;

¢) reconstruction of a high threshold of the cells inside marker b)
( perpective view).

a) constant weights b) Lipschitz function weights
Figure 4: suprema (continuous lines) and infima (dashed zones), in lattice
P,,of two weighted sets (dotted lines). In a), the weights are constant, in b),
they are Lipschitz functions. These weighet sets generate connected G-cylinders,

in the sense of Definition 15, when they are combined with the partitions they
induce on R'
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a) flat zones b) bounded variation
figure 5: two basic moduli of continuity, which associated with the two con-
nections by flat zones and by bounded variation (also called "jump connection
of range k ) respectively.

a) Initial image b) Jump connection
Figure 6: A jump connection of range 14 (over 256 grey tones) on image
a) yields image b) which comprises 94 regions. Each of them is represented by
its average grey.

a) Initial image b) Jump connection ¢) Derived SKIZ
Figure 7: a) optical micrograph of a polished section of alumina; b) jump
connection of range 12 (in dark, the point connected components; in white, each
particle represents the base of a cylinder in the jump connection); c) skeleton by
zones of influence of the set provided by image b).
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a) Initial image b) Smooth connection ¢) Jump connection
Figure 8 : a) Electron micograph of a petrographic polished section; the two
phases have the same histogram, but one is more uniform than the other; b)
smooth path connection of slope 6; ¢) jump connection of range 15. In b) and c)
the blacks are the union of all connected components that are reduced to points.

a) initial image b) ASF of size 4 c) ASF of size 8
Figure 9 :  An example of a pyramid of connected alternated sequential
filters. Each contour is preserved or suppressed, but never deformed : the initial
partition increases under the successive filters, which are strong and form a

semi-group.

Figure 10 : a) Satellite image of the Acores Islands area; b) connected closing
by reconstruction of a) . According to proposition 11, the connected closing
generates a new connection on the lattice of the weighted partitions by flat zones.
In order to show this effect, one connected component has been followed through
the process (the cloud surrounded by a dark line).
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M=N= y.(A°)
a) b)

Figure 11: a) Non increasingness of 6 when N'¢ M.Take for A’ grin A plus
its pore; then AC A’ whereas 6(A’) C 6(A). b) Take the internal pore of grain
A as M and N, then 0(A) equals the pore without the grain (flip-flop effect).

a) b) c)
Figure 12 : a) In black: initial set A ; inside the small rectangle: marker
M (made of two points). For the opening connection by a 2X 2 square, set A is

composed of five grains, namely the two 2x 2 squares and three point connected
components ;

b) Set o Aum(A) ;
c) Set Yur . (A) ; the difference between b) and c) comes from
that the opening connection is not adjacency preventing.
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a)
Figure 13 : a) Manet’ Joueur de fifre (detail);
b) leveling of a) by taking an ASF filter as marker.

a) b)
Figure 14: Levelings of picture 11a, by taking a marker based on extended
extrema; the dynamics is equal to 30 in a) and 60 in b), over 256 gray levels.

a) b)
Figure 15: a) initial image plus Poisson noise;
b) convolution of a) by a disc of radius 5;
c) leveling of a) by marker b) (the noise is removed, but the contours are
those of the initial image).
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