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1. Introduction

In digital image processing, geometrical algorithms rely often on a choice of an adjacency relation be-
tween pixels, such as the well-known 4- and 8-adjacencies. Here the adjacency relation is equivalent to
the notion of pixel neighbourhood: to every pixelx we associate its neighbourhoodN(x) made of all
pixelsy which are adjacent tox; since the adjacency is symmetrical (y is adjacent tox iff x is adjacent
to y), the neighbourhood must be symmetrical in the sense thaty 2 N(x) iff x 2 N(y). The adjacency
(or neighbourhood) can be used to define such concepts as connected objects, or connected components.
In mathematical morphology one encounters for example the so-called “reconstruction from a marker”:
we have an objectM called themask, which represents the data to be analysed, and a setX called the
marker, corresponding to some properties, and we want to obtain all connected components ofM which
intersectX. The straightforward algorithm for this purpose is to initialize the reconstructionR with
X \M , and to iteratively increment it by adding the neighbourhood inM of each of its pixels:

R := R [
�[
p2R

�
N(p) \M

��
;

this is repeated until no further point is added toR.
The operation of adding the neighbourhood of each pixel of the figure, is a dilation, and when this

neighbourhood is restricted to the mask, it becomes ageodesic dilation. This leads immediately to
the dual definition of ageodesic erosion, and other geodesic operators can then be devised (distance
transform, zones of influences, etc.)

Historically speaking, this has been the starting point from which the axioms for morphological con-
nectivity progressively arose. Trivially, changing the definition of adjacency (or of the neighbourhood)
modifies the class of connected components; but in a subtler way, the operations of reconstruction from
a marker, or simply of taking the connected component of a set containing a given point, have a set of
algebraic properties, which can be taken to define abstractly the notion of a connected component, and
hence of a connected set. This approach was used in [16] to characterize axioms for connectivity on sets;
further examples were given in [10] and equivalent axioms have been proposed in [12]. But a number
of questions come to mind: is such an approach limited to the case of sets, i.e., binary images? Oth-
erwise, to which families of pictorial objects can it be applied? In the above reconstruction algorithm,
does one need dilations to expand the markers, or can one take instead other operators which preserve
connectivity? If the space of pictorial objects is nota priori equipped with a connectivity, to which extent
does such a reconstruction algorithm lead to a connectivity? Finally, in the Euclidean spaces, what are
the links between these operations and the classical topological connectivity? Surprisingly, the answers
to these questions depend on thesymmetryof the operators, a concept which will be clarified here, but
also on theirextensivity(the fact that they enlarge objects) and related properties (namely, what we call
climbing).

The main conceptual problem is the generalization of the notions of a symmetrical neighbourhood
and hence of a symmetrical dilation, which is straightforward for sets of points (binary images), to an
abstract framework covering many families of pictorial objects, in particular grey-level or color images.
There is another topic in mathematical morphology where steps towards a wider notion of symmetry
were made: annular filters. The starting point comes from [16]: letA be a symmetrical structuring
element (a 2 A () �a 2 A); then the set operatorX 7! X \ (X � A) is a translation-invariant
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algebraic opening which removes from a setX all isolatedpoints, that is allp 2 X such thatAp\X = ;;
this operator is called theannular opening byA.

In [13], annular openings were generalized in two ways. First, in the case of sets, the annular opening
can be defined without the assumption of translation-invariance: we replace the symmetrical structuring
elementA by a symmetrical neighbourhoodN(x) associated to every pointx (the symmetry being
that y 2 N(x) () x 2 N(y)), and the dilation byA becomes the dilation

S
x2X N(x) by the

neighbourhoods. Second, the notion of a symmetrical structuring element can be to extended grey-level
functions, and more generally to an arbitrary complete lattice having a sup-generating family on which an
abelian group of lattice automorphisms acts transitively; this led to the construction of annular openings
on such a lattice. Finally, the approach of [13] was technically improved in [14]; in particular other types
of annular filters were studied.

This work on annular filters in an abstract framework was our inspiration for the search of a general
definition of symmetry that would lead to connectivity by geodesic reconstruction. As for many problems
in mathematical morphology, the solution to a general question can often be found by looking at what
happens with grey-level images, in other words numerical functions.

We will give below the definition of a symmetrical structuring function for grey-level images, which
was presented in [13, 14], and compare it to more straightforward definitions of symmetry. The main
lesson of this investigation of annular openings is that the notion of symmetry, which is clear and unam-
biguous for sets, is not uniquely defined for other objects. In particular for numerical functions, we will
find 3 different definitions of symmetry, from the most exacting to the least demanding.

1.1. Symmetry for numerical functions

We consider grey-level images as functionsE ! T , whereE is the space of points, andT is the set of
grey-levels, which can beZ orR; T is a complete lattice for the ordering by�, and has�1 and+1 as
least and greatest elements. As sets are generated by points, grey-level images are generated by joining
together “grey-level points”; more precisely, given a pointp 2 E and a grey-levelt 2 T n f�1g, the
“impulse” functioni(p;t) defined by

8x 2 E; i(p;t)(x) =

(
t if x = p;

�1 if x 6= p;
(1)

represents in some way the pointp with grey-levelt attached to it; now such impulse functions form
a sup-generating family for grey-level functions, this means that every functionf : E ! T is the
supremum of a family of impulses, namely those less than or equal to it:

f =
_
fi(p;t) j p 2 E; t 2 T n f�1g; andt � f(p)g : (2)

It is customary to associate tof a subset ofE � (T n f�1g) called itsumbra, that is the set

U(f) = f(p; t) j p 2 E; t 2 T n f�1g; andt � f(p)g : (3)

The similarity between (2) and (3) shows the correspondence(p; t)$ i(p;t) between points in the umbra
of a function and impulses generating that function.
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Let us write supp(f) for the supportof the functionf , namely the set of all pointsp 2 E where
f(p) > �1. Note that for(p; t) 2 U(f) we havep 2 supp(f). For p 2 E andt 2 T n f�1g, the
translateof the functionf by (p; t) is the functionf(p;t) : E ! T : x 7! f(x� p) + t.

In order to define a “symmetrical” structuring functionf , we need to extrapolate the condition “a 2
A () �a 2 A” characterizing symmetrical sets. A straightforward transposition would give

8p 2 E; 8t 2 T n f�1g; (p; t) 2 U(f) () (�p;�t) 2 U(f) ; (4)

which means thatf verifies the following two conditions:

1. supp(f) is a symmetrical set, and

2. for everyp 2 supp(f), f(p) = +1.

In other words,f is a cylinder with symmetrical support, and having an infinite height all over it. This
condition corresponds to what we will callstrong symmetry.

In fact umbras are redundant descriptions of functions, in other words the family of impulses used in
(2) to generatef is redundant. The basic idea in [13] was to require(�p;�t) 2 U(f) only for points
(p; t) 2 U(f) in a portion of the umbra sufficient to reconstructf ; this was expressed as follows:

8(p; t) 2 U(f); 9s � t such that(p; s) 2 U(f) and(�p;�s) 2 U(f) :

Following [14], an equivalent formulation is:

8p 2 E; f(p) = supfs j (p; s) 2 U(f) and(�p;�s) 2 U(f)g :

The above condition can then be expressed as follows:

1. supp(f) is a symmetrical set, and

3. for everyp 2 supp(f), f(p) + f(�p) � 0.

We call this conditionannular symmetry. Then the operatorg 7! g ^ (g � f) is a translation-invariant
algebraic opening, called again “annular opening” [13]. We will not use this annular symmetry in the
remainder of this paper.

Finally, we can consider a weaker symmetry condition

8(p; t) 2 U(f); 9s � �t such that(�p; s) 2 U(f) : (5)

This amounts to requiring only:

1. supp(f) is a symmetrical set.

This corresponds to what we will callweak symmetry. Clearly strong symmetry implies annular symme-
try, and the latter implies weak symmetry. We illustrate strong and weak symmetry in Figure 1. These
are the two notions that we will use in the following.
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Figure 1. a) A strongly symmetrical functionf : E 7! T . b) A weakly symmetrical functionf 0 : E 7! T .
(For both functions, the part of the graph corresponding to the support is shown with a plain line, and the rest with
dashed lines.)
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1.2. Symmetrical dilations, geodesic reconstruction, and connectivity

Both in annular openings and in geodesic reconstruction from markers, symmetrical structuring elements
or neighbourhoods are used in a dilation. In the case of sets, the dilation by a neighbourhood function
N : x 7! N(x) is the mapÆN : P(E) ! P(E) : X 7!

S
x2X N(x). Given a “symmetrical” structuring

functionf , the dilation byf is the mapÆf : TE ! TE : g 7! g � f ; here the role of points in the case
of sets is taken by the impulse functionsi(p;t) defined in (1), so the “neighbourhood” ofi(p;t) (p 2 E,
t 2 T n f�1g) is given byÆf (i(p;t)) = i(p;t) � f = f(p;t), the translate off by (p; t). Then the strong
symmetry condition onf can be expressed as follows:

8p; q 2 E; 8t; s 2 T n f�1g; i(p;t) � f(q;s) () i(q;s) � f(p;t) : (6)

On the other hand, weak symmetry can be written as:

8p; q 2 E; 8s; t 2 T n f�1g; i(p;t) � f(q;s) =) f(p;t) ^ i(q;s) 6= ? ; (7)

where? designates the constant�1 function. These new interpretations of symmetry are illustrated in
Figure 2.

This allows us to give an abstract expression for the strong and weak symmetry of a dilationÆ. Write
L for the setTE of functionsE ! T andS for the set of impulses;L is a complete lattice for the order
relation� between functions. Here (2) becomes:

8f 2 L; f =
_
fi 2 S j i � fg ;

this means thatS is asup-generating familyof L. Then the strong symmetry of dilationÆ becomes

8i; j 2 S; i � Æ(j) () j � Æ(i) ; (8)

while its weak symmetry is here

8i; j 2 S; i � Æ(j) =) Æ(i) ^ j 6= ? : (9)

These definitions can then be extrapolated from the present case of the lattice of numerical functions
with a sup-generating family made of impulses, to any complete latticeL with sup-generating familyS.

We now introduce a few basic facts about geodesy; these will be studied in detail in Section 3. Given
a maskm 2 L, we consider the latticeL[m] of all functionsf 2 L such thatf � m; hereL[m] has
the sup-generating familyS[m] made of all impulsesi 2 S such thati � m. We define thegeodesic
restriction of Æ to m as the mapÆm : L[m] ! L[m] : f 7! Æ(f) ^ m. An interesting point is that
both properties of strong and weak symmetry are preserved by geodesic restriction (in (8) and (9) we
replaceS by S[m], andÆ by Æm). FromÆm we can build the geodesic reconstruction'm as the operator
obtained by repeatingid _ Æm until idempotence (whereid is the identity onL[m], in particular when
Æm is extensive,id _ Æm reduces toÆm). This reconstruction'm is in fact the least algebraic closing on
L[m] which is aboveÆm.

Since geodesic reconstruction, using repeated dilation by the 4-/8-neighbourhoods, was initially de-
vised as a method for reconstructing 4-/8-connected components of sets touched by a marker, one can
wonder whether it is possible to do the reverse, to define a new connectivity from the geodesic recon-
struction'm obtained from a suitable “symmetrical” dilationÆm. In the case of sets, everything is
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Figure 2. a) The strongly symmetrical functionf of Figure 1.a satisfies (6). b) The weakly symmetrical function
f 0 of Figure 1.b satisfies (7).
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straightforward: the symmetrical dilation corresponds to symmetrical point neighbourhoods, and the
latter are determined by a unique symmetrical adjacency relation between points; then the geodesic re-
construction produces connected components for the connectivity arising from this adjacency on points.
In the more general framework of a complete lattice with a sup-generating family, geodesic reconstruc-
tion'm using an extensive strongly symmetrical dilationÆm will indeed induce a connection in the sense
of [17].

However in some lattices, such as the one of numerical functions, strong symmetry is an extremely
severe requirement, so we can wonder whether this holds also for a weakly symmetrical dilation. There
is a fundamental problem which did not arise with sets: the generators inS are not “atoms”, we can have
i � i0 for i; i0 2 S; for example with (grey-level) numerical functions, takingp 2 E ands; t 2 T nf�1g
such thats < t, we havei(p;s) � i(p;t); see Figure 3.a. Intuitively, fori; i0 2 S with i � i0, imust be in the
same connected component (of a given function abovei; i0) asi0, so that converselyi0 must be in the same
connected component (of that function) asi; thusi0 should be obtained fromi by geodesic reconstruction
using dilationÆ. In other words it should be possible to “climb” fromi to i0 with Æ. We introduce then
a new property:Æ is climbing if for any i; i0 2 S with i � i0, there is a sequencei0; : : : ; in 2 S such
that i0 = i, in = i0, and for eachk = 0; : : : ; n � 1, ik � ik+1 � Æ(ik); see Figure 3.b. In particular,
whenÆ is climbing, it is extensive. For example in the case of grey-level functions, the dilation by a
structuring functionf is climbing iff f(o) > 0, whereo is the origin (or null vector) ofE. In the case
of sets, a dilation is climbing iff it is extensive. We show that, up to some technical assumptions on the
latticeL (which are verified both for sets, grey-level and colour functions), when the geodesic dilation
Æm is climbing and weakly symmetrical, then the geodesic reconstruction'm is strongly symmetrical.

We obtain thus a progression from a weakly symmetrical and climbing dilation to a strongly sym-
metrical geodesic reconstruction, and from the latter to a definition of a connection on the lattice.

The paper is organized as follows. In Section 2 we introduce our notation and terminology for com-
plete lattices, and then we define weak and strong symmetry and study their properties. In Section 3 we
introduce geodesic operators, in particular reconstruction from markers, and give conditions for obtain-
ing a connected opening, in other words a connection [17] on the lattice. Section 4 is devoted to examples
of connectivities related to geodesic reconstruction, in particular for metric spaces and numerical func-
tions; we also discuss there some cases where our theory does not apply directly, in particular image
partitions. The last section is the conclusion, it links our results to other papers published on the topic of
connectivity, and introduces several lines of investigation for the theory of symmetry and connectivity in
lattices.

After we wrote the first version of this paper in 1999, Braga-Neto and Goutsias [5] obtained inde-
pendently some results overlapping ours, in particular those of Subsection 3.2. We will indicate there the
relations between their results and ours.

2. Lattices and symmetry

We use essentially the same theoretical framework and notation as in [17]. Theobject space, that is the
family of images being considered, is writtenL; elements ofL are calledobjectsand written with lower-
case lettersa; : : : ; z; they represent individual images under consideration. Upper-case lettersA; : : : ; Z
will denote subsets ofL. However whenL is the lattice of subsets of a setE, elements ofL (subsets of
E) will be writtenA; : : : ; Z, while a; : : : ; z will designate points ofE. We assume thatL is ordered by
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Figure 3. a) Fors; t 2 T n f�1g with s < t, i(p;s) � i(p;t); herei(p;s) andi(p;t) belong to the same connected
component of a functionf above them (heref has two connected components). b) “Climbing” fromi0 = i(p;s) to
in = i(p;t) with dilationÆ by a structuring functionb.
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a partial order relation� for which it is acomplete lattice[3]; the supremum and infimum operations
are written

W
and

V
. The least and greatest elements ofL are written? and> respectively; we have

? =
V
L =

W
; and> =

W
L =

V
;. For anya 2 L andX � L, we writeX[a] (resp.,X�[a]) for the

set of lower bounds (resp., upper bounds) ofa in X:

X[a] = fx 2 X j x � ag ;

X�[a] = fx 2 X j x � ag :

Throughout this paper, we assume thatL has asup-generating familyS; this means that for every
x 2 L there is someX � S for whichx =

W
X; equivalently:

8x 2 L; x =
_
S[x] :

Elements ofS are calledgenerators. We suppose also that? =2 S; indeed,? is always redundant in a
sup-generating family:x =

W
X =) x =

W�
X n f?g

�
.

For example, whenL is the setP(E) of parts of a Euclidean or digital spaceE, S will be the set
of all singletons inE; whenL is the family Fun(E; T ) of numerical functionsE ! T (T = Z orR),
S will consist of all “impulse” functionsip;t for p 2 E andt 2 T n f�1;+1g (Z orR), defined by
settingip;t(p) = t andip;t(x) = �1 for x 6= p (see (1)). Further examples can be found in [9].

A partX of a complete latticeL is said to besup-closedif for any Y � X we have
W
Y 2 X. We

define similarly aninf-closedpartX by Y � X =)
V
Y 2 X.

One calls anatomof L somea 2 L such thata 6= ? and for everyx 2 L, ? � x � a =) x = a
or x = ?.

We say that the complete latticeL is infinite supremum distributive(in brief, ISD) if the binary meet
operation̂ distributes the supremum operation

W
, in other words:

8x 2 L; 8yi 2 L (i 2 I); x ^
�_
i2I

yi

�
=
_
i2I

(x ^ yi) : (10)

Note that both the complete latticeP(E) of parts ofE and the one of numerical functionsE ! T are
ISD.

MapsL ! L will be calledoperatorsand will be designated by lower-case greek letters�; : : : ; !;
they represent image processing operations. The identity operatorL ! L : x 7! x will be written id.
The setLL of operators naturally inherits fromL the partial order� and the structure of a complete
lattices with supremum and infimum operations

W
and

V
. The composition of operators followed by

� is written� , where� (x) = �( (x)). Given an operator andn 2 N , we define n by  0 = id,
 1 =  , and n =   n�1 for n > 1. We write>L and?L for the constant operatorsx 7! > and
x 7! ? onL.

A partF of LL is said to bepower-closedif for every 2 F and any integern > 0 we have n 2 F .
We recall from [7, 9, 13, 15, 16] some fundamental concepts. An operator is increasingif x � y

implies (x) �  (y); it is extensiveif  � id, i.e., we always havex �  (x); it is anti-extensiveif  �
id, i.e., we always have (x) � x; it is idempotentif   =  , i.e., we always have ( (x)) =  (x). An
openingis an increasing, idempotent, and anti-extensive operator; aclosingis an increasing, idempotent,
and extensive operator. Adilation is an operatorÆ which distributes the supremum operation, while an
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erosionis an operator" which distributes the infimum operation:

Æ
�_
i2I

xi

�
=
_
i2I

Æ(xi) ; "
�^
i2I

xi

�
=
^
i2I

"(xi) ;

in particular, forI = ;, we getÆ(?) = ? and "(>) = >. Note that every dilation or erosion is
increasing.

We will now introduce our notions of strong and weak symmetry. Following (8) and (9), we make
the following definition:

Definition 2.1. Let � and� be two operators onL. We say that� strongly mirrors� if

8s; t 2 S; s � �(t) =) t � �(s) ; (11)

and that� weakly mirrors� if

8s; t 2 S; s � �(t) =) �(s) ^ t 6= ? : (12)

We say that� is strongly(resp., weakly) symmetricalif � strongly (resp.,weakly) mirrors itself.

Note that (11) implies (12), so strong mirroring (or symmetry) always implies weak one. Also for
�0 � � and� 0 � �, if � strongly (resp.,weakly) mirrors�, then�0 strongly (resp.,weakly) mirrors� 0.

Let us consider some examples. ForL = P(E) with S the set of singletons, strong and weak
mirroring are equivalent, they both amount to:

8p; q 2 E; p 2 �(fqg) =) q 2 �(fpg) :

In the translation-invariant case, if eachx 2 E gives�(fxg) = Ax and�(fxg) = Bx for two structuring
elementsA;B � E, the above mirroring property means thatA � �B = f�b j b 2 Bg.

WhenL is the lattice of numerical functionsE ! T (whereE = Rn orZn andT = R orZ), taking
the translation-invariant dilationsÆf ; Æf 0 by two structuring functionsf; f 0, Æf strongly mirrorsÆf 0 iff for
everyp 2 supp(f) we havef 0(�p) = +1, while Æf weakly mirrorsÆf 0 iff for every p 2 supp(f) we
have�p 2 supp(f 0). In particularÆf is strongly (resp.,weakly) symmetrical according to the present
definition, iff f is strongly (resp.,weakly) symmetrical according to (4,5).

We will now study the properties of strong and weak mirroring w.r.t. algebraic operations on opera-
tors, namely supremum, infimum, and composition:

Proposition 2.1. >L and?L are strongly symmetrical,id is weakly symmetrical. Given a family of
operators�i; �i (i 2 I) onL:

1. If �i strongly mirrors�i for eachi 2 I, then
V
i2I �i strongly mirrors

V
i2I �i.

2. LetL be ISD, and suppose that each�i (i 2 I) is increasing. If�i strongly (resp.,weakly) mirrors
�i for eachi 2 I, then

W
i2I �i strongly (resp.,weakly) mirrors

W
i2I �i.

Given operators�; �0; �; � 0 onL:

3. LetL be ISD, and suppose that� and� 0 are increasing, while� is a dilation. If� weakly mirrors
� and�0 strongly (resp.,weakly) mirrors� 0, then��0 strongly (resp.,weakly) mirrors� 0�.
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Proof:
For everys; t 2 S, we havealwayss � >L(t) and t � >L(s), while we havenevers � ?L(t)
nor t � ?L(s). Thus>L and?L are strongly symmetrical. Nows � id(t) meanss � t, so that
id(s) ^ t = s ^ t = s 6= ?, thereforeid is weakly symmetrical.

1) ForI = ;, we have
V
i2I �i =

V
i2I �i = >L, which is strongly symmetrical. We have thus only

to consider the case whereI 6= ;. Let s; t 2 S such thats �
V
i2I �i(t). Then for eachi 2 I we have

s � �i(t), and as�i strongly mirrors�i, we gett � �i(s). Hencet �
V
i2I �i(s). This means that

V
i2I �i

strongly mirrors
V
i2I �i.

2) ForI = ;, we have
W
i2I �i =

W
i2I �i = ?L, which is strongly symmetrical. We have thus only

to consider the case whereI 6= ;. Let s; t 2 S such thats �
W
i2I �i(t). AsL is ISD, we get

s = s ^
�_
i2I

�i(t)
�
=
_
i2I

�
s ^ �i(t)

�
;

it follows then that there is somej 2 I such thats ^ �j(t) 6= ?, so there is somes0 2 S
�
s ^ �j(t)

�
. As

s0 � s and�j is increasing, we have

�j(s
0) � �j(s) �

_
i2I

�i(s) :

If �j strongly mirrors�j, ass0 � �j(t), we gett � �j(s
0), and hence

t � �j(s
0) �

_
i2I

�i(s) ;

thus
W
i2I �i strongly mirrors

W
i2I �i. If �j weakly mirrors�j, ass0 � �j(t), we get�j(s0) ^ t 6= ?, so

that
? < �j(s

0) ^ t �
�_
i2I

�i(s)
�
^ t ;

thus
W
i2I �i weakly mirrors

W
i2I �i.

3) Let s; t 2 S such thats � ��0(t). Since�0(t) =
W
S[�0(t)] and the dilation� distributes the

supremum, we have��0(t) =
W
v2S[�0(t)] �(v). AsL is ISD, we get

s = s ^ ��0(t) = s ^
� _
v2S[�0(t)]

�(v)
�
=

_
v2S[�0(t)]

�
s ^ �(v)

�
;

it follows then that there is someu 2 S[�0(t)] such thats^�(u) 6= ?, so there is somes0 2 S
�
s^�(u)

�
.

As s0 � s and � is increasing, we get�(s0) � �(s). As � weakly mirrors� ands0 � �(u), we get
�(s0) ^ u 6= ?; takeu0 2 S

�
�(s0) ^ u

�
; now u0 � �(s0) � �(s) and � 0 is increasing, so� 0(u0) �

� 0(�(s0)) � � 0(�(s)); thus� 0(u0) � � 0(�(s)).
If �0 strongly mirrors� 0, asu0 � u � �0(t), we gett � � 0(u0); hencet � � 0(u) � � 0(�(s)). Thus

s � ��0(t) impliest � � 0�(s), that is,��0 strongly mirrors� 0�.
If �0 weakly mirrors� 0, asu0 � u � �0(t), we get� 0(u0) ^ t 6= ?; but � 0(u0) � � 0(�(s)), so

? < � 0(u0) ^ t � � 0(�(s)) ^ t. Thuss � ��0(t) implies � 0�(s) ^ t 6= ?, that is,��0 weakly mirrors
� 0�. ut
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Corollary 2.1. Assume thatL is ISD. The family of strongly (resp.,weakly) symmetrical dilations is
sup-closed and power-closed, and it contains?L. The family of weakly symmetrical dilations contains
alsoid.

Proof:
It is known [9] that the family of dilations is sup-closed and closed under composition (inLL); in partic-
ular it contains?L and it is power-closed. Moreover, recall that every dilation is increasing.

Given a familyÆi (i 2 I) of strongly (resp., weakly) symmetrical dilations,
W
i2I Æi is strongly

(resp.,weakly) symmetrical by item 2 of Proposition 2.1, and it is a dilation by [9]. Now?L is strongly
symmetrical by Proposition 2.1, and a dilation by [9].

Given a strongly (resp.,weakly) symmetrical dilationÆ and an integern > 0, Æn is a dilation by [9],
and we show by induction thatÆn is strongly (resp.,weakly) symmetrical. First, this is true forn = 1;
second, givenn > 1 such that the property is true forn�1, sinceÆ andÆn�1 are strongly (resp.,weakly)
symmetrical, by item 3 of Proposition 2.1,ÆÆn�1 strongly (resp.,weakly) mirrorsÆn�1Æ, that isÆn is
strongly (resp.,weakly) symmetrical.

Finally id is weakly symmetrical by Proposition 2.1, and a dilation by [9]. ut

Note that there is no result like item 1 of Proposition 2.1 for weakly mirroring functions. Consider
for example the ISD complete lattice of numerical functionsR! R. We define the structuring functions
fn (for everyn 2 N) andf 0 by:

fn(x) =

8><>:
�nx if � 1 � x < 0;

0 if 0 � x � 1;

�1 otherwise;

f 0(x) =

(
0 if 0 � x � 1;

�1 otherwise:

We have
V
n2N fn = f 0. For everyn 2 N, sincefn has as support the symmetrical interval[�1; 1] (it

is weakly symmetrical according to (5)), the dilationÆfn : g 7! g � fn is weakly symmetrical. However
 =

V
n2N Æfn is not weakly symmetrical. Indeed, for a generator (an impulse)i(q;s) we have:

 (i(q;s)) =
^
n2N

Æfn(i(q;s)) =
^
n2N

(fn)(q;s) =
� ^
n2N

fn

�
(q;s)

= f 0(q;s) :

Thus another generatori(p;t) verifiesi(p;t) �  (i(q;s)) = f 0(q;s) iff q � p � q + 1 andt � s; provided
thatp > q we have (i(p;t)) ^ i(q;s) = f 0(p;t) ^ i(q;s) = ?, becauseq =2 [p; p+ 1] = supp(f 0(p;t)). Thus 
is not weakly symmetrical by (12). We illustrate this example in Figure 4.

We will now study the properties of the closing generated by a strongly or weakly symmetrical
dilation. The first thing is determining the expression for this closing:

Lemma 2.1. Let Æ be a dilation. The least closing� Æ is

Æ̂ =
1_
i=0

Æi =
1_
j=1

(id _ Æ)j ; (13)

and it is also a dilation.
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i(q,s)

E

T

E

T

f’

a) b)

E

T
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Figure 4. a) The weakly symmetrical functionfn (n 2 N). b) The infimumf 0 of all fn (n 2 N). c) The operator
 satisfying (i(q;s)) = f 0(q;s) is not weakly symmetrical.
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Proof:
For i; j 2 N we haveÆiÆj = Æi+j , and since eachÆi is a dilation (i.e., it distributes the supremum
operation), we get for everyI; J � N:�_

i2I

Æi
��_

j2J

Æj
�
=
_
i2I

Æi
�_
j2J

Æj
�
=
_
i2I

_
j2J

ÆiÆj =
_

(i;j)2I�J

Æi+j :

We show by induction that forj > 0, (id _ Æ)j =
Wj
i=0 Æ

i. As Æ0 = id, this is clearly true forj = 1.
Takej > 1 and assume that the property is true forj � 1; we get then

(id _ Æ)j = (id _ Æ)j�1(id _ Æ) =
�j�1_
i=0

Æi
�
(id _ Æ) =

j�1_
i=0

�
Æi _ Æi+1

�
=

j_
i=0

Æi :

It follows thus that
1_
j=1

(id _ Æ)j =
1_
j=1

� j_
i=0

Æi
�
=

1_
i=0

Æi :

Thus both expressions for̂Æ in (13) are equal.
We show now that̂Æ is the least closing� Æ. Sinceid appears in the decomposition ofÆ̂, the latter is

extensive. As the family of dilations is closed under composition and supremum [9],Æ̂ is a dilation; in
particular it is increasing. Now sinceN = fi+ j j i; j 2Ng, we get:

Æ̂Æ̂ =
�_
i2N

Æi
��_

i2N

Æi
�
=
� _
(i;j)2N2

Æi+j
�
=
_
i2N

Æi = Æ̂ :

HenceÆ̂ is also idempotent, and it is a closing. SinceÆ intervenes in the decomposition ofÆ̂, we have
Æ̂ � Æ. Given a closing' � Æ, the extensivity of' gives' � id = Æ0, and by induction every integer
i � 1 gives' = 'i � Æi. Hence' �

W1
i=0 Æ

i = Æ̂. ut

We obtain thus an important result concerning the symmetry ofÆ̂:

Proposition 2.2. Assume thatL is ISD. LetÆ be a dilation.

1. If Æ is extensive and strongly symmetrical, thenÆ̂ is strongly symmetrical.

2. If Æ is weakly symmetrical, then̂Æ is weakly symmetrical.

Proof:
1) As Æ is extensive, (13) giveŝÆ =

W1
i=1 Æ

i. By Corollary 2.1, eachÆi is strongly symmetrical, and
henceÆ̂ is strongly symmetrical.

2) Here (13) giveŝÆ = id_
�W1

i=1 Æ
i
�

. By Corollary 2.1,id as well as eachÆi is weakly symmetrical,

and hencêÆ is weakly symmetrical. ut

We will now introduce another property that allows us to getÆ̂ strongly symmetrical for a weakly
symmetricalÆ:
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Definition 2.2. An operator is climbingif for any s; t 2 S such thats � t, there exist an integern 2 N
andu0; : : : ; un 2 S such thatu0 = s, un = t, and for eachi = 0; : : : ; n�1 we haveui � ui+1 �  (ui).

Consider for example the lattice of numerical functionsE ! T for E = Rn or Zn andT = R or
Z. Given a structuring functionf , the dilationÆf by f is climbing iff f(o) > 0 (whereo is the origin,
or null vector, inE). Indeed, a generatori(p;s) givesÆf (i(p;s)) = f(p;s), whose value atp is s + f(o).
Given another generatori(q;t), we havei(p;s) < i(q;t) iff p = q ands < t; thus forf(o) � 0 we cannot
havei(p;t) � Æf (i(p;s)) with t > s, and soÆf is not climbing. On the other hand, iff(o) > 0, we have
i(p;s+f(o)) � Æf (i(p;s)), i(p;s+2f(o)) � Æf (i(p;s+f(o))), i(p;s+3f(o)) � Æf (i(p;s+2f(o))), etc., and soÆf is
climbing. See again Figure 3.b.

We give now the properties of climbing operators:

Proposition 2.3. 1. Given two operators�; � such that� � � and� is climbing,� will be climbing.

2. Every climbing increasing operator is extensive.

3. Every extensive and strongly symmetrical operator is climbing.

4. A closing is strongly symmetrical iff it is climbing and weakly symmetrical.

Proof:
1) Fromui � ui+1 � �(ui) (for i = 0; : : : ; n� 1) we deriveui � ui+1 � �(ui).

2) Let be climbing and increasing. Letx 2 L; for s 2 S[x], taking t = s, we haves = u0 �
 (u0) =  (s), and as is increasing,s � x implies (s) �  (x); hences �  (s) �  (x) for all
s 2 S[x] from which we derive thatx =

W
S[x] �  (x), i.e., is extensive.

3) Let be extensive and strongly symmetrical. Lets; t 2 S such thats � t. As  is extensive,
t �  (t), so thats �  (t), and as is strongly symmetrical, this givest �  (s). Hence the property of
Definition 2.2 is verified withn = 1, u0 = s, andu1 = t.

4) Let ' be a climbing and weakly symmetrical closing. Lets; t 2 S such thats � '(t). As '
is weakly symmetrical,'(s) ^ t 6= ?, from which we derive that there is somet0 2 S[t] such that
t0 � '(s). As ' is climbing, we haven 2 N andu0; : : : ; un 2 S such thatu0 = t0, un = t, and for
eachi = 0; : : : ; n � 1 we haveui � ui+1 � '(ui). We show by induction oni thatui � '(s) for
i = 0; : : : ; n. As u0 = t0 � '(s), this is true fori = 0. Suppose that the property is true fori < n, and
let us show it fori+1: we haveui � '(s) andui+1 � '(ui), and since' is increasing and idempotent,
we getui+1 � '(ui) � '('(s)) = '(s). Thereforet = un � '(s) by induction hypothesis. We have
thus proved that for everys; t 2 S verifying s � '(t), we must havet � '(s), in other words' is
strongly symmetrical.

Conversely, let' be a strongly symmetrical closing;' is extensive, so it is climbing by item 3; also
' being strongly symmetrical, it is certainly weakly symmetrical. ut

We end this section with a final result that will be used in the next section for building connected
components:

Theorem 2.1. Assume thatL is ISD. Given a climbing weakly symmetrical dilationÆ, Æ̂ is strongly
symmetrical.
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Proof:
As Æ � Æ̂, Æ̂ is climbing by item 1 of Proposition 2.3. By item 2 of Proposition 2.2,Æ̂ is weakly symmet-
rical. By item 4 of Proposition 2.3, the climbing weakly symmetrical closingÆ̂ is strongly symmetrical.

ut

3. Geodesic operations and connectivity

We will now see what happens with the above properties of strong and weak symmetry, and climbing,
when we consider the geodesic restriction of operators to the latticeL[m] for somem 2 L. We will also
consider geodesic reconstruction from a geodesic dilation. Then we will explain how such a geodesic
reconstruction from a weakly symmetrical climbing dilation can give rise to a connection on the lattice
L.

Definition 3.1. Letm 2 L be called amask. Thegeodesic restriction tom of an operator : L! L is
the operator m : L[m]! L[m] defined by

8x 2 L[m];  m(x) =  (x) ^m :

Note thatL[m] is a complete lattice for the ordering by�, with the same supremum operation
W

and least element? as inL; it has also the samenon-emptyinfimum operation
V

asL, but its greatest
element, or empty infimum

V
;, is different: it ism instead of>. It follows that whenL is ISD, so is

L[m]. MoreoverL[m] hasS[m] as sup-generating family.
We will write idm for the identity operator onL[m], this notation is unambiguous, becauseidm is

indeed the geodesic restriction tom of id. The least and greatest operators onL[m] are respectively
?L[m] : x 7! ? and>L[m] : x 7! m. For� 2 LL, we had defined above�0 = id, so we define(�m)0 to
be idm.

Let us now see how the properties of operators considered in the previous section are preserved by
geodesic restriction:

Proposition 3.1. Let m 2 L be a mask. The geodesic restriction 7!  m maps?L, >L, and id on
?L[m],>L[m], andidm respectively, and it is:

� increasing, that is:� � � =) �m � �m;

� compatible with the infimum operation, that is: forF � LL,
�V

 2F  
�
m

=
V
 2F ( m);

� whenL is ISD, compatible with the supremum operation, that is: forF � LL,
�W

 2F  
�
m

=W
 2F ( m).

For any operators�; � 2 LL, the following properties are inherited by their geodesic restrictions�m; �m:

1. that� strongly (resp., weakly) mirrors�;

2. that� is climbing;

3. that� is increasing;
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4. that� is extensive;

5. that� is a closing;

6. whenL is ISD, that� is a dilation.

Proof:
The geodesic restriction of?L, >L, andid mapx 2 L[m] respectively on? ^m = ?, > ^m = m,
andid(x) ^m = x ^m = x, so they are?L[m],>L[m], andidm.

If � � �, then forx 2 L[m] we have�(x) � �(x), so that�m(x) = �(x)^m � �(x)^m = �m(x).
LetF � LL. If F = ;, we get�^

 2;

 
�
m

=
�
>L
�
m

= >L[m] =
^
 2;

( m)

and �_
 2;

 
�
m

=
�
?L
�
m

= ?L[m] =
_
 2;

( m) :

Assume now thatF 6= ;. Forx 2 L[m] we have�V
 2F  

�
m
(x) =

�V
 2F  

�
(x) ^m =

�V
 2F  (x)

�
^m

=
V
 2F

�
 (x) ^m

�
=
V
 2F  m(x) =

�V
 2F  m

�
(x) :

Thus
�V

 2F  
�
m

=
V
 2F ( m). If L is ISD, we get also�W

 2F  
�
m
(x) =

�W
 2F  

�
(x) ^m =

�W
 2F  (x)

�
^m

=
W
 2F

�
 (x) ^m

�
=
W
 2F  m(x) =

�W
 2F  m

�
(x) :

Thus
�W

 2F  
�
m

=
W
 2F ( m).

1) We take equations (11,12) which define strong and weak mirroring in Definition 2.1; if we restrict
ourselves tos; t 2 S[m], havings; t � m, then firsts � �(t) () s � �(t) ^m = �m(t), second
t � �(s) () t � �(s) ^m = �m(s), and third�(s) ^ t = �(s) ^m ^ t = �m(s) ^ t. Hence the two
equations which define strong and weak mirroring are preserved by the geodesic restriction of�; � tom.

2) We take Definition 2.2 and restrict ourselves tos; t 2 S[m]. Sinceu0 � � � � � un = t � m, we
get thatui 2 S[m] for i = 0; : : : ; n; now for i < n we haveui � ui+1 � �(ui) andui+1 � m, from
which we derive thatui � ui+1 � �(ui) ^m = �m(ui). Thus�m is climbing.

3) If � is increasing, for everyx; y 2 L[m], x � y implies that�(x) � �(y), and so�m(x) =
�(x) ^m � �(y) ^m = �m(y); thus�m is increasing.

4) If � is extensive, for everyx 2 L[m] we havex � �(x), and asx � m, we getx � �(x) ^m =
�m(x); thus�m is extensive. (We can also remark thatid � �, so thatidm � �m).

5) If � is a closing, it is increasing, extensive and idempotent. Then�m is increasing and extensive
by items 3 and 4; we have thus only to show that it is idempotent. For everyx 2 L[m] we have
x � �m(x) � �(x), and applying the increasing and idempotent operator� to this inequality, we get
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�(x) � �(�m(x)) � �(�(x)) = �(x), that is�(�m(x)) = �(x). The definition of�m : y 7! �(y) ^m
gives then

�m(�m(x)) = �(�m(x)) ^m = �(x) ^m = �m(x) ;

that is�m(�m(x)) = �m(x), and so�m is idempotent. It is thus a closing.
6) If � is a dilation,� distributes the supremum operation, and asL is ISD, for every non-empty

family xi (i 2 I) of elements ofL[m] we have:

�m

�W
i2I xi

�
= �

�W
i2I xi

�
^m =

�W
i2I �(xi)

�
^m

=
W
i2I

�
�(xi) ^m

�
=

W
i2I �m(xi) :

Thus�m distributes non-empty suprema. Now the dilation� preserves the empty supremum? =
W
;,

and we have then
�m(?) = �(?) ^m = ? ^m = ? ;

that is�m preserves the empty supremum?. Therefore�m is a dilation onL[m]. ut

Note that when� is anti-extensive, forx 2 L[m] we have�(x) � x � m, so�m(x) = �(x); in other
words�m is the restriction of� toL[m]. In particular when� is an opening onL, its restriction�m will
be an opening onL[m].

Although being an opening or a closing are preserved by geodesic restriction, note that idempotence
is generallynot a property preserved by geodesic restriction, even for an increasing operator. Take for
exampleL = P(Z), let Y = f�1; 0g, and define� by �(X) = ; if X is empty or a singleton, while
�(X) = Y if X has at least two elements; clearly� is increasing and idempotent; however for the mask
M = f0; 1g, we have�M (M) =M \ Y = f0g and�M (M \ Y ) = ;, so�M is not idempotent.

For �; � 2 LL, everyx 2 L[m] gives(��)m(x) = ��(x) ^m; if � preservesL[m], that is�(x) 2
L[m] for x 2 L[m], then��(x) ^ m = �(�(x)) ^ m = �m(�(x)) = �m�(x) and we have we have
(��)m = �m�. However(��)m is generally different from�m�m. When� is increasing, forx 2 L[m]
we have�m(x) = �(x)^m � �(x), so�(�m(x)) � �(�(x)), and we get then�m�m(x) = �m(�m(x)) =
�(�m(x)) ^m � �(�(x)) ^m = ��(x) ^m = (��)m(x); thus�m�m � (��)m. This inequality is in
general sharp.

Consider now a dilationÆ onL. We will define fromÆ two operators onL[m], and we will show that
when the complete latticeL is ISD, these operators are both closings and dilations onL[m].

For the first operator, we first apply Lemma 2.1 toÆ, and obtain̂Æ, the least closing onL which is
� Æ; we haveÆ̂ =

W1
i=0 Æ

i, andÆ̂ is also a dilation. Second, we take the geodesic restrictionÆ̂m of Æ̂ to
m:

Æ̂m : L[m]! L[m] : x 7!
� 1_
i=0

Æi(x)
�
^m ; (14)

whereÆ0 is the identity onL. By item 5 of Proposition 3.1,̂Æm is a closing onL[m]. WhenL is ISD, we
have

Æ̂m(x) =

1_
i=0

(Æi)m(x) ;

where(Æi)m(x) = Æi(x) ^m, and by item 6 of Proposition 3.1,̂Æm is a dilation onL[m].
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For the second operator, we first take the geodesic restrictionÆm of Æ to m, defined byÆm(x) =
Æ(x) ^m for everyx 2 L[m]. Assuming thatL is ISD, by item 6 of Proposition 3.1,Æm is a dilation on
L[m]. Second, we apply Lemma 2.1 toÆm, and obtaincÆm, the least closing onL[m] which is� Æm, andcÆm is also a dilation onL[m]; we have

cÆm : L[m]! L[m] : x 7!
1_
i=0

(Æm)
i(x) ; (15)

where(Æm)0 is the identity onL[m], andÆm(z) = Æ(z) ^m for z 2 L[m].
These two closings are generally not equal:

Proposition 3.2. Let Æ be a dilation. The two operatorŝÆm andcÆm onL[m] defined in (14,15), satisfy
the inequalityÆ̂m � cÆm, andÆ̂m is a closing. When the complete latticeL is ISD, they are both closings
and dilations onL[m].

Proof:
We explained above (using Lemma 2.1 and items 5 and 6 of Proposition 3.1) thatÆ̂m is a closing, and
that forL ISD,cÆm is also a closing, and botĥÆm andcÆm are dilations onL[m].

SinceÆ̂ � Æ, we getÆ̂m � Æm, and we know that̂Æm is a closing onL[m]; the extensivity of̂Æm gives
thenÆ̂m � (Æm)0, while its idempotence giveŝÆm � (Æm)

i for everyi > 0, so we get̂Æm � cÆm. ut

In fact forL ISD, Æ̂m andcÆm are the greatest and least elements in a family of operators onL[m]
which are both closings and dilations, each operator of this family takes the form

x 7!
� 1_
i=0

 i(x)
�
^m =

1_
i=0

( i)m(x) ;

where 0 is the identity, and fori > 0,  i is a composition (in any order) ofi times the dilationÆ
and any number of times the restrictionx 7! x ^ m, with the condition that fori; j > 0 we have
( i)m( j)m � ( i+j)m. For example we can take a fixed integern > 0, then define i = (Æm)

i for
i � n and i = Æi�n(Æm)

n for i > n.
Note that this inequalitŷÆm � cÆm is in general sharp. For example takeL = P(Z2), the lattice of

subsets of the digital plane; for a maskM � Z2, we haveL[M ] = P(M). Let Æ be the translation by
one pixel to the left. Then̂Æ adds to a setY � Z2 all pixels to the left ofY . Now Æ̂M adds to a subsetX
of M all pixels ofM which are to the left ofX, while cÆM adds toX all pixelsp of M such that there is
a horizontal line segment included inM , havingp as left end, and whose right end is inX. We illustrate
this example in Figure 5. Note that for everyi > 0, (Æi)m is strictly greater than(Æm)i.

3.1. Geodesic reconstruction

The above example gives a practical indication that, although the first closingÆ̂m defined in (14) can
be interesting, it is the second closingcÆm defined in (15) that really gives what one would expect from
a geodesic reconstruction, namely the propagation of the marker inside a connected component of the
mask.
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X

Figure 5. The dilationÆ in P(Z2) translates each figure by one pixel to the left. a)Y � Z2. b) Æ̂(Y ). c) A mask
M � Z2 and a subsetX of M . d) Æ̂M (X). e)cÆM (X).
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Let us give general criteria for geodesic reconstruction from a markerx inside a maskm. We assume
temporarily thatx � m; we will see later what to do whenx 6� m. Writing �(m)(x) for this geodesic
reconstruction fromx insidem, we can state the following:

� the marker must be inside the mask:�(m)(x) is defined forx � m;

� the geodesic reconstruction contains the marker and is inside the mask:x � �(m)(x) � m;

� the geodesic reconstruction increases with the marker:x � y � m implies�(m)(x) � �(m)(y);

� the geodesic reconstruction increases with the mask:x � n � m implies�(n)(x) � �(m)(x);

� replacing the marker by the geodesic reconstruction leads to the same geodesic reconstruction:
�(m)

�
�(m)(x)

�
= �(m)(x);

� replacing the mask by the geodesic reconstruction leads to the same geodesic reconstruction:
�
�
�(m)(x)

�
(x) = �(m)(x).

This gives the following definition:

Definition 3.2. A geodesic reconstruction systemonL is a map� : L !
S
m2L L[m]L[m] associating

to everym 2 L an operator�(m) : L[m]! L[m], such that:

� for everym 2 L, �(m) is a closing onL[m];

� for x 2 L, �(�)(x) : L�[x]! L�[x] : m 7! �(m)(x) is an opening onL�[x].

In �(m)(x) (wherex 2 L[m]), one callsm the mask, x themarker, and�(m)(x) the geodesic recon-
struction fromx insidem.

Note that since�(m) is a closing onL[m], givenx; y 2 L[m] such thatx � y � �(m)(x), we
must have�(m)(y) = �(m)(x). Also, since�(�)(x) is an opening onL�[x], for m;n 2 L�[x] such that
�(m)(x) � n � m, we have�(n)(x) = �(m)(x). In particular, ifx � y � �(m)(x) � n � m, then
�(m)(y) = �(m)(x) = �(n)(x) = �(n)(y).

We will see that the above two closingsÆ̂m andcÆm give indeed geodesic reconstruction systems:

Proposition 3.3. The following choices of�(m) (m 2 L) give geodesic reconstruction systems onL:

1. �(m) = 'm, for a closing' onL;

2. whenL is ISD,�(m) = cÆm for a dilationÆ onL, cfr. (15);

3. �(m) = Æ̂m for a dilationÆ onL, cfr. (14).

Proof:
1) By item 5 of Proposition 3.1,'m is a closing onL[m] for everym 2 L. Forx � n � m we have
'n(x) = '(x) ^ n � '(x) ^m = 'm(x). If 'm(x) � n � m, we get:

'n(x) = '(x) ^ n = '(x) ^ (m ^ n) = ('(x) ^m) ^ n = 'm(x) ^ n = 'm(x) :
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Thusn = 'm(x) implies 'n(x) = 'm(x), and so for a fixedx, 'm(x) acts as an opening on the
argumentm.

2) By Proposition 3.2,cÆm is a closing onL[m] for everym 2 L.
Suppose thatx � n � m; for any y 2 L[n] we haveÆn(y) = Æ(y) ^ n � Æ(y) ^ m = Æm(y).

We show by induction that we have(Æn)i(x) � (Æm)
i(x) for eachi � 0. Indeed this is obviously true

for i = 0, and if it is true fori � 0 we derive that it is true fori + 1: the inequalityÆn(y) � Æm(y)
with y = (Æn)

i(x) gives(Æn)i+1(x) = Æn
�
(Æn)

i(x)
�
� Æm

�
(Æn)

i(x)
�
; as(Æn)i(x) � (Æm)

i(x) andÆm is
an increasing operator onL[m], we getÆm

�
(Æn)

i(x)
�
� Æm

�
(Æm)i(x)

�
= (Æm)

i+1(x); combining both

inequalities gives(Æn)i+1(x) � (Æm)
i+1(x). Hence by (15) we obtainbÆn(x) � cÆm(x).

Suppose now thatcÆm(x) � n � m. For anyy � cÆm(x), ascÆm is a closing onL[m] which is� Æm,
we have

Æm(y) � cÆm(y) � cÆm�cÆm(x)� = cÆm(x) � n ;

and asn � m, we get:

Æn(y) = Æ(y) ^ n = Æ(y) ^ (m ^ n) = (Æ(y) ^m) ^ n = Æm(y) ^ n = Æm(y) :

Thus eachy � cÆm(x) verifiesÆn(y) = Æm(y). Now for everyi � 0 we have(Æm)i(x) � cÆm(x), so that
by induction we get(Æn)i(x) = (Æm)

i(x). Hence by (15) we obtainbÆn(x) = cÆm(x). Thusn = cÆm(x)
implies bÆn(x) = cÆm(x), and so for a fixedx, cÆm(x) acts as an opening on the argumentm.

3) By Lemma 2.1,̂Æ is a closing, so we apply item 1 with' = Æ̂. ut

A well-known case of geodesic reconstruction system is given forL = P(Z2), and forX �M � E,
�(M)(X) is the union of all 4-connected components ofM having a nonvoid intersection withX. Here
�(M) is obtained according to item 2, by taking forÆ the map which adds to a set its 4-neighbourhood.
The same holds with 8-connectivity and 8-neighbourhoods.

Remark 3.1. In the definition of a geodesic reconstruction system, the maskm and the markerx play
dual roles. More precisely, from the map� : L !

S
m2L L[m]L[m] we define the map�� : L !S

m2L L
�[m]L

�[m] by ��(x)(y) = �(y)(x), and then� is a geodesic reconstruction system on(L;�)
iff �� is a geodesic reconstruction system on the dual lattice(L;�). For ��, the dual marker (equal to
the mask for�) is above the dual mask (equal to the marker for�). Let us illustrate this for the geodesic
reconstructions given in Proposition 3.3. We say that the latticeL is infinite infimum distributive(in brief,
IID ) if the binary join operation_ distributes the infimum operation

V
, that is

8x 2 L; 8yi 2 L (i 2 I); x _
�^
i2I

yi

�
=
^
i2I

(x _ yi) :

For an erosion", the least opening� " is the erosion

~" =

1̂

i=0

"i =

1̂

j=1

(id ^ ")j :

The dual geodesic restriction tom of an operator : L ! L is is the operator m : L�[m] ! L�[m]
defined by m(x) =  (x)_m for everyx 2 L�[m]. The dual version of Proposition 3.3 states thus that
the following choices of�(m)(x) (m 2 L, x 2 L[m]) give geodesic reconstruction systems onL:
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1. �(m)(x) = 
x(m) = 
(m) _ x, for an opening
 onL;

2. whenL is ISD,�(m)(x) = f"x (m) for an erosion" onL;

3. �(m)(x) = ~" x(m) for an erosion" onL.

The second case corresponds to the classical geodesic reconstruction by erosion.

We will now extend each�(m) to an operatorL ! L[m]. This can be done in two ways. For every
m 2 L we define theminorationmap�m : L! L[m] by setting for eachx 2 L:

�m(x) =

(
x if x � m;

? if x 6� m:
(16)

The other mapL! L[m] that we consider is themeetmapx 7! x ^m. Note that form 6= >;?, �m is
not increasing; on the other hand the meet map is always increasing, and whenL is ISD, it is a dilation.
Also, both maps induce the identity onL[m], and only on it: forx 2 L we have:

x 2 L[m] () �m(x) = x () x ^m = x :

Finally, we always have�m(x) � x ^m.
We can thus consider the following extensions toL of the geodesic reconstruction inside a marker

m: theminoration geodesic reconstruction

��(m) : L! L[m] : x 7! �(m)(�m(x)) =

(
�(m)(x) if x � m;

�(m)(?) if x 6� m:
(17)

and themeet geodesic reconstruction

�^(m) : L! L[m] : x 7! �(m)(x ^m) : (18)

When restricted tox 2 L[m], both��(m) and�^(m) coincide with�(m). Note also that since the meet

mapx ! x ^ m and�(m) are increasing,�^(m) is increasing. WhenL is ISD and�(m) = cÆm for
a dilationÆ onL (cfr. item 3 of Proposition 3.3),�^(m) will be a dilation. Finally, since everyx 2 L
satisfies�m(x) � x ^m, and�(m) is increasing, we have��(m) � �^(m).

Although��(m) and�^(m) are defined as mapsL! L[m], they can more generally be considered
as operatorsL ! L, and from this point of view they are idempotent. Indeed, since��(m)(x) 2
L[m], we have��(m)(��(m)(x)) = �(m)(��(m)(x)) = �(m)(�(m)(�m(x))) = �(m)(�m(x)) =
��(m)(x), thanks to the idempotence of of�(m); a similar argument holds for�^(m).

We illustrate in Figure 6 these two mappings in the case whereL = P(Z2), and forX � M � E,
�(M)(X) is the union of all 4-connected components ofM having a nonvoid intersection withX.

An interesting fact is that both��(m) and�^(m) lead to geodesic openings onL:

Theorem 3.1. Let � be a geodesic reconstruction system onL. For a fixedx 2 L, the two operators on
L


x : m 7! ��(m)(x) (19)

and

0x : m 7! �^(m)(x) (20)

are openings, and we have
x � 
0x.
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Figure 6. L = P(Z2) and forX � M � E, �(M)(X) is the union of all 4-connected components ofM

intersectingX . a)X (hatched) not contained inM (in grey). b)�^(m)(X) = �M (X \M) (in light grey) consists
of all 4-connected components ofM intersectingX , while ��(m)(X) is empty. c)Y (hatched) contained inM
(in grey). d)��(m)(Y ) = �^(m)(Y ) = �(M)(Y ) (in light grey) consists of all 4-connected components ofM

intersectingY .
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Proof:
By the definitions (17,18) of��(m) and�^(m), we have
x(m) = ��(m)(x) = �(m)(�m(x)) 2 L[m]
and
0x(m) = �^(m)(x) = �(m)(x ^m) 2 L[m]; thus
x(m) � m and
0x(m) � m, hence
x and
0x
are anti-extensive.

Let us now show that
x and
0x are increasing. Letn � m; by Definition 3.2, everyy 2 L[n] gives
�(n)(y) � �(m)(y). For
x we have three cases:

� x � n. Thenx � m, so by (17) we have
x(n) = ��(n)(x) = �(n)(x) and
x(m) = ��(m)(x) =
�(m)(x). Asx 2 L[n], �(n)(x) � �(m)(x), so
x(n) � 
x(m).

� x 6� n but x � m. Here (17) gives
x(n) = ��(n)(x) = �(n)(?) while 
x(m) = ��(m)(x) =
�(m)(x). Now as? 2 L[n], �(n)(?) � �(m)(?), and as�(m) is increasing onL[m], we have
�(m)(?) � �(m)(x); hence
x(n) = �(n)(?) � �(m)(x) = 
x(m).

� x 6� m. Then x 6� n and here (17) gives
x(n) = ��(n)(x) = �(n)(?) and 
x(m) =
��(m)(x) = �(m)(?). But as? 2 L[n], �(n)(?) � �(m)(?), and so
x(n) � 
x(m).

Thus in all three casesn � m gives
x(n) � 
x(m), that is
x is increasing.
On the other hand (18) gives
0x(n) = �^(n)(x) = �(n)(x^n) and similarly
0x(m) = �(m)(x^m).

As x^ n 2 L[n], we have�(n)(x^ n) � �(m)(x ^ n); sincex^ n � x^m and�(m) is increasing on
L[m], �(m)(x^n) � �(m)(x^m). Therefore we get
0x(n) = �(n)(x^n) � �(m)(x^m) = 
0x(m),
and hence
0x is increasing.

Let us now prove the idempotence of
x. Form 2 L, we setn = 
x(m), and we must show that
n = 
x(n). Note thatn � m, because
x is anti-extensive. We have two cases:

� x � m. Heren = 
x(m) = ��(m)(x) = �(m)(x). As �(m) is extensive onL[m], we have
x � �(m)(x) = n; then 
x(n) = ��(n)(x) = �(n)(x). As x � �(m)(x) = n � m, by
Definition 3.2 we have�(m)(x) = �(n)(x); hence
x(n) = n.

� x 6� m; thenx 6� n. Heren = 
x(m) = ��(m)(x) = �(m)(?), and
x(n) = ��(n)(x) =
�(n)(?). As? � �(m)(?) = n � m, by Definition 3.2 we have�(m)(?) = �(n)(?); hence

x(n) = n.

Therefore in both cases the equality
x(n) = n holds forn = 
x(m), and so
x is idempotent.
We now prove that
0x is idempotent. Similarly as above, we takem 2 L, setn = 
0x(m), and we

must show thatn = 
0x(n). By the anti-extensivity of
0x, we haven � m. Here (18) givesn = 
0x(m) =
�^(m)(x) = �(m)(x ^m). As �(m) is extensive onL[m], we havex ^m � �(m)(x ^m) = n, and
asn � m, we getx ^ n = x ^ m. Hence
0x(n) = �^(n)(x) = �(n)(x ^ n) = �(n)(x ^ m). As
x ^m � �(m)(x ^m) = n � m, by Definition 3.2 we have�(m)(x ^m) = �(n)(x ^m). Therefore
n = �(m)(x ^m) = �(n)(x ^m) = 
0x(n).

Being anti-extensive, increasing and idempotent,
x and
0x are openings. Also form 2 L, since
everyx 2 L satisfies�m(x) � x ^m, and�(m) is increasing, we have


x(m) = ��(m)(x) = �(m)(�m(x)) � �(m)(x ^m) = �^(m)(x) = 
0x(m) ;

so that
x � 
0x. ut
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Note that by (17,18), forx � m, 
x(m) = �(m)(x) = 
0x(m), while for x 6� m, we have
x(m) =
�(m)(?) = 
?(m), but
0x(m) = �(m)(x ^m) = 
x^m(m) = 
0x^m(m).

Forx 2 L, we will call 
x theminoration geodesic openingfor x, and
0x themeet geodesic opening
for x. We will see in the next subsection that under certain circumstances the minoration geodesic
opening can lead to a connection.

3.2. Connection from geodesic openings

We will give here the axioms for connectivity on a complete latticeL with a sup-generating familyS,
then show how such a connectivity can arise from the minoration geodesic openings when the closings
of the geodesic reconstruction system are strongly symmetric and preserve?; this will in particular be
the case when these closings arise from weakly symmetrical climbing dilations.

After we wrote the first version of this paper in 1999, Braga-Neto and Goutsias obtained indepen-
dently (see [5], especially its Section III) some results on the relation between connection and geodesic
reconstruction similar to some of ours in this section. However their point of view is different from ours:
they start with connections, and characterize related geodesic reconstructions, while we start from a geo-
desic reconstruction system and see whether it leads to a connection. Hence their exposition is different
from ours, and in some cases ours is more detailed. Whenever there is such a similarity, we will indicate
before the statement of our result which one of Braga-Neto and Goutsias is related to it, and if necessary,
we will briefly discuss the differences.

Connectivity on complete lattices was studied in [17], and we will consider the variant of it with
“canonic markers” (the sup-generating familyS), which was briefly dealt with in Section 2.3 of that
paper. Indeed this variant follows more closely the set-theoretical version investigated previously in
[16], but most of all it allows to express more clearly the bijection between connections and systems of
connectivity openings. We recall here the two equivalent axiomatics for this type of connectivity. The
first one is, according to [17]:

Definition 3.3. Given a complete latticeL with sup-generating familyS, a connectiononL is a class
C 2 P(L) satisfying the following three conditions:

1. ? 2 C;

2. S � C;

3. givenX � C such that
V
X 6= ?, we have

W
X 2 C.

The family of connections onL is writtenC(L).

The family C(L) of connections onL is ordered by inclusion, and closed under intersection; the
greatest connection isL. It follows that to everyP � L corresponds theconnection generated byP ,
which is the least connection onL containingP , and we write itC(P ); furthermoreC(L) is a complete
lattice for the ordering by inclusion: a family of connectionsCi (i 2 I) has as infimum its intersectionT
i2I Ci and as supremum the connection generated by its union,C

�S
i2I Ci

�
.

While the above set of axioms describes the family of “connected objects” inL, the second axiomat-
ics explicits the notion of “connected component” of an object containing a marker. We adopt the version
given in Section 2.3 of [17], where the markers are restricted toS:
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Definition 3.4. Given a complete latticeL with sup-generating familyS, a system of connection open-
ingsonL is a mapS ! LL associating to everys 2 S an opening
s, such that for everys; t 2 S and
x 2 L we have:

4. 
s(s) = s;

5. 
s(x) ^ 
t(x) 6= ? =) 
s(x) = 
t(x);

6. s 6� x =) 
s(x) = ?.

The family of systems of connection openings onL is written�(L).

Let us give some consequences of these axioms. For everys 2 S, by item 4 and the fact that
s is
increasing, fors � x we haves = 
s(s) � 
s(x); combining with item 6, this gives:


s(x) 6= ? () s � x () s � 
s(x) : (21)

Now for t 2 S, if t � 
s(x), by the anti-extensivity of
s we havet � x, so thatt � 
t(x), and item 5
gives then
t(x) = 
s(x); in other words

8t 2 S
�

s(x)

�
; 
t(x) = 
s(x) : (22)

The family�(L) of systems of connection openings onL can be ordered as follows: given two such
systems
s and
0s (s 2 S), we write(
s; s 2 S) � (
0s; s 2 S) iff for eachs 2 S we have
s � 
0s.
Then the greatest system of connection openings is given by setting:

8s 2 S; x 2 L; 
s(x) =

(
x if s � x;

? if s 6� x:

The equivalence between the above two concepts was incompletely analysed in [17]. Another version
of it is given in Theorem 3.1 of [5]. We give here a more precise statement of this equivalence. The proof
is relatively straightforward, but nevertheless interesting for its logical clarity.

Proposition 3.4. There is a bijection between the familyC(L) of connections onL and the family�(L)
of systems of connection openings onL. A connectionC and the corresponding system of connection
openings
s, s 2 S, define each other by the following two equivalent relations:

� Forx 2 L ands 2 S, 
s(x) =
W
fc 2 C j s � c � xg; in other words
s(x) = ? if s 6� x, while

for s � x it is the greatestc 2 C such thats � c � x.

� C = f
s(x) j s 2 S; x 2 Lg.

Furthermore, this bijection preserves ordering, and so it is an isomorphism between the partially ordered
sets(C(L);�) and(�(L);�), in particular�(L) is a complete lattice.

Proof:
We have to show that ifG is the mapC(L) ! �(L) building 
s, s 2 S, from C, andK is the map
�(L)! C(L) buildingC from 
s, s 2 S, then:
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a) for everyC 2 C(L),G(C) 2 �(L);
b) for every(
s; s 2 S) 2 �(L),K(
s; s 2 S) 2 C(L);
c) for everyC 2 C(L), C = K(G(C));
d) for every(
s; s 2 S) 2 �(L), (
s; s 2 S) = G(K(
s; s 2 S));
e) for everyC;C 0 2 C(L), C � C 0 =) G(C) � G(C 0);
f) for every (
s; s 2 S); (
0s; s 2 S) 2 �(L), (
s; s 2 S) � (
0s; s 2 S) =) K(
s; s 2 S) �
K(
0s; s 2 S).

a) For a connectionC,G(C) is given by setting for everys 2 S andx 2 L: 
s(x) =
W
fc 2 C j s �

c � xg. Clearly
s(x) =
W
; = ? for s 6� x; thus axiom 6 holds. On the other hand fors � x, the set

fc 2 C j s � c � xg is not empty, since it containss, and by axiom 3 its supremum belongs toC; thus

s(x) 2 C and obviouslys � 
s(x) � x; therefore
s(x) is the greatestc 2 C such thats � c � x. In
particular,
s(x) 2 C for all s 2 S andx 2 L.

Obviously
s(x) � x, and forx � y, the set ofc 2 C with s � c � x is included in the set ofc 2 C
with s � c � y, so we have
s(x) � 
s(y). Fors 6� x we have
s(x) = ?, so that
s(
s(x)) = ? also;
on the other hand fors � x, as
s(x) 2 C ands � 
s(x), we get
s(
s(x)) = 
s(x). Therefore
s is an
opening.

Fors 2 S, ass 2 C, we get
s(s) = s, so axiom 4 holds. Givens; t 2 S such that
s(x)^
t(x) 6= ?,
we have
s(x); 
t(x) 2 C, so axiom 3 gives
s(x) _ 
t(x) 2 C, and ass � 
s(x) _ 
t(x) � x and

s(x) is the greatest element ofC betweens andx, we must have
s(x) _ 
t(x) = 
s(x), in other
words
t(x) � 
s(x); we obtain similarly
s(x) � 
t(x), so the equality
s(x) = 
t(x) follows, that is
axiom 5 holds. HenceG(C) 2 �(L).

b) Let 
s, s 2 S be a system of connection openings, and letC = K(
s; s 2 S) = f
s(x) j s 2
S; x 2 Lg. Fors 2 S, as
s is anti-extensive, we have
s(?) = ?, so? 2 C, andC verifies axiom 1.
Now axiom 4 gives
s(s) = s, so thats 2 C, andC satisfies axiom 2. Finally, takeX � C such thatV
X 6= ?; let s 2 S such thats �

V
X. Givenc 2 X, we havec = 
t(x) for somet 2 S andx 2 L;

by (22),c = 
s(x). As 
s is an opening, the family of all
s(x), x 2 L, is sup-closed (see [13]); as each
c 2 X belongs to that family, so does

W
X, and we have somey 2 L with

W
X = 
s(y). ThereforeW

X 2 C, andC verifies axiom 3. We have thus shown thatC = K(
s; s 2 S) 2 C(L).
c) LetC 2 C(L) andC 0 = K(G(C)); we show thatC = C 0. For c 2 C ands 2 S[c], we have

c = 
s(c), soc 2 C 0; henceC � C 0. Let y 2 C 0, we havey = 
s(x) for somex 2 L ands 2 S, and

s(x) 2 C, as explained at the end of the first paragraph of a); henceC 0 � C. The equalityC = C 0

follows from the double inclusion.
d) Take(
s; s 2 S) 2 �(L), and let(
0s; s 2 S) = G(K(
s; s 2 S)); we show that both systems

of connection openings are equal, that is
s = 
0s for everys 2 S. For everys 2 S andx 2 L we have:


0s(x) =
_
f
t(y) j t 2 S; y 2 L; ands � 
t(y) � xg :

If s 6� x, then clearly
0s(x) =
W
; = ? = 
s(x). Suppose now thats � x. For any such
t(y) between

s andx, (22) gives
t(y) = 
s(y), and as
s(y) � x and
s is an opening, we get
s(y) = 
s(
s(y)) �

s(x); thus
t(y) � 
s(x). On the other hands � 
s(x) � x, so we have shown that
s(x) is the
greatest
t(y) such thats � 
t(y) � x, and hence
0s(x) = 
s(x).

e) If C � C 0, then fors 2 S andx 2 L, fc 2 C j s � c � xg � fc 2 C 0 j s � c � xg, so that

s(x) � 
0s(x) for G(C) = (
s; s 2 S) andG(C 0) = (
0s; s 2 S), that isG(C) � G(C 0).

f) Let (
s; s 2 S) � (
0s; s 2 S); thus
s � 
0s for eachs 2 S, and by [13] we have
0s
s = 
s.
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Any element ofK(
s; s 2 S) takes the form
s(x) for somes 2 S andx 2 L; now
s(x) = 
0s
s(x) =

0s(
s(x)), and so it is also an element ofK(
0s; s 2 S). ThereforeK(
s; s 2 S) � K(
0s; s 2 S).

As the partially ordered sets(C(L);�) and(�(L);�) are isomorphic, and(C(L);�) is a complete
lattice,(�(L);�) is also a complete lattice. ut

The form of connectivity given in Definition 3.4 allows us to obtain a connection from the openings

x defined in Theorem 3.1, and whenL is ISD, to obtain in this way every connection.

Definition 3.5. The geodesic reconstruction system� (onL) is calledconnectingif for all m 2 L, �(m)
is strongly symmetrical and form 6= >, �(m)(?) = ?. Write G(L) for the family of connecting
geodesic reconstruction systems onL.

Our next result is similar to Theorem 3.3 of [5]. However, given the difference of point of view, there
are some differences between the two, which will be detailed after the proof. Also our statement is more
precise:

Theorem 3.2. The construction of
s, s 2 S, according to (17,19), gives a map from the familyG(L) of
connecting geodesic reconstruction systems onL to the family�(L) of systems of connection openings
onL, and whenL is ISD, this map is surjective. More precisely:

1. Let � be a geodesic reconstruction system onL. The openings
s, s 2 S, defined according to
(17,19), namely

8s 2 S; 8m 2 L; 
s(m) = ��(m)(s) = �(m)(�m(s)) ; (23)

constitute a system of connection openings onL, if and only if � is connecting. We have then

8s 2 S; 8m 2 L; 
s(m) =

(
�(m)(s) if s � m;

? if s 6� m:
(24)

2. Assume thatL is ISD. Let
s, s 2 S, be a system of connection openings onL, and define the map
� : L!

S
m2L L[m]L[m] by

�(m)(x) =
_

s2S[x]


s(m) : (25)

Then� is a connecting geodesic reconstruction system onL, �(>)(?) = ?, and (23) holds.

Proof:
1) Let� be a geodesic reconstruction system onL, and let
s, s 2 S be given by(23).

We know from Theorem 3.1 that the
s are openings. Let us show that they always verify axiom 4 of
Definition 3.4: ass � s, we have
s(s) = �(s)(s), and as�(s) is an extensive operator onL[s], we have
s � �(s)(s) 2 L[s], that is
s(s) = �(s)(s) = s.

In order for the
s, s 2 S, to constitute a system of connection openings, we need to verify axioms 5
and 6; we show that they hold iff� is connecting, that is for everym 2 L, �(m) is strongly symmetrical
and form 6= >, �(m)(?) = ?.
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a) Suppose that for everym 2 L, �(m) is strongly symmetrical and form 6= >, �(m)(?) = ?. We
show axioms 5 and 6, as well as (24).

Note that (17,19) gives
s(m) = �(m)(s) if s � m, and
s(m) = �(m)(?) for s 6� m; however for
s 6� m we must havem 6= >, and we assume here that�(m)(?) = ?, we get then
s(m) = ?, so that
(24) holds in this case.

Letm 2 L ands; t 2 S such that
s(m) ^ 
t(m) 6= ?. In particular we have
s(m); 
t(m) 6= ?,
so by (24) we haves; t � m, and also
s(m) = �(m)(s) and
t(m) = �(m)(t). Taker 2 S[
s(m) ^

t(m)]. We haver � 
s(m) = �(m)(s) andr � 
t(m) = �(m)(t), and as�(m) is strongly symmetri-
cal, we gets; t � �(m)(r). As �(m) is increasing and idempotent onL[m], the four inequalities

r � �(m)(s); r � �(m)(t); s � �(m)(r); t � �(m)(r) ;

imply that
�(m)(r) � �(m)(�(m)(s)) = �(m)(s) ;

�(m)(r) � �(m)(�(m)(t)) = �(m)(t) ;

�(m)(s) � �(m)(�(m)(r)) = �(m)(r) ;

and �(m)(t) � �(m)(�(m)(r)) = �(m)(r) ;

in other words�(m)(r) = �(m)(s) = �(m)(t). Hence
s(m) = �(m)(s) = �(m)(t) = 
t(m). We
have thus shown that axiom 5 is verified.

Givenm 2 L ands 2 S, if s 6� m, then
s(m) = ? by (24), so that axiom 6 holds.
b) Suppose that axioms 5 and 6 hold. We show that for everym 2 L, �(m) is strongly symmetrical

and form 6= >, �(m)(?) = ?.
Letm 2 L ands; t 2 S[m] such thats � �(m)(t). As s; t � m, (23) gives
s(m) = �(m)(s) and


t(m) = �(m)(t). Sos � 
t(m), and by (22) we have
s(m) = 
t(m); hence�(m)(s) = �(m)(t),
and ast � �(m)(t) by the extensivity of�(m), we deduce thatt � �(m)(s). Hence�(m) is strongly
symmetrical.

If m 6= >, then there iss 2 S such thats 6� m. By axiom 6, we have
s(m) = ?; by (23) we have

s(m) = �(m)(?); combining both, we get�(m)(?) = ?.

2) Let 
s, s 2 S, be a system of connection openings, and let� be defined by (25). We show first
that� satisfies the requirements of Definition 3.2, next that�(m)(?) = ? for all m 2 L (in particular
for m = >), and finally that (23) holds. Then it will follow from item 1 that for everym 2 L, �(m) is
strongly symmetrical. Hence� will be a connecting geodesic reconstruction system.

Letm 2 L andx 2 L[m]. Fors 2 S[x], as
s is anti-extensive,
s(m) � m, and ass � x � m, by
(21) we haves � 
s(m); we deduce that

x =
_
S[x] �

_
s2S[x]


s(m) � m ;

that isx � �(m)(x) 2 L[m]. Hence�(m) is an extensive operator onL[m].
Giveny 2 L[m] such thatx � y, S[x] � S[y], so that

�(m)(x) =
_

s2S[x]


s(m) �
_

s2S[y]


s(m) = �(m)(y) ;

that is�(m) is increasing.
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Let t 2 S
�
�(m)(x)

�
; by (25) we havet �

W
s2S[x] 
s(m). By ISD we get

t = t ^
_

s2S[x]


s(m) =
_

s2S[x]

�
t ^ 
s(m)

�
;

from which we deduce that there is somes0 2 S[x] such thatt^
s0(m) 6= ?. There is thus somet0 2 S[t]
such thatt0 � 
s0(m). As t � m, (21) givest � 
t(m); sincet0 � t � 
t(m) andt0 � 
s0(m), axiom 5
implies that
t(m) = 
s0(m). Therefore everyt 2 S

�
�(m)(x)

�
verifies
t(m) �

W
s2S[x] 
s(m), so that

�(m)
�
�(m)(x)

�
=

_
t2S
�
�(m)(x)

� 
t(m) �
_

s2S[x]


s(m) = �(m)(x) ;

as �(m) is extensive, we have the reverse inequality�(m)(x) � �(m)
�
�(m)(x)

�
, and the equality

follows. Hence�(m) is idempotent.
Suppose now thatx � n � m. For everys 2 S[x], as
s is increasing, we have
s(n) � 
s(m), and

we deduce that
�(n)(x) =

_
s2S[x]


s(n) �
_

s2S[x]


s(m) = �(m)(x) :

Suppose finally thatx � �(m)(x) � n � m. By (25), for everys 2 S[x], 
s(m) � �(m)(x), so that

s(m) � n � m. As 
s is increasing and idempotent, we get
s(n) = 
s(m); as this holds for all
s 2 S[x], by (25) we deduce that�(n)(x) = �(m)(x).

We have thus shown that� is a geodesic reconstruction system onL. Now we show that for all
m 2 L, �(m)(?) = ?; indeed

�(m)(?) =
_

s2S[?]


s(m) =
_
; = ? :

Let us finally show that (23) holds, that is, for everys 2 S andm 2 L , 
s(m) = �(m)(�m(s)).
Suppose first thats � m. Fort 2 S[s], t � s � m, so by (21,22),
t(m) = 
s(m). Hence

�(m)(�m(s)) = �(m)(s) =
_
t2S[s]


t(m) = 
s(m) :

Suppose next thats 6� m. Then by axiom 6,
s(m) = ?, and (17) gives�(m)(�m(s)) = �(m)(?) = ?;
thus�(m)(�m(s)) = 
s(m).

As � is a geodesic reconstruction system onL and (23) holds, it follows from item 1 that�(m) is
strongly symmetrical for everym 2 L. ut

Note that this surjectionG(L) ! �(L) is not always a bijection. Indeed the system of connection
openings
s, s 2 S, determines the value of�(m)(s) for m 2 L ands 2 S[m] (namely,�(m)(s) =

s(m)), but the values of�(m)(x) for x 2 L[m] n S are not determined. Take for exampleL = P(E)
with a connectionC such thatE has at least 3 connected components forC; we define�0 as follows:

8M � E; 8X �M; �0(M)(X) =

( S
p2X 
p(M) if 9Y 2 C; X � Y;

M otherwise:
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In other words,�0(M)(X) is as in (25) ifX lies in a connected component ofE, but it givesM otherwise.
Then�0 is a geodesic reconstruction system which gives through (23) the connectionC, as does the
geodesic reconstruction system� defined in (25); this happens because�0(M)(p) = �(M)(p) for any
point p. However�0 6= �; indeed takingX = E1 [ E2 for two connected componentsE1 andE2 of E,
we have�0(E)(X) = E, but�(E)(X) = X.

Remark 3.2. Theorem 3.3 of [5] is restricted to the case whereL is ISD (which we assumed only for the
surjectivity in item 2). Moreover, they consider a restricted class of connecting geodesic reconstruction
systems. Indeed, they assume (under another terminology) a geodesic reconstruction system� such that
for all m 2 L, �(m) is strongly symmetrical, and for everyx 2 L we have

�(m)(x) =
_

s2S[x]

�(m)(s) : (26)

Clearly this implies that�(m)(?) = ? for all m 2 L, so� is connecting. Note that this equation is
satisfied when�(m) is a dilation. WriteG�(L) for the family of connecting geodesic reconstruction
systems onL which satisfy (26). As Braga-Neto pointed out to us in a private communication, we have
then a bijection betweenG�(L)! �(L) given by (23,24), whose inverse is given by (25). This bijection
implies thatG�(L) has the same the lattice-theoretical structure as�(L).

A consequence of the above theorem is that we get a connection from the geodesic restriction of a
strongly symmetrical closing, or of a climbing weakly symmetrical dilation:

Theorem 3.3. The 
s, s 2 S, given in (23) constitute a system of connection openings onL for the
following choices of�(m),m 2 L:

1. �(m) = 'm, for a strongly symmetrical closing' onL satisfying'(?) = ?;

2. whenL is ISD,�(m) = cÆm, for a climbing weakly symmetrical dilationÆ onL;

3. whenL is ISD,�(m) = Æ̂m for a climbing weakly symmetrical dilationÆ onL.

Proof:
By Proposition 3.3, all three choices of�(m) constitute a geodesic reconstruction system onL. If
'(?) = ?, then for eachm 2 L we have�(m)(?) = 'm(?) = '(?) ^m = ?. As Æ is a dilation,Æ̂
is also a dilation by Lemma 2.1, sôÆ(?) = ?, and hencêÆm(?) = Æ̂(?) ^m = ?. WhenL is ISD, by
Proposition 3.2cÆm is a dilation onL[m], so that we havecÆm(?) = ?.

If ' is strongly symmetrical, then by item 1 of Proposition 3.1,'m is also strongly symmetrical.
Assume now thatL is ISD. If Æ is climbing and weakly symmetrical, then by Theorem 2.1,Æ̂ is strongly
symmetrical. By item 1 of Proposition 3.1,Æ̂m is also strongly symmetrical. Furthermore by items 1
and 2 of Proposition 3.1,Æm is also climbing and weakly symmetrical; by Theorem 2.1,cÆm is strongly
symmetrical.

Hence all three choices of�(m) give �(m)(?) = ? and �(m) strongly symmetrical. Applying
Theorem 3.2, the
s, s 2 S, constitute a system of connection openings onL. ut
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Note that when the elements ofS are not all atoms, we cannot obtain a connection by using
0s (see
(20)) instead of
s, because axiom 6 in Definition 3.4 will not hold. Indeed fors 2 S not an atom, there is
m 2 L such thats 6� m ands^m 6= ?; then by (18,20) we have
0s(m) = �(m)(s^m) � s^m > ?,
contradicting axiom 6. On the other hand, for every atoma we have always�m(a) = a ^ m for all
m 2 L, so that
a = 
0a; if all elements ofS are atoms, we have thus
s = 
0s for all s 2 S.

Note also that the dual geodesic reconstruction systems given in Remark 3.1, in particular�(m)(x) =

(m) _ x for an opening
, do not lead to connections.

WhenL is ISD, asÆ̂m � cÆm by Proposition 3.2, the connected component
s(m) of m containings
will be larger withÆ̂m than withcÆm. In other words, the connection corresponding tocÆm will be a subset
of that corresponding tôÆm. Similarly, if we have a family of dilationsÆ[�] depending on a parameter

�, such thatÆ[�] increases with�, then dÆ[�]m will increase with�, and the same holds for̂Æ[�]m, so that
the corresponding connection will also increase with�. In particular the connection openings
s;� with

varying parameter�, corresponding to the geodesic dilationsdÆ[�]m, will form a granulometry.
For example withL = P(Z2), taking for each integern > 0, Æ[n] to be the dilation by the(2n +

1) � (2n + 1)-square centered about the origin (in other words, the set of pixels at 8-distance at most
n from the origin), clearlyÆ[n] is strongly symmetrical and climbing, and it increases withn; here the

connection built from the geodesic dilationsdÆ[n]M for all masksM � Z2, is made of the following
“connected”sets: allX � Z2 such that for everyx; y 2 X there is a sequencex = x0; : : : ; xr = y with
xi at 8-distance at mostn from xi+1 for i = 0; : : : ; r � 1. Obviously this connection increases withn.

4. Examples

We will describe here several examples of connections corresponding to the connection openings
x
arising from a connecting geodesic reconstruction system according to (23).

The most interesting case is when the geodesic reconstruction system is given by�(m) = cÆm for a
climbing weakly symmetrical dilationÆ onL, following item 2 of Theorem 3.3. Here the latticeL must
be ISD. This will be illustrated in Subsection 4.1 by examples with binary, grey-level, and colour images.

Non-ISD lattices, especially partitions, will be considered in Subsection 4.2. There we will also
briefly discuss flat zones and connected operators for grey-level images; we will explain that these con-
cepts do not correspond to a connection on the lattice of grey-level images, because they rely on a
non-climbing dilation for the geodesic reconstruction. However the “object oriented” approach of Agnus
[1, 2], breaking the numerical order on grey-levels and considering them simply as labels, could lead to
a connection consisting of all flat zones, which can be obtained by geodesic reconstruction.

4.1. Sets, numerical and multivalued functions

A straightforward case is takingL = P(E) for a setE. Here the notions of strong and weak symmetry
of an operator are equivalent; so we will simply say that an operator is (or is not) symmetrical. Also an
increasing operator is climbing iff it is extensive. Suppose that we have a symmetrical relation� onE,
which we calladjacency(see [14] for more details); we define the dilationÆ adding to a setX all points
which are adjacent to a point ofX:

Æ(X) = X [ fy 2 E j 9x 2 X; x � yg :
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Figure 7. Partial map of the city of Nice.

Then, given a maskM � E, for any markerX �M , cÆM (X) is the union of all connected components
ofM having a non-empty intersection withX; here the connectivity obtained fromcÆM is the one arising
from the adjacency relation� in the graph-theoretical sense.

Generally one considersE = Zn or Rn. In the last example of the previous section, we have
considered a dilation by a structuring element which is connected in some usual sense. But our results
do not require such an assumption. For instance, takingE = Z2, the dilation byany symmetrical
structuring element containing the origin is symmetrical and extensive (thus, climbing); hence it leads to
a connection. We illustrate this point by an example. From a city map of Nice, in France (Figure 7), one
would like to extract the alignments

� of a certain thicknesse,

� of houses from a given distanced apart (a characteristic of the type of settlement),
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Figure 8. Alignments in the main direction extracted from Figure 7.

� and in the main direction� of the zone investigated.

The second condition on distance is fulfilled by taking a structuring elementB made of a triplet of small
discs fromd apart, and the third requirement by orienting the triplet in direction�. The origin is located
at the central point ofB, which makes the dilation byB ÆB : P(Z2)! P(Z2) : X 7! X �B extensive
and symmetrical.

Building connected components with the connectivity openings defined in (23), where the geodesic
reconstruction arises from the geodesic dilation as indicated in item 3 of Theorem 3.3, we obtain the
image shown in Figure 8, which shows the actual alignments. From Theorem 3.3 it follows that a con-
nection has been generated, i.e., that the alignmentssegmentthe set under study. A final reconstruction
after erosion of sizee has eliminated the narrow components, fulfilling thus the first condition.

Take nowE to be a metric space, with distanced. For anyr � 0 andx 2 E, we defineBr(x), the
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closed ball of radiusr centered aboutx, by

Br(x) = fy 2 E j d(x; y) � rg ;

then thedilation of radiusr is the mapÆr : P(E) ! P(E) defined by

Ær(X) =
[
x2X

Br(x) :

Note thatÆr(fxg) = Br(x); as the distance is symmetrical (that is,d(x; y) = d(y; x)), the dilation
Ær is symmetrical (recall that for sets, strong and weak symmetry are equivalent); alsoÆr is extensive,
thus climbing. The connectionCr built from the geodesic restriction ofÆr consists of allr-connected
sets; here we say thatX � E is r-connected if for everyx; y 2 X, there exists an integern � 0 and
a sequencex0; : : : ; xn, such thatx0 = x, xn = y, andd(xi; xi+1) � r for all 0 � i � n � 1. For
r = 0, Cr consists only of singletons and the empty set; thus we restrict ourselves to the caser > 0.
The intersection

T
r>0Cr is a connection, whose members are the so-calledwell-linked sets (a set is

well-linked iff it is r-connected for everyr > 0, see [6], Chapter 1, Section 19). How does this compare
with connectedness in the usual topological sense, where a set is connected iff it cannot be partitioned
by its intersection with two open sets? We have the following:

Proposition 4.1. Every (topologically) connected subset ofE is well-linked. Every compact well-linked
set is connected.

Proof:
Let X be a connected subset ofE. We show that for everyr > 0, X is r-connected. This is obvious
for X = ;, so we assumeX 6= ;. Indeed, letX1 be a non-voidr-connected component ofX, and let
X2 = X n X1; X2 is the union of all otherr-connected components ofX. Forx 2 X, everyy 2 X
such thatd(x; y) � r must be in the samer-connected component ofX asx. Hence forx 2 X1,
Br(x)\X � X1, soX1 is open in the topology onX; similarly all otherr-connected components ofX
are open inX, soX2 is open in the topology onX. AsX, being connected, cannot be partitioned into
two sets which are open for the topology onX, we haveX2 = ; andX1 = X, that is,X is r-connected.
Beingr-connected for allr > 0,X is well-linked.

Let X be a compact well-linked subset ofX. If X = ;, obviouslyX is connected, so we assume
X 6= ;. Suppose thatX is not connected; there is thus someX1 � X andX2 = X nX1 which are both
non-void and open for the topology onX. By complementarity, they are closed for the topology onX,
and asX is compact inE,X1 andX2 are compact subsets ofE. Forr > 0, asX is well-linked, there is
a sequencex0; : : : ; xn such thatx0 2 X1, xn 2 X2, andd(xi; xi+1) � r for all 0 � i � n� 1; taking
the largesti such thatxi 2 X1, we havexi+1 2 X2 andd(xi; xi+1) � r. Henced(X1;X2) � r for
everyr > 0, so thatd(X1;X2) = 0, and asX1 andX2 are compact inE, this means thatX1 \X2 6= ;,
a contradiction. Hence our supposition is false, andX must be connected. ut

Note that without the compactness assumption, a well-linked set can be disconnected: inR2 (with
the Euclidean metric), the setX of points(x; y) such thatx 6= 0 6= y (X consists ofR2 minus thex
andy axes) is well-linked, but not connected; its connected components are the four quadrants enclosed
by thex andy axes, and they are at distance0 from each other. Another example is given by the closed
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setX consisting of all points(x; y) such thatx > 0 andjyj � 1=x; it has two connected components
(given by the inequationsy � 1=x andy � �1=x respectively) at distance0 from each other, so it is
well-linked.

Let us now discuss the generality of our approach to the construction of a connection from geodesic
operations. Following Theorem 3.3 we built connected components with a reconstruction from a dilation
Æ. Indeed, the strong symmetry ofÆ̂m andcÆm follows from the fact that the family of strongly (or
weakly) symmetrical dilations is power-closed, as shown in Corollary 2.1; this result relies on item 3
of Proposition 2.1. Would it be possible to obtain a similar result by starting from an extensive and
increasing operator which is not a dilation? The answer is negative, we give an example inP(Z2) with
a symmetrical increasing and extensive operator such that n for n > 1 and  ̂ =

W1
i=0  

i are not

symmetrical; the same will be true of M andd M for a maskM . Thus item 3 of Proposition 2.1
and Corollary 2.1 require indeed the assumption that we have a dilation, and Theorem 3.3 requires also
dilations for the connection from geodesic reconstruction.

We consider subsets ofZ2. Let the structuring elementsA andB consist of the origin and its left
and right neighbours, withB containing in addition the top neighbour of the origin (see Figure 9.a). We
define the operator onP(Z2) as follows: forX � Z2 we have

 (X) =

(
X �A if jXj � 1;

X �B if jXj > 1;

in other words (;) = ;,  (fpg) = Ap for a pointp 2 Z2, while  (X) = X � B for a setX �
Z2 containing at least two points. Since bothA andB contain the origin, is extensive; as uses
Minkowski addition with a structuring element (A or B) which increases with the set, is increasing;
finally  is symmetrical because the structuring elementA is symmetrical: forp; q 2 Z2, we have
p 2 Aq () q 2 Ap. For every integern > 0, let us writenB for the Minkowski sum ofB takenn
times; in other words1B = B andnB = B � (n � 1)B for n > 1. It is easily seen by induction that
 n verifies for everyX � Z2:

 n(X) =

(
X �A� (n� 1)B if jXj � 1;

X � nB if jXj > 1:

We illustrate 2(fpg) = (A�B)p and 3(fpg) = (A� 2B)p in Figure 9.b. As the structuring element
A�(n�1)B is not symmetrical forn > 1,  n is not symmetrical: takeq 2

�
A�(n�1)B

�
p
=  n(fpg)

lying abovep, and thenp =2
�
A�(n�1)B

�
q
=  n(fqg); this is shown forn = 2 andn = 3 in Figure 9.b.

Now we define ̂ =
W1
i=0  

i; it is easily verified that for everyX � Z2 we have ̂(X) = X �H,
whereH is the digital half-plane made of all points ofZ2 lying above the origin. AsH = H � H,  ̂
is an idempotent dilation, it is thus the least closing�  . Again,  ̂ is not symmetrical, becauseH is
not symmetrical: forq abovep, q 2  ̂(fpg) but p =2  ̂(fqg), so if we wanted to define a connection
from , q would be in the connected component ofZ2 containgp, while p would not be in the connected
component ofZ2 containingq, contradicting (22).

Let us now give an example with numerical functions (grey-level images); for the sake of simplicity,
we consider functionsZ2 ! Z, although most of what we say can be extended to functionsE ! T ,
whereE is an arbitrary set, andT = Z orR. HereS consists of the “impulse” functioni(p;t) (p 2 Z2,



C. Ronse and J. Serra / Geodesy and Connectivity in Lattices 39

a)
A

o

B

o

pp

q

q

b)

Figure 9. a) The two structuring elementsA andB; hereo designates the origin (shown circled). b) 2(fpg) =
(A�B)p and 3(fpg) = (A� 2B)p for a pointp 2 Z2 (shown circled); there is a pointq (shown surrounded by
a square) such thatq 2  2(fpg) butp 62  2(fqg) (respectively:q 2  3(fpg) butp 62  3(fqg)).

t 2 Z) defined in (1). Recall that thesupportsupp(f) of a functionf consists of all pointsp such that
f(p) > �1, and then we have: supp(f^g) = supp(f)\supp(g) and supp(f�g) = supp(f)�supp(g).

Let the structuring functionv have as support the 5-pixel crossV in Z2 made of the origino and
its 4 neigbours in the vertical and horizontal directions. We assume thatv(o) > 0. We consider the
dilation Æ : f 7! f � v by v. As supp(v) is symmetrical,Æ is weakly symmetrical (see Subsections 1.1
and 1.2). Asv(o) > 0, Æ is climbing. The connection whose connected components are obtained from
the geodesic reconstruction�(m) = cÆm using the geodesic restriction ofÆ, consists in all functions
having a 4-connected support. Thus, for a mask functionm and an impulsei(p;t) � m, the connected
component ofm containingi(p;t) is the functiong whose support is the 4-connected component of
supp(m) containingp, and we haveg(x) = m(x) for x 2 supp(g).

Let us explain this concretely. Given a mask functionm with supportM , for every functionf � m,
the geodesic restriction tom of the dilate off by v, namelyÆm(f) = (f � v) ^m, has support

supp
�
(f � v) ^m

�
=
�
supp(f)� supp(v)

�
\ supp(m) =

�
supp(f)� V

�
\M :

AsV consists of the origin and its 4-neighbourhood, the dilationX 7! X�V byV adds to a set all points
4-adjacent to it. Thus, iteratingÆm, we get that supp

�cÆm(f)� consists of all 4-connected components of

supp(m) which intersect supp(f). As Æ is climbing, on this support the functioncÆm(f) will have the
same value asm; indeed, aftern iterations ofÆm, a pointq is reached in the support supp

�
Ænm(f)

�
with

valuey on q; asf(o) > 0, every application ofÆ increases grey-levels by at leastf(o), and there is
some integerk � 0 such that such thaty + k � f(o) � m(q), so iteratingÆm k more times, we will
get Æn+km (f)(q) = m(q). If we start withf = i(p;t), as supp(i(p;t)) = fpg, we get the function whose
support is the 4-connected component of supp(m) containingp, and having the same values asm on this
support.

If we took as support ofv the 3 � 3 square centered about the origin, this would have given as
connection the family of functions whose support is 8-connected. The same construction works for any
connectivity onZ2 arising from an adjacency relation: we take then as support ofv the set consisting of
the origin and the pixels adjacent to it.
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Figure 10. We consider functionsZ! Z, and the connectivity class onP(Z) made of all integer traces of convex
subsets ofR. a) The mask functionm. b) The structuring functionv; hereo designates the origin. b) Starting from
an impulsei(p;t) belowm, and iterating the geodesic dilation byv with maskm, one will progressively reach any
impulsei(q;s) in the connected component ofm containingi(p;t); here the numbers indicate how many iterations
are needed to reach an impulse.
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We illustrate in Figure 10 the analogue of this construction for functionsZ! Z, whith the connec-
tion onP(Z) based on the adjacency relation� defined byx � y iff jx � yj = 1; here connected sets
correspond to integer convex sets.

In Subsection 4.2 of both [17, 19], Serra considered such a type of connection, namely the family of
all functionsE ! T whose support belongs to a given connection (connectivity class) onP(E), such as
the family of all 4-connected (resp., 8-connected) sets.

We finally give some examples of connections on colour images which can be defined from geodesic
dilations. Here we assume a 3-dimensional colour space, so a colour image is a vector-valued function
f : E ! T 3 : p 7!

�
f0(p); f1(p); f2(p)

�
, or it is represented as a tripletf = (f0; f1; f2) of numerical

functionsfj : E ! T (j = 0; 1; 2), calledchannels; hereE is an arbitrary set, andT = Z orR. The
setL of colour images is then an ISD lattice for the product ordering w.r.t. the ordering on each channel.
We take as generators the single-channel impulsesij(p;t) (j = 0; 1; 2, p 2 E, t 2 T n f�1g) defined by

ij(p;t) = (f0; f1; f2) with fk =

(
i(p;t) if k = j;

? if k 6= j:

The support of a colour image is defined as the set of points where at least one of the channels gives
a value> �1, in other words it is the union of the supports in the 3 individual channels: supp(f) =
supp(f0) [ supp(f1) [ supp(f2).

It follows from the exposition in [9] of morphology on product spaces that a dilation on colour images
can be represented as a3�3 matrix of dilations for numerical functions. More precisely, given a dilation
Æ, for f = (f0; f1; f2) we haveÆ(f) = (g0; g1; g2), wheregj =

W2
k=0 Æjk(fk) for j = 0; 1; 2, and

eachÆjk is a dilation on numerical functions; hereÆjk gives the contribution of channelk in the input
image to channelj in the output image. It can be seen thatÆ is weakly/strongly symmetrical iff eachÆjk
weakly/strongly mirrorsÆkj, and thatÆ is climbing iff eachÆjj is climbing.

Let us describe some connections that can be obtained from geodesic dilations. As in the previous
example we takeE = Z2 with 4-connectivity onP(E), andT = Z. We consider again a numerical
structuring functionv : E ! T whose support is the 5-pixel crossV in Z2 made of the origino and its
4 neigbours in the vertical and horizontal directions, and such thatv(o) > 0.

In our first example, we take forÆ a diagonal matrix:Æjj is the dilation byv: fj 7! fj � v, while for
j 6= k, Æjk is constant?: fk 7! ?. Given a mask imagem = (m0;m1;m2), the geodesic restriction to
m of Æ is

Æm : (f0; f1; f2) 7! (f 00; f
0
1; f

0
2) with f 0j = (fj � v) ^mj :

So, starting from a single-channel impulseij(p;t), and applying the infinite iterationcÆm, we will get a
geodesic reconstruction on channelj, and? in other channels. Thus the connected component ofm
containingij(p;t) is a single-channel functiong, such thatgk = ? for k 6= j, andgj is the restriction of
mj to the 4-connected component of supp(mj) containingp. Thus the connection consists of all colour
images having on one channel a numerical function with 4-connected support, and the other two channels
reduced to?.

In our second example, we take forÆ the constant matrix: for allj; k, Æjk is the dilation byv:
fk 7! fk � v. For the mask imagem = (m0;m1;m2), we get as geodesic dilation:

Æm : (f0; f1; f2) 7! (f 00; f
0
1; f

0
2) with f 0j =

�
(f0 _ f1 _ f2)� v

�
^mj :
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Here the dilation behaves as if all 3 channels were identical, and the geodesic dilation behaves somewhat
as a grey-level operator. Starting fromij(p;t),

cÆm will reconstruct impulses ofm in all 3 channels together,
spreading them successively through 4-adjacency on the base points, continuing as long as one still
has impulses (i.e., one does not get outside of the support ofm). Thus the connected component of
m containingij

(p;t)
is the restriction ofm to the 4-connected component of the support ofm (that is,

supp(m) = supp(m0) [ supp(m1) [ supp(m2)) containingp; then the connection consists of all colour
images with 4-connected support.

In our third example,Æjj is the dilation byv: fj 7! fj�v, while for j 6= k, Æjk is the identity operator.
Applying Æ to a single-channel impulse, this impulse is dilated byv in its own channel, and simply copied
into the other two channels. Here the pattern of geodesic reconstruction ofcÆm is to alternatively spread
impulses in one channel through 4-adjacency, and switch to another channel while keeping the same
position. Then the connected component ofm containingij(p;t) is the restriction ofm to the subsetV of

supp(m) consisting of all pointsq such that there is a pathp = z0; : : : ; zn = q (with n � 0), where for
everyi = 0; : : : ; n� 1, zi is 4-adjacent tozi+1 and there is a channelk with zi; zi+1 2 supp(mk).

The 3 choices ofÆ in the above examples can be ordered: the first one is the least, the second one
is the greatest, and the third one is intermediate. The same ordering applies then to the corresponding
connections.

4.2. Weighted partitions, flat zones and related topics

Image segmentation takes the form of a partition of the space on which the image is defined. The family
of partitions of a setE has a fine to coarse ordering (P � Q means that partitionP is finer than
partitionQ, in other words every class ofP is included in a class ofQ), and forms a lattice which is
not distributive. The least (finest) partition has the singletons as classes, while the greatest (coarsest)
partition has the single classE.

Given a connectionC on E, the family of partitions with connected classes is closed under the
supremum, and it contains the least and greatest partitions. It is thus a complete lattice.

In [17, 19] Serra defined a grey-level extension of partitions calledweighted partitions. We give here
a simplified definition of them, which corresponds nonetheless to the same concept. We assume a metric
space(E; d) and consider functionsE ! T , whereT is a closed part ofR = R[f+1;�1g. Let' be
a functionR+ ! R+ which is continuous, increasing and sublinear (that is,'(a+ b) � '(a) + '(b)).
A function f : E ! T is called'-continuousif

8p; q 2 E; jf(p)� f(q)j � '
�
d(p; q)

�
:

Here' is called themodulus of continuity. As ' is continuous at the origin, a'-continuous function
is uniformly continuous. Well-known examples are Lipschitz functions (for'(t) = t) and constant
functions (for'(t) = 0). Note that the set of'-continuous functions is a complete sublattice of the
lattice TE of functions, in other words the (pointwise) infimum (resp., supremum) of a family of'-
continuous functions is again a'-continuous function. Aweighted partitionis an ordered pair(f;P),
whereP is a partition ofE andf is a functionE ! T such that for every classC of P, the restriction
fC of f to C is '-continuous. We take the product ordering on weighted partitions:(f;P) � (g;Q)
iff f � g andP � Q. For this ordering the family of weighted partitions is a complete lattice: for
a family (fi;Pi) (i 2 I) of ordered partitions, its infimum is

�V
i2I fi;

V
i2I Pi

�
, and its supremum is
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�
f;
W
i2I Pi

�
, wheref is the least function�

W
i2I fi such thatfC is '-continuous for every classC ofW

i2I Pi. (We used here the fact that the'-continuous functions form a complete sublattice ofTE.)
We can also consider the weighted partitions with connected classes, that is weighted partitions

(f;P) where the partitionP has connected classes for a connectionC on E. They form a complete
lattice.

ForX � E, writeXP for the partition whose classes areX and all singletons included inE n X.
Write? for the least element ofT . For a functionf : E ! T , write fC;? for the function defined by

fC;?(p) =

(
f(p) if p 2 C;

? if p 2 E n C:

Given a connectedC � E, a cylinder of baseC is a weighted partition(f; CP ) such thatfEnC = ?.
Serra showed [19] that cylinders of connected base form a connection in the lattice of weighted partitions
with connected classes. For a weighted partition(f;P) with connected classes, its connected components
are all the cylinders(fC;?; CP ) whose basesC are all the classes ofP . When'(t) = 0, this corresponds
into a decomposition off into flat zones (the so-calledflat zone connectionof [19]). When we have
'(x) = max(x; c) for a constantc > 0, the cylinders form the so-calledjump connectionof [19]; the
generators of the lattice are the cylinders whose base is a singleton.

The segmentation of a functionf amounts to finding a maximal weighted partition(f;P), in other
words a maximal partitionP such thatfC is '-continuous for every classC of P. We cannot use the
results of the previous sections concerning geodesical dilations, because the lattice is not ISD, so in fact
we circumvent the structure of the lattice by working separately on each class (which is a set). We start
with the finest partition (with singletons as classes), and each cylinder of singleton base(ffpg;?; fpgP )
(for p 2 E) is iteratively grown into a maximal cylinder(fC;?; CP ). For the flat zone connection, there
is a unique maximal segmentation, namely the decomposition ofE into flat zones, in other words the
connected components of all level setsf�1(t), t 2 T . For the jump connection, there is no such unicity,
because for' 6= 0, we can have two intersecting partsC;D of E such thatfC andfD are'-continuous,
but fC[D is not.

Connections on functions and weighted partitions have not been used often in practice. A more
popular generalization of connectivity on sets is the notion of flat zones. Assume a connectionC on the
spaceE. Given a numerical functionf : E ! T , whereT is the space of numerical values (grey-levels),
a flat zoneof f is a maximal subsetZ of E which is connected (Z 2 C) and on whichf has constant
value (9t 2 T , 8p 2 Z, f(p) = t). The flat zones off form a partition ofE. In the case of binary
imagesf : E ! f0; 1g, flat zones correspond to the connected components of the figuref�1(1) and of
the backgroundf�1(0).

Then an operator on numerical functions is calledconnectedif for every functionf , the flat zone
partition of (f) is coarser than that off , in orther words for every flat zoneZ of f ,  (f) has a constant
value onZ. An interesting fact is that the best known connected operators are geodesic reconstructions
(by dilation and by erosion) with a “symmetrical” flat structuring function. Assume that the connection
C arises from a translation-invariant adjacency relation (e.g., the 4- and 8-connectivities), and letB be
the neighbourhood of the origino for that adjacency. HereB is a symmetrical structuring element. We
extendB into a flat structuring functionf given byf(p) = 0 for p 2 B andf(p) = �1 for p =2 B.
Heref satisfies the followingflat symmetryrequirements, which should be compared to the strong and
weak symmetry for functions defined in Subsection 1.1:
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1. supp(f) is a symmetrical set, and

2. for everyp 2 supp(f), f(p) = 0.

Writing Æ for the dilation byf , then for every mask functionm and marker functionw � m, the flat
zone partition associated tocÆm(w) is coarser than the one associated tom, so the mapm 7! cÆm(w) is a
connected opening on the family of functions� w.

If we compare the dilation byf and the geodesic reconstruction using the dilation byf with the
analysis made in Subsection 3.2, we see an important difference:Æ is weakly symmetrical, but not
climbing. HencecÆm will not be strongly symmetrical. In fact we have the following type of “symmetry”
for cÆm: given two impulsesi(p;t) and i(q;s), if i(q;s) � cÆm(i(p;t)), then s � t, i(p;s) � cÆm(i(q;s)),
and i(q;s) � cÆm(i(p;s)). If we turn to the openings
s defined in (23), we see that they do not satisfy
requirement 5 of a system of connection openings (Definition 3.4): two distinct “connected components”
can overlap. What happens in practice is the following: from an impulsei(p;t) � m (that is,t � m(p)),
the flat zoneZ containingp gets the grey-levelt in the reconstruction, and from a flat zoneZ having
grey-levelt in the reconstruction, a neighbouring flat zoneZ 0 will get in the reconstruction the grey-level
min(t;m(Z 0)).

It might be possible to devise an axiomatic for “generalized connected components”, where the
requirement 5 about the absence of overlap between distinct connected components would be replaced
by something weaker. Here the geodesic reconstructioncÆm would transform an impulse underm into
the “connected component” ofm containing it. The corresponding symmetry for the closing' = cÆm
would be:

8s; t 2 S; s � '(t) =) t ^ '(s) 2 S and s � '
�
t ^ '(s)

�
:

Such a geodesic reconstruction does not isolate flat zones. From a given flat zone, neighbouring flat
zones with a lower grey-level are added in the geodesic reconstruction, until the whole space is covered.

Agnus [1, 2], under the terminology of “object-oriented morphological operators”, introduced (some-
what informally) the idea of considering grey-levels as mere labels associated to pixels, without any
numerical ordering between them, except with the least and greatest grey-levels? and>: ? � t � >
for every t 2 T (so thatT is a complete lattice). Under this framework he defined “object-oriented”
anti-extensive erosions and the geodesic reconstruction by a neighbourhood dilation. The first author
is working with Agnus on morphological operators in the function latticeL = TE with this ordering
(which is not distributive forjT j � 5), and it seems that our theory can be applied in this framework:
there is a connection made of flat zones (cylinders of connected base with constant grey-level on it), and
for a functionm : E ! T such thatm(p) 6= > for everyp 2 E, its connected components are its flat
zones, which can be obtained by geodesic reconstruction from markers. This work will be the subject of
an incoming publication.

5. Conclusion

We have given a new theory of geodesic operations on a complete lattice, in particular we studied exten-
sively geodesic reconstruction systems and the associated openings, and then the generation of connec-
tivity from such a geodesic reconstruction when the latter uses symmmetrical dilations. We found that
several known cases of connections on sets or numerical functions arise from a geodesic reconstruction
system obtained by iterating a geodesic dilation. We gave also a practical example of a new connection
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on sets constructed in that way, that can be used to detect alignments in maps. Finally, through geodesic
dilations, we could define several connections on colour images.

This work is an illustration of the use of recursion in theoretical computer science. Indeed, geodesic
reconstruction is by nature a recursive operation defined from a dilation, and the fact that dilation dis-
tributes the supremum operation allows us to transform it into a countable iteration (cfr. Lemma 2.1);
for finite images, it becomes a finite iteration. In [11] we had also highlighted the relation between the
design of idempotent filters in mathematical morphology, and the theory of abstract interpretation of
programming, where both use Tarski’s fixpoint theorem and its generalizations.

Practical algorithms could be devised for the implementation of the construction of connected com-
ponents through such iterated geodesic dilations, for example using hierarchical queues.

Our main problem has been the clarification of the notion of a symmetrical operator, which is straight-
forward and unique for sets (x 2  (fyg) () y 2  (fxg) for all pointsx; y). We saw that for general
complete lattices, in particular the one of numerical functions, at least two notions of symmetry must be
considered: the weak and strong ones. In the case of a translation-invariant dilation for numerical func-
tions, these two symmetries can be expressed in terms of a form of symmetry of the structuring function
f : for weak symmetry,f must have symmetrical support, and strong symmetry requires furthermore that
f(p) = +1 on that symmetrical support.

In the case of numerical functions, there is a third form of symmetry that has been used for con-
structing annular openings [13]: here the symmetry of the structuring functionf means thatf has a
symmetrical support and satisfiesf(p) + f(�p) � 0 on that support. We called it hereannular symme-
try. In Subsection 4.2 we have also considered the particular case wheref has a symmetrical support and
satisfiesf(p) = 0 on that support; the corresponding “flat symmetrical” dilation leads through geodesic
reconstruction to a connected filter (in terms of flat zones), but not to a connection on the lattice of nu-
merical functions. The axioms satisfied by such “flat” geodesic reconstructions from arbitrary markers
are worth investigating; they are weaker than those for a connection.

As can be seen from the study of annular filters on complete lattices [14], this third notion of annular
symmetry can take two slightly different forms in a general complete lattice (the two forms are equivalent
for numerical functions). This hints that the two forms of symmetry considered here (weak and strong)
could admit some variants in a general lattice (and the same problem would arise for the generalization
of flat symmetry to the lattice-theoretical framework). This question will be dealt with in future papers.

The mathematical theory of connectivity on abstract pictorial objects is a difficult research topic.
From the set-theoretical axioms in [16], further studied in [8, 10, 12], the corresponding concepts and
axioms for lattices were derived [17]. This has led [4, 5, 18, 19] to some theoretical developments,
together with examples of practical applications for some lattices, in particular the one of numerical
functions (grey-level images), and the one of partitions (image segmentations). As can be seen in this
paper (and also [5]), many results on geodesic reconstruction require the lattice to be ISD; this require-
ment is met by the ones of sets (binary images), numerical or multivalued functions (grey-level or colour
images). It would be interesting to see what can be obtained in a lattice which is not ISD, like the one of
closed sets (which is distributive, but not ISD), or the one of convex sets and the one of partitions (which
are both not distributive).
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