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1. Introduction

In digital image processing, geometrical algorithms rely often on a choice of an adjacency relation be-
tween pixels, such as the well-known 4- and 8-adjacencies. Here the adjacency relation is equivalent to
the notion of pixel neighbourhood: to every pixelwe associate its neighbourhodd(z) made of all

pixelsy which are adjacent to; since the adjacency is symmetricagli¢ adjacent tae iff = is adjacent

to y), the neighbourhood must be symmetrical in the senseytiatV (z) iff x € N(y). The adjacency

(or neighbourhood) can be used to define such concepts as connected objects, or connected components.
In mathematical morphology one encounters for example the so-called “reconstruction from a marker”:
we have an object/ called themask which represents the data to be analysed, and A smtlled the

marker, corresponding to some properties, and we want to obtain all connected componkhtehich
intersectX. The straightforward algorithm for this purpose is to initialize the reconstrudiiomith

X N M, and to iteratively increment it by adding the neighbourhood/irof each of its pixels:

R:zRU(U(N(p)ﬂM)) ;

PER

this is repeated until no further point is addedio

The operation of adding the neighbourhood of each pixel of the figure, is a dilation, and when this
neighbourhood is restricted to the mask, it becom@gedesic dilation This leads immediately to
the dual definition of ageodesic erosignand other geodesic operators can then be devised (distance
transform, zones of influences, etc.)

Historically speaking, this has been the starting point from which the axioms for morphological con-
nectivity progressively arose. Trivially, changing the definition of adjacency (or of the neighbourhood)
modifies the class of connected components; but in a subtler way, the operations of reconstruction from
a marker, or simply of taking the connected component of a set containing a given point, have a set of
algebraic properties, which can be taken to define abstractly the notion of a connected component, and
hence of a connected set. This approach was used in [16] to characterize axioms for connectivity on sets;
further examples were given in [10] and equivalent axioms have been proposed in [12]. But a number
of questions come to mind: is such an approach limited to the case of sets, i.e., binary images? Oth-
erwise, to which families of pictorial objects can it be applied? In the above reconstruction algorithm,
does one need dilations to expand the markers, or can one take instead other operators which preserve
connectivity? If the space of pictorial objects is agiriori equipped with a connectivity, to which extent
does such a reconstruction algorithm lead to a connectivity? Finally, in the Euclidean spaces, what are
the links between these operations and the classical topological connectivity? Surprisingly, the answers
to these questions depend on gyenmetryof the operators, a concept which will be clarified here, but
also on theirextensivity(the fact that they enlarge objects) and related properties (namely, what we call
climbing).

The main conceptual problem is the generalization of the notions of a symmetrical neighbourhood
and hence of a symmetrical dilation, which is straightforward for sets of points (binary images), to an
abstract framework covering many families of pictorial objects, in particular grey-level or color images.
There is another topic in mathematical morphology where steps towards a wider notion of symmetry
were made: annular filters. The starting point comes from [16]:Aldde a symmetrical structuring
element§ € A < —a € A); then the set operatdX — X N (X & A) is a translation-invariant
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algebraic opening which removes from a Zeall isolatedpoints, that is alp € X such that4,NX = (;
this operator is called thennular opening by.

In [13], annular openings were generalized in two ways. First, in the case of sets, the annular opening
can be defined without the assumption of translation-invariance: we replace the symmetrical structuring
elementA by a symmetrical neighbourhool (x) associated to every point (the symmetry being
thaty € N(z) <= = € N(y)), and the dilation byA becomes the dilatioh ), x N(z) by the
neighbourhoods. Second, the notion of a symmetrical structuring element can be to extended grey-level
functions, and more generally to an arbitrary complete lattice having a sup-generating family on which an
abelian group of lattice automorphisms acts transitively; this led to the construction of annular openings
on such a lattice. Finally, the approach of [13] was technically improved in [14]; in particular other types
of annular filters were studied.

This work on annular filters in an abstract framework was our inspiration for the search of a general
definition of symmetry that would lead to connectivity by geodesic reconstruction. As for many problems
in mathematical morphology, the solution to a general question can often be found by looking at what
happens with grey-level images, in other words numerical functions.

We will give below the definition of a symmetrical structuring function for grey-level images, which
was presented in [13, 14], and compare it to more straightforward definitions of symmetry. The main
lesson of this investigation of annular openings is that the notion of symmetry, which is clear and unam-
biguous for sets, is not uniquely defined for other objects. In particular for numerical functions, we will
find 3 different definitions of symmetry, from the most exacting to the least demanding.

1.1. Symmetry for numerical functions

We consider grey-level images as functidis— T, whereE is the space of points, aridis the set of
grey-levels, which can b8 or R; T' is a complete lattice for the ordering kY, and has-oo and+oo as

least and greatest elements. As sets are generated by points, grey-level images are generated by joining
together “grey-level points”; more precisely, given a pgint E and a grey-levet € T\ {£oo}, the

“impulse” functioni, ;) defined by

, t ifx=np,
Vr € E, Up,t) (:17) = { o i 7& » (1)

represents in some way the popwith grey-levelt attached to it; now such impulse functions form
a sup-generating family for grey-level functions, this means that every fungtion — T is the
supremum of a family of impulses, namely those less than or equal to it:

f=Vipy |p€E, teT\{*oo}, andt < f(p)} . )
It is customary to associate foa subset of? x (T"\ {£oo}) called itsumbra that is the set

U(f) ={p,t) [p€ E, t €T\ {+£oo}, andt < f(p)} . 3

The similarity between (2) and (3) shows the correspondémndg < i, ;) between points in the umbra
of a function and impulses generating that function.
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Let us write suppf) for the supportof the function f, namely the set of all points € E where
f(p) > —oo. Note that for(p,t) € U(f) we havep € supdf). Forp € E andt € T \ {+oo}, the
translateof the functionf by (p, t) is the functionf(, ) : E = T : z+ f(z —p) + .

In order to define a “symmetrical” structuring functighwe need to extrapolate the condition &
A < —a € A" characterizing symmetrical sets. A straightforward transposition would give

which means thaf verifies the following two conditions:
1. supfdf) is a symmetrical set, and

2. for everyp € supf(f), f(p) = +oc.

In other words,f is a cylinder with symmetrical support, and having an infinite height all over it. This
condition corresponds to what we will calirong symmetry

In fact umbras are redundant descriptions of functions, in other words the family of impulses used in
(2) to generatef is redundant. The basic idea in [13] was to require, —t) € U(f) only for points
(p,t) € U(f) in a portion of the umbra sufficient to reconstrif¢tthis was expressed as follows:

V(p,t) € U(f), 3s > t such thalp, s) € U(f) and(—p,—s) € U(f) .
Following [14], an equivalent formulation is:
Vpe B, f(p)=sup{s|(p,s) €U(f)and(—p,—s) € U(f)} .
The above condition can then be expressed as follows:
1. supf) is a symmetrical set, and

3. for everyp € supp(f), f(p) + f(—p) = 0.

We call this conditiorannular symmetry Then the operatag — g A (g @ f) is a translation-invariant
algebraic opening, called again “annular opening” [13]. We will not use this annular symmetry in the
remainder of this paper.

Finally, we can consider a weaker symmetry condition

V(p,t) € U(f), Is < —t such that—p,s) € U(f) . (5)
This amounts to requiring only:
1. supff) is a symmetrical set.

This corresponds to what we will calleak symmetryClearly strong symmetry implies annular symme-
try, and the latter implies weak symmetry. We illustrate strong and weak symmetry in Figure 1. These
are the two notions that we will use in the following.
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Figure 1. a) A strongly symmetrical functioh: £ — T. b) A weakly symmetrical functiorf’ : £ — T.
(For both functions, the part of the graph corresponding to the support is shown with a plain line, and the rest with
dashed lines.)
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1.2. Symmetrical dilations, geodesic reconstruction, and connectivity

Both in annular openings and in geodesic reconstruction from markers, symmetrical structuring elements
or neighbourhoods are used in a dilation. In the case of sets, the dilation by a neighbourhood function
N :z+— N(z)isthe mapiy : P(E) = P(E) : X = U,cx N(x). Given a “symmetrical” structuring
function £, the dilation byf is the mapi; : 7% — T : g — g & f; here the role of points in the case

of sets is taken by the impulse functiofjs ;) defined in (1), so the “neighbourhood” gf, ;) (p € FE,

t € T\ {£oo}) is given bydr(i(,1)) = i) ® f = fp), the translate of by (p,t). Then the strong
symmetry condition orf can be expressed as follows:

Vp,q € B, Vt,s €T \ {:I:OO}, i(p,t) < f(q,s) — i(q,s) < f(p,t) . (6)
On the other hand, weak symmetry can be written as:

Vp,q € B, Vs,t € T\ {£oo}, iy < figs) = fip) Nigs) 7 L (7)

where_L designates the constanto function. These new interpretations of symmetry are illustrated in
Figure 2.

This allows us to give an abstract expression for the strong and weak symmetry of a dilatioie
L for the setT'? of functionsE — T andS for the set of impulsesk. is a complete lattice for the order
relation < between functions. Here (2) becomes:

vieL, — f=\[{ieSli<f};
this means tha$' is asup-generating familgf L. Then the strong symmetry of dilatiagnrbecomes
Vi,j €8, i<d(j) e j <), (8)
while its weak symmetry is here
Vi,jeS, i<68(j) = 6(@)AjAL . 9)

These definitions can then be extrapolated from the present case of the lattice of numerical functions
with a sup-generating family made of impulses, to any complete laftiséth sup-generating famil.

We now introduce a few basic facts about geodesy; these will be studied in detail in Section 3. Given
amaskm € L, we consider the latticé&[m] of all functionsf € L such thatf < m; hereL[m] has
the sup-generating familg[mz] made of all impulses € S such thati < m. We define thegeodesic
restriction of § to m as the map,,, : Lim| — L[m] : f — &(f) A m. An interesting point is that
both properties of strong and weak symmetry are preserved by geodesic restriction (in (8) and (9) we
replaceS by S[m], andd by 4,,). Fromd,, we can build the geodesic reconstructipy as the operator
obtained by repeatingl V d,, until idempotence (wheri is the identity onL[m], in particular when
om is extensiveid V §,, reduces td@,,). This reconstructiorp,, is in fact the least algebraic closing on
L[m] which is above),,,.

Since geodesic reconstruction, using repeated dilation by the 4-/8-neighbourhoods, was initially de-
vised as a method for reconstructing 4-/8-connected components of sets touched by a marker, one can
wonder whether it is possible to do the reverse, to define a new connectivity from the geodesic recon-
struction ¢,,, obtained from a suitable “symmetrical” dilatiaf,. In the case of sets, everything is
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Figure 2. a) The strongly symmetrical functigrof Figure 1.a satisfies (6). b) The weakly symmetrical function
/' of Figure 1.b satisfies (7).
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straightforward: the symmetrical dilation corresponds to symmetrical point neighbourhoods, and the
latter are determined by a unique symmetrical adjacency relation between points; then the geodesic re-
construction produces connected components for the connectivity arising from this adjacency on points.
In the more general framework of a complete lattice with a sup-generating family, geodesic reconstruc-
tion ¢,,, using an extensive strongly symmetrical dilatinwill indeed induce a connection in the sense

of [17].

However in some lattices, such as the one of numerical functions, strong symmetry is an extremely
severe requirement, so we can wonder whether this holds also for a weakly symmetrical dilation. There
is a fundamental problem which did not arise with sets: the generatératia not “atoms”, we can have
i <4'fori,i’ € S;for example with (grey-level) numerical functions, taking E ands,t € T\ {+oo}
such thas <z, we havei, ) <, ); see Figure 3.a. Intuitively, fars’ € Swithi <4, i mustbe in the
same connected component (of a given function abaVkasi:’, so that converselyy must be in the same
connected component (of that function) athus:’ should be obtained frorby geodesic reconstruction
using dilationd. In other words it should be possible to “climb” froito 7' with §. We introduce then
a new property: is climbingif for any 4,7’ € S with : < 4/, there is a sequendas, ... ,i, € S such
thatiy = 4,4, = 4/, and foreactk = 0,...,n — 1, 4 < ix11 < 0(ix); See Figure 3.b. In particular,
whené is climbing, it is extensive. For example in the case of grey-level functions, the dilation by a
structuring functionf is climbing iff (o) > 0, whereo is the origin (or null vector) ofZ. In the case
of sets, a dilation is climbing iff it is extensive. We show that, up to some technical assumptions on the
lattice L (which are verified both for sets, grey-level and colour functions), when the geodesic dilation
dm is climbing and weakly symmetrical, then the geodesic reconstrugtipis strongly symmetrical.

We obtain thus a progression from a weakly symmetrical and climbing dilation to a strongly sym-
metrical geodesic reconstruction, and from the latter to a definition of a connection on the lattice.

The paper is organized as follows. In Section 2 we introduce our notation and terminology for com-
plete lattices, and then we define weak and strong symmetry and study their properties. In Section 3 we
introduce geodesic operators, in particular reconstruction from markers, and give conditions for obtain-
ing a connected opening, in other words a connection [17] on the lattice. Section 4 is devoted to examples
of connectivities related to geodesic reconstruction, in particular for metric spaces and numerical func-
tions; we also discuss there some cases where our theory does not apply directly, in particular image
partitions. The last section is the conclusion, it links our results to other papers published on the topic of
connectivity, and introduces several lines of investigation for the theory of symmetry and connectivity in
lattices.

After we wrote the first version of this paper in 1999, Braga-Neto and Goutsias [5] obtained inde-
pendently some results overlapping ours, in particular those of Subsection 3.2. We will indicate there the
relations between their results and ours.

2. Lattices and symmetry

We use essentially the same theoretical framework and notation as in [17hbjdw spacethat is the
family of images being considered, is writténelements of_ are calledbbjectsand written with lower-
case letters, . . ., z; they represent individual images under consideration. Upper-case léiters 7

will denote subsets af.. However wherl is the lattice of subsets of a skt elements of. (subsets of
E) will be written A, ..., Z, while q, . .., z will designate points oF.. We assume that is ordered by
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a partial order relatior< for which it is acomplete latticd3]; the supremum and infimum operations
are written\/ and A\. The least and greatest elementsiofire written L and T respectively; we have
1 =AL=\0andT =\ L =A0. Foranya € L andX C L, we write X[a] (resp.,X *[a]) for the
set of lower bounds (resp., upper boundsy @i X:

Xla] = {zeX|z<a} ;
X*[a {reX|z>a} .

—_

Throughout this paper, we assume tlhahas asup-generating familys; this means that for every
x € L there is someX C S for whichz = \/ X; equivalently:

Vr e L, x:\/S[as] .

Elements ofS are calledgenerators We suppose also that ¢ S; indeed, L is always redundant in a
sup-generating familyz = \/ X = z =\/(X \ {1}).

For example, wher. is the setP(E) of parts of a Euclidean or digital spadg S will be the set
of all singletons inE; when L is the family FuE, T') of numerical functionsz — T (T = Z or R),
S will consist of all “impulse” functionsi, ; for p € E andt € T\ {—o00, 400} (Z or R), defined by
settingi, .(p) = t andiy ;(z) = —oo for z # p (see (1)). Further examples can be found in [9].

A part X of a complete latticd. is said to besup-closedf for any Y C X we have\/Y € X. We
define similarly arinf-closedpart X by Y C X — AY € X.

One calls aratomof L. somea € L suchthats # | andforeveryr € L, | <z <a = z=a
orx = 1.

We say that the complete lattideis infinite supremum distributivén brief, ISD) if the binary meet
operationA distributes the supremum operatigh in other words:

Ve e L, Vy; € L (i € I), 3:/\(\/y1>:\/(:z/\yz) . (20)
icl el

Note that both the complete lattid® ) of parts of £ and the one of numerical functiods — T' are
ISD.

Maps L — L will be calledoperatorsand will be designated by lower-case greek letters. . , w;
they represent image processing operations. The identity opdraterL : = — z will be written id.
The setL” of operators naturally inherits frorh the partial order< and the structure of a complete
lattices with supremum and infimum operatidgisand /. The composition of operatois followed by
X is written \tp, wherey(z) = A(y(x)). Given an operatogp andn € N, we definey” by 4° = id,
P! = b, andyp™ = p”~! for n > 1. We write T, and Lz, for the constant operators — T and
r+— L onL.

A partF of L is said to bepower-closedf for every« € F and any integen > 0 we havey™ € F.

We recall from [7, 9, 13, 15, 16] some fundamental concepts. An opefatoincreasingif = < y
implies«y(z) < 1 (y); itis extensivef ¢ > id, i.e., we always have < i(z); itis anti-extensivef i) <
id, i.e., we always have (z) < z; itis idempotentf 1) = 1, i.e., we always have (¢)(z)) = 1»(z). An
openingis an increasing, idempotent, and anti-extensive operatdosigis an increasing, idempotent,
and extensive operator. dilation is an operato which distributes the supremum operation, while an
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erosionis an operatoe which distributes the infimum operation:

5(\/%) Z\/5($i) , 6(/\1"1) :/\s(zi) ;
icl icl icl icl
in particular, forT = @, we getd(L) = L ande(T) = T. Note that every dilation or erosion is
increasing.

We will now introduce our notions of strong and weak symmetry. Following (8) and (9), we make
the following definition:

Definition 2.1. Letn and( be two operators ofi. We say that) strongly mirrors( if
Vs,t€ S,  s<n(t) = t<((s), (11)
and thaty weakly mirrors¢ if
Vs, t € S, s<nt) = C(s)At#L1 . (12)
We say that) is strongly(resp., weaklysymmetricalf n strongly ¢esp.,weakly) mirrors itself.

Note that (11) implies (12), so strong mirroring (or symmetry) always implies weak one. Also for
n' < nand{’ > ¢, if n strongly fesp.,weakly) mirrors¢, thenr’ strongly gesp.,weakly) mirrors¢’.

Let us consider some examples. Hor= P(E) with S the set of singletons, strong and weak
mirroring are equivalent, they both amount to:

Vp,ae E,  pen({q}) = qe(({p}) -

In the translation-invariant case, if eacte E givesn({z}) = A, and(({z}) = B, for two structuring
elementsd, B C E, the above mirroring property means that_ B = {—b | b € B}.

WhenL is the lattice of numerical function® — T (whereE = R™ or Z" andT = R or Z), taking
the translation-invariant dilation, 9 by two structuring functiong, f’, §; strongly mirrorsd iff for
everyp € supg f) we havef’(—p) = +oo, while 4y weakly mirrorsd iff for every p € supf(f) we
have—p € supgf’). In particulard; is strongly (esp.,weakly) symmetrical according to the present
definition, iff f is strongly ¢esp.,weakly) symmetrical according to (4,5).

We will now study the properties of strong and weak mirroring w.r.t. algebraic operations on opera-
tors, namely supremum, infimum, and composition:

Proposition 2.1. T, and L, are strongly symmetricald is weakly symmetrical. Given a family of
operatorsy;, ¢; (i € I) on L:

1. If n; strongly mirrors(; for eachi € I, then\;; n; strongly mirrorsA\;; ¢;.

2. LetL be ISD, and suppose that eaGh: € I) is increasing. If); strongly fesp.,weakly) mirrors
¢; for eachi € I, then\/,_; n; strongly esp.,weakly) mirrors\/,_; ¢;.

Given operators, n’, ¢, (' on L:

3. LetL be ISD, and suppose thatand(’ are increasing, whil@ is a dilation. Ifn weakly mirrors
¢ andn’ strongly ¢esp.,weakly) mirrors¢’, thennn' strongly ¢esp.,weakly) mirrors¢’c.
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Proof:
For everys,t € S, we havealwayss < T (t) andt < Tp(s), while we havenevers < 1 (t)
nort < 1r(s). ThusTy and_L; are strongly symmetrical. Now < id(¢) meanss < ¢, so that
id(s) At =sAt=s# L,thereforeid is weakly symmetrical.

1) ForI = (), we haveA,;.; n; = A\;c; ¢ = Tr, which is strongly symmetrical. We have thus only
to consider the case whefe# (). Lets,t € S such thats < A;.; n:(t). Then for eachi € I we have
s < n;(t), and agy; strongly mirrors(;, we gett < (;(s). Hencet < A, ¢i(s). This means thaf\,_; n;
strongly mirrors\;; ¢;.

2) ForI =, we have\/,.; n; = V;c; ¢ = L1, which is strongly symmetrical. We have thus only
to consider the case whefe# (). Lets,t € S such thats < \/,; n;(t). As L is ISD, we get

sa(Vm®) =V (sAn) ;

el el

it follows then that there is somgee I such thats A n;(t) # L, so there is some&’ € S[s An;(t)]. As
s' < s and(; is increasing, we have

Gi(s") < ¢i(s) <V Gils)

el

If n; strongly mirrors(;, ass’ < n;(t), we gett < (;(s’), and hence

t<C] \/Cl 7

el

thus\/,.; m: strongly mirrors\/,; ¢;. If n; weakly mirrors(;, ass’ < 7;(t), we get(;(s') At # L, so
that
L<g(d)nt< (\/gz )
el
thus\/,c; n; weakly mirrors\/,; ¢;.
3) Lets,t € S such thats < nn/(t). Sincen/(t) = V S[n'(¢t)] and the dilatiorn distributes the
supremum, we haven' (t) = \/veS[n’(t)] n(v). As L is ISD, we get

s=sam®=sn( N )=\ (sanw)

veS[n' (t)] veS[n' (1))

it follows then that there is somee S[n/(t)] such thats An(u) # L, so there is somé € S[s An(u)].
As s’ < s and( is increasing, we gef(s’) < ((s). Asn weakly mirrors¢ ands’ < n(u), we get
((s") Nu # L; takeu' € S[((s') A u]; nowu' < ((s") < ((s) and(’ is increasing, s@’(u') <
¢'(¢(s") < ¢"(C(s))s thus¢! (u') < ¢'(C(s)).-

If n' strongly mirrors¢’, asu’ < u < 7/(t), we gett < {'(u'); hencet < ('(u) < ¢'(¢(s)). Thus
s < nn'(t) impliest < ¢'¢(s), thatis,nn’ strongly mirrors¢’¢.

If n" weakly mirrors¢’, asu’ < u < 7/(t), we get’(v') At # L; but’'(u') < ¢'({(s)), so
L < '(W)ynt <(¢(s)) ANt. Thuss < nn/(t) implies¢’((s) At # L, that is,nn’ weakly mirrors
¢'¢. 0



C. Ronse and J. Serra/ Geodesy and Connectivity in Lattices 13

Corollary 2.1. Assume thatl is ISD. The family of strongly resp.,weakly) symmetrical dilations is
sup-closed and power-closed, and it contains The family of weakly symmetrical dilations contains
alsoid.

Proof:
It is known [9] that the family of dilations is sup-closed and closed under compositidi/jinin partic-
ular it containsl ;, and it is power-closed. Moreover, recall that every dilation is increasing.

Given a familyd; (i € I) of strongly fesp., weakly) symmetrical dilations)/;_; ¢; is strongly
(resp.,weakly) symmetrical by item 2 of Proposition 2.1, and it is a dilation by [9]. Niowis strongly
symmetrical by Proposition 2.1, and a dilation by [9].

Given a strongly resp.,weakly) symmetrical dilatiod and an integer. > 0, " is a dilation by [9],
and we show by induction that’ is strongly ¢esp.,weakly) symmetrical. First, this is true for = 1;
second, givem > 1 such that the property is true far— 1, sinces andé™ ! are strongly fesp.,weakly)
symmetrical, by item 3 of Proposition 2.49"~! strongly fesp.,weakly) mirrorsé”~'4, that isé™ is
strongly fesp.,weakly) symmetrical.

Finally id is weakly symmetrical by Proposition 2.1, and a dilation by [9]. a

Note that there is no result like item 1 of Proposition 2.1 for weakly mirroring functions. Consider
for example the ISD complete lattice of numerical functiis+ R.. We define the structuring functions
fn (for everyn € N) and f’ by:

0 ifo<x<1,

w(z) = 0 fo<z<l, "(r) = _
falz) Hosws f ) —oo otherwise

—nz if —1<2<0, {
—oo otherwise

We have\, . fn = f'. For everyn € N, sincef, has as support the symmetrical interfzall, 1] (it
is weakly symmetrical according to (5)), the dilatiéy) : g — g @ f, is weakly symmetrical. However
Y = A\, en 95, is not weakly symmetrical. Indeed, for a generator (an impulge) we have:

)) = /\ 6fn(i(q,s)) = /\ fn (g,) = (/\ fn) (4,9) :f(I‘LS)
neN neN neN

Thus another generatoy, ) verifiesig, y < ¥ (i q) = f(,q,s) iff ¢ <p<qg+1andi < s; provided
thatp > q we havey (i, 1) Aig,s) = f(p n Nigg,s) = L because ¢ [p,p+ 1] = supﬂfpt ). Thusy
is not weakly symmetrlcal by (12) We illustrate this example in Figure 4.

We will now study the properties of the closing generated by a strongly or weakly symmetrical
dilation. The first thing is determining the expression for this closing:

Lemma 2.1. Let é be a dilation. The least closing ¢ is

/s §7 d v sy (13
1=0 j=1

and it is also a dilation.
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Figure 4. a) The weakly symmetrical functigp (n € IN). b) The infimumy’ of all f,, (n € N). c) The operator
v satisfyingy (iq,5)) = f(’q,s) is not weakly symmetrical.
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Proof:
Fori,j € N we haved’s’ = §1J, and since each’ is a dilation (i.e., it distributes the supremum
operation), we get for ever§, J C N:

(\/52')(\/51):\/52'(\/51):\/\/&51: \/ 8

el jeJ el jeJ iel jel (4,§)EIxJ

We show by induction that fof > 0, (id v §)7 = \/7_, §". Asd® = id, this is clearly true foj = 1.
Takej > 1 and assume that the property is true for 1; we get then

(id v 8)7 = (id v 6)71(id v 6) = (Vaz)udva \/ v ottl) \/52

=0

It follows thus that

oo

§7(|dv53—\/(\/51) :;\7052' .

j=1 7j=1 =0

Thus both expressions forin (13) are equal.

We show now thai is the least closing §. Sinceid appears in the decomposmon(bfthe latter is
extensive. As the family of dilations is closed under composition and supremumig9g dilation; in
particular it is increasing. Now sindd = {i + j | i,5 € N}, we get:

56 = (\/ 5i)(\/ ai) :( \/ 5Z+J) :Z_Z{\Iaizé .

iEN ieN (i,j)EN?

Henced is also idempotent, and it is a closing. Sintintervenes in the decomposition &f we have
6 > 4. Given a closingp > 4, the extensivity ofp givesy > id = 8%, and by induction every integer
i > 1givesp = ¢’ > §°. Hencep > \/2, 0 = 5. a

We obtain thus an important result concerning the symmetby of

Proposition 2.2. Assume that. is ISD. Leté be a dilation.
1. If § is extensive and strongly symmetrical, thieis strongly symmetrical.

2. If § is weakly symmetrical, thebiis weakly symmetrical.

Proof:
1) As § is extensive, (13) gives = Vg, 8. By Corollary 2.1, each’ is strongly symmetrical, and
hences is strongly symmetrical.

2) Here (13) gives = idV (\/oo (V) By Corollary 2.1jd as well as eachi is weakly symmetrical,

and hence is weakly symmetrical. O

We will now introduce another property that allows us to gstrongly symmetrical for a weakly
symmetrical:



16 C. Ronse and J. Serra/ Geodesy and Connectivity in Lattices

Definition 2.2. An operatoryp is climbingif for any s, ¢ € S such thak < #, there exist an integer €¢ N
anduy, ..., u, € Ssuchthaty = s,u, =t,andforeach = 0,...,n—1we haveu; < u;11 < (u;).

Consider for example the lattice of numerical functidiis+ 7" for E = R™ or Z" andT = R or
Z. Given a structuring functiorf, the dilationd; by f is climbing iff f(0) > 0 (whereo is the origin,
or null vector, inE). Indeed, a generatay, ,) givesd;(i(, ) = f(p,s)» Wwhose value ap is s + f (o).
Given another generatay, ;), we havei(, ) < i, iff p = g ands < ¢; thus for f (o) < 0 we cannot
havei(, ;) < d7(i(p,s)) With £ > s, and saj; is not climbing. On the other hand, ff(0) > 0, we have
Ups+(0)) < Oflips))y bipsario) < 0p(ipstso)): Ups+asio) < Of(ipst2s(o), €1C., and say is
climbing. See again Figure 3.b.

We give now the properties of climbing operators:

Proposition 2.3. 1. Given two operatorsg, ¢ such that) < ¢ andn is climbing, ¢ will be climbing.
2. Every climbing increasing operator is extensive.
3. Every extensive and strongly symmetrical operator is climbing.

4. A closing is strongly symmetrical iff it is climbing and weakly symmetrical.

Proof:
1) Fromu; < uipq < n(u;) (fori=0,...,n— 1) we deriveu; < u;r1 < ((u;).

2) Lett) be climbing and increasing. Let € L; for s € S[x], takingt = s, we haves = ug <
P(ug) = 1(s), and asyp is increasings < z impliesy(s) < ¥(x); hences < ¢(s) < () for all
s € S[z] from which we derive that = \/ S[z]| < (), i.e.,1 is extensive.

3) Lety be extensive and strongly symmetrical. lset € S such thats < t. As1p is extensive,
t < 1(t), so thats < 1(t), and agp is strongly symmetrical, this gives< 1(s). Hence the property of
Definition 2.2 is verified withh = 1, ug = s, andu; = ¢.

4) Let p be a climbing and weakly symmetrical closing. lst € S such thats < ¢(t). Asp
is weakly symmetricalp(s) A ¢t # L, from which we derive that there is somfec S|t] such that
t' < ¢(s). Asp is climbing, we have: € N anduy,...,u, € S such thatuy, = ', u, = t, and for
eachi = 0,...,n — 1 we haveu; < u;+1 < ¢(u;). We show by induction on thatwu; < ¢(s) for
i=0,...,n. Asuy = t' < ¢(s), thisis true fori = 0. Suppose that the property is true fox n, and
let us show it fori + 1: we haveu; < ¢(s) andu;+1 < p(u;), and sincep is increasing and idempotent,
we getuir1 < o(u;) < o(p(s)) = ¢(s). Thereforet = u, < ¢(s) by induction hypothesis. We have
thus proved that for every,t € S verifying s < ¢(t), we must have < ¢(s), in other wordsyp is
strongly symmetrical.

Conversely, letp be a strongly symmetrical closing;is extensive, so it is climbing by item 3; also
 being strongly symmetrical, it is certainly weakly symmetrical. O

We end this section with a final result that will be used in the next section for building connected
components:

Theorem 2.1. Assume thatl, is ISD. Given a climbing weakly symmetrical dilatioh 6 is strongly
symmetrical.
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Proof:

As§ < 4, 4 is climbing by item 1 of Proposition 2.3. By item 2 of Proposition 2.25 weakly symmet-

rical. By item 4 of Proposition 2.3, the climbing weakly symmetrical closirng strongly symmetrical.
|

3. Geodesic operations and connectivity

We will now see what happens with the above properties of strong and weak symmetry, and climbing,
when we consider the geodesic restriction of operators to the ldttie¢for somem € L. We will also
consider geodesic reconstruction from a geodesic dilation. Then we will explain how such a geodesic
reconstruction from a weakly symmetrical climbing dilation can give rise to a connection on the lattice
L.

Definition 3.1. Letm € L be called anask Thegeodesic restriction ta: of an operator) : L — L is
the operatow),,, : L[m] — L[m] defined by

Vz € L[m], Ym(z) =P(xz) Am .

Note thatL[m] is a complete lattice for the ordering By, with the same supremum operatigh
and least element as inL; it has also the sam@on-emptyinfimum operation/ asL, but its greatest
element, or empty infimurd\ 0, is different: it ism instead ofT. It follows that whenL is ISD, so is
L[m]. MoreoverL[m| hasS[m| as sup-generating family.
We will write id,,, for the identity operator o], this notation is unambiguous, becaudg, is
indeed the geodesic restriction #@ of id. The least and greatest operatorsIgm| are respectively
Lifm) i@ LandT - 2 — m. Forn € LY, we had defined abow¢’ = id, so we defindr,,)" to
beid,,.
Let us now see how the properties of operators considered in the previous section are preserved by
geodesic restriction:

Proposition 3.1. Letm € L be a mask. The geodesic restrictign— 1, maps_ly, T, andid on
Lim]s Trpm) @ndid,, respectively, and it is:

e increasing, thatisy < ¢ = n,, < (s
e compatible with the infimum operation, that is: t6rC L”, (/\1/,@: zp)m = Nper(m);

e when [ is ISD, compatible with the supremum operation, that is: foc L", (\/ ,cx¢)
Vq/;e}'(zﬁm)

For any operators, ¢ € L”, the following properties are inherited by their geodesic restrictigns;,,:

m_

1. thatn strongly tesp, weakly) mirrors(;
2. thatp is climbing;

3. thatp is increasing;
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4. thatp is extensive;
5. thatn is a closing;

6. whenL is ISD, thaty is a dilation.

Proof:
The geodesic restriction af;,, T, andid mapz € L[m]| respectively onL Am = L, T Am = m,
andid(z) Am = x Am = z, so they arel i), T Ljm)s andid,,
If n < ¢, then forz € Lim] we haven(z) < ((z), so thaty,(z) = n(x) Am < {(z) Am = (n(x).
LetF C LY. If F =0, we get

(/\ 1[}) (Tz),, = Trpm = /\ @m)

el peD

and

(\/ @0) (Lr),, = Lom =V @m) -

PeD Yeb
Assume now thaf # (). Forz € L[m] we have

(Aver®) @ = (Aver®)@ Am=(Aser (@) Am
= Aper (0(®) Am) = Ay ¥m(@) = (Ages m) (@) -

Thus (Aycr¢),, = Aper(¥m)- If Lis1SD, we get also

(ng}'TP)m(x) = (\/wefi/)> () Am = (vwef¢($)> Am
=Vaer (6(a) A1) = Vyer tin(z) = (Vyer ¥ ) @)

Thus (Vq/;e}' Tp)m = Vyer(tbm).

1) We take equations (11,12) which define strong and weak mirroring in Definition 2.1; if we restrict
ourselves tos,t € S[m], havings,t < m, then firsts < n(t) < s < n(t) Am = n,(t), second
t < ((s) <= t <((s) Am = (n(s), and third¢(s) At = ((s) Am At ={(n(s) At. Hence the two
equations which define strong and weak mirroring are preserved by the geodesic restrigtiomoot:.

2) We take Definition 2.2 and restrict ourselvessté € S[m]. Sinceug < --- < u, =t < m, we
get thatu; € S[m| fori = 0,...,n; now fori < n we haveu; < u;11 < n(u;) andu;1 < m, from
which we derive thati; < u;11 < n(u;) Am = ny,(ui). Thusn,, is climbing.

3) If n is increasing, for everyg,y € L[m], z < y implies thatn(z) < n(y), and son,(z) =
n(z) Am < n(y) A m = n,(y); thusn,, is increasing.

4) If n) is extensive, for every € Lim] we haver < n(z), and asc < m, we getz < n(z) Am =
nm(z); thusn,, is extensive. (We can also remark tit< 7, so thatid,,, < 7,,).

5) If  is a closing, it is increasing, extensive and idempotent. Tfers increasing and extensive
by items 3 and 4; we have thus only to show that it is idempotent. For every L|m] we have
z < nm(xz) < n(z), and applying the increasing and idempotent operatir this inequality, we get
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n(z) < n(nm(z)) < nnz)) = n(z), thatisn(n,(z)) = n(z). The definition ofn,, : y — n(y) Am
gives then

N (Mm (2)) = N(Nm(2)) Am = n(z) Am = np(z)

that isn,, (nm(z)) = nm(x), and say,, is idempotent. It is thus a closing.
6) If n is a dilation,n distributes the supremum operation, andlas ISD, for every non-empty
family z; ( € Z) of elements of>.[m] we have:

NIm (VieI xz) = 77<ViEI xz) Am = (VieI 7](%)) ANm
= VieI(n(xi) /\m) = VieInm(wi) .

Thusn,, distributes non-empty suprema. Now the dilatippreserves the empty supremum=\/ ),
and we have then
(L) =n(L)Am=LAm=1,

that isn,,, preserves the empty supremum Thereforen,, is a dilation onL[m)]. O

Note that whem is anti-extensive, fox € L[m] we haven(z) < z < m, S0, (z) = n(z); in other
wordsn,, is the restriction of) to L[m]. In particular whem is an opening ord, its restriction,,, will
be an opening otl.[m)].

Although being an opening or a closing are preserved by geodesic restriction, note that idempotence
is generallynot a property preserved by geodesic restriction, even for an increasing operator. Take for
exampleL = P(Z), letY = {—1,0}, and define; by n(X) = 0 if X is empty or a singleton, while
n(X) =Y if X has at least two elements; clearlys increasing and idempotent; however for the mask
M ={0,1}, we haveny (M) = M NY = {0} andny (M NY) = (), son,, is not idempotent.

Forn,¢ € LY, everyr € Lim] gives(n{)m(z) = n¢(x) A m; if ¢ preserved.[m], that is¢(z) €
L[m] for z € L[m], thenn{(z) A m = n({(x)) A m = n,({(x)) = nm((z) and we have we have
(n)m = nm¢. However(n(),, is generally different from,,,(,,. Whenn is increasing, for: € L{m]
we haves,,, () = ¢(x) Am < C(x), S0n(Cm(x)) < (¢ (x)), and we getthen(m(z) = 1 (Cn(@)) =
N(Cm () Am < n(¢(z)) Am = n¢(z) Am = (n¢)m(x); thusnm¢m < (n¢)m. This inequality is in
general sharp.

Consider now a dilatioa on L. We will define fromd two operators otk.[m], and we will show that
when the complete latticg is ISD, these operators are both closings and dilations[or].

For the first operator, we first apply Lemma 2.15tcand obtain, the least closing ot which is
> §; we haved = Va2, 0t ands is also a dilation. Second, we take the geodesic restriétjpof 4 to
m:

S - Llm] — Lim] : & (\/ 5i(x)) Am (14)
=0

whered? is the identity on. By item 5 of Proposition 3.1, is a closing on.[m]. WhenL is ISD, we
have

bn(@) = \/ () (@)

1=0

where(§%),, () = &(z) A m, and by item 6 of Proposition 3.3,, is a dilation onL[m].
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For the second operator, we first take the geodesic restrigtioaf § to m, defined byd,,(z) =
d(z) A m for everyz € L[m]. Assuming that_ is ISD, by item 6 of Proposition 3.%,, is a dilation on
L[m]. Second, we apply Lemma 2.1dg,, and obtain,,, the least closing ofi[m]| which is> §,,, and

—

dm is also a dilation or.[m]; we have

—

Om : Llm] = Lim] : z — V(am)i(x) : (15)

where(d,,)° is the identity onL[m], andd,,(z) = §(z) A m for z € Lm].
These two closings are generally not equal:

Proposition 3.2. Let § be a dilation. The two operatobs, andé/\m on L[m] defined in (14,15), satisfy
the inequalityd,,, > &,,, andd,, is a closing. When the complete lattiéeis ISD, they are both closings
and dilations orl.[m)].

Proof:
We explained above (using Lemma 2.1 and items 5 and 6 of Proposition 3. 1), thst closing, and
that for L ISD, 4,, is also a closing, and both, ands,,, are dilations orL[m].

Sinced > §, we gets,,, > d,,, and we know thad,, is a closing or.[m]; the extenswlty ob,, gives
thens,,, > (6,,)°, while its idempotence give, > (5,,) for everyi > 0, so we geb,, > 5, O

In fact for L ISD, 4, andg,; are the greatest and least elements in a family of operatoigrah
which are both closings and dilations, each operator of this family takes the form

vor (V@) Am= V@)
=0

1=0

where1) is the identity, and for > 0, 1; is a composition (in any order) aftimes the dilationd
and any number of times the restriction— x A m, with the condition that fot,; > 0 we have
(Vi)m(¥j)m > (i+j)m. FoOr example we can take a fixed integer> 0, then definep; = (4,,)* for
i < nandy; = §"(5,,)" fori > n.

Note that this inequality,, > 5 is in general sharp. For example take= P(Z?), the lattice of
subsets of the digital plane; for a makk C Z?2, we haveL[M] = P(M). Letd be the translation by
one pixel to the left. Thed adds to a set’ C Z2 all pixels to the left ofY”. Now ) adds to a subset
of M all pixels of M which are to the left ofX, while §,, adds toX all pixelsp of M such that there is
a horizontal line segment included M, havingp as left end, and whose right end isXh We illustrate
this example in Figure 5. Note that for every 0, (6*),, is strictly greater thais,, )"

3.1. Geodesic reconstruction

The above example gives a practical indication that, although the first clégirdefined in (14) can

be interesting, it is the second closifig defined in (15) that really gives what one would expect from

a geodesic reconstruction, namely the propagation of the marker inside a connected component of the
mask.
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Let us give general criteria for geodesic reconstruction from a markeside a maskn. We assume
temporarily thatr < m; we will see later what to do when £ m. Writing p(m)(z) for this geodesic
reconstruction fronx insidem, we can state the following:

¢ the marker must be inside the magkm)(x) is defined forz < m;

the geodesic reconstruction contains the marker and is inside the mask(m)(z) < m;

¢ the geodesic reconstruction increases with the martket:y < m impliesp(m)(z) < p(m)(y);
¢ the geodesic reconstruction increases with the mask:n < m impliesp(n)(z) < p(m)(z);

e replacing the marker by the geodesic reconstruction leads to the same geodesic reconstruction:

p(m) (p(m)(z)) = p(m)(z);

e replacing the mask by the geodesic reconstruction leads to the same geodesic reconstruction:

p(p(m)(z)) (z) = p(m)(=).

This gives the following definition:

Definition 3.2. A geodesic reconstruction system L isa mapp : L — | L[m]"™ associating

to everym € L an operatop(m) : L[m] — L[m], such that:

meL

e for everym € L, p(m) is a closing onL[m];
e forz € L, p(-)(z) : L*[z] = L*[z] : m — p(m)(z) is an opening o.*[z].

In p(m)(z) (wherez € L[m]), one callsm the mask = the marker, andp(m)(z) the geodesic recon-
struction fromz insidem.

Note that sincep(m) is a closing onL[m], givenz,y € L[m| such thatr < y < p(m)(z), we
must haven(m)(y) = p(m)(z). Also, sincep(-)(x) is an opening orL*[z], for m,n € L*[z] such that
p(m)(z) < n < m, we havep(n)(z) = p(m)(x). In particular, ifz <y < p(m)(z) < n < m, then
p(m)(y) = p(m)(z) = p(n)(z) = p(n)(y).

We will see that the above two closings andgfn give indeed geodesic reconstruction systems:

Proposition 3.3. The following choices op(m) (m € L) give geodesic reconstruction systemslon
1. p(m) = ¢, for a closingy on L;
2. whenL is ISD, p(m) = 5, for a dilations on L, cfr. (15);

3. p(m) = 6,, for a dilations on L, cfr. (14).

Proof:
1) By item 5 of Proposition 3.1p,, is a closing onL[m| for everym € L. Forz < n < m we have
on(z) = () An < p(x) Am = @pn(z). If pn(z) <n < m,we get:

on(z) =@(x) An=p(x) AN(mAn)=(p(x) Am)An=pn(z) An=pn(x) .
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Thusn = ¢, (x) implies p,(x) = pn,(z), and so for a fixedr, ., (x) acts as an opening on the
argumentn.

2) By Proposition 3.25, isa closing on.[m] for everym € L.

Suppose that < n < m; for anyy € L[n| we haved,(y) = d(y) An < §(y) Am = dn(y).
We show by induction that we hayé, )!(z) < (6,,)"(x) for eachi > 0. Indeed this is obviously true
fori = 0, and if it is true fori > 0 we derive that it is true fof + 1: the inequalityd, (y) < dm(y)
with y = (3n)"(z) gives(8,) (z) = 6, ((6,)" () < 6 ((dn)'(2)); @S(0n)"(z) < ()" (z) anddy, is
an increasing operator aijm], we getd, ((6,)(z)) < m ((dm)'(z)) = (6m)"*(z); combining both
inequalities givegd, )”1( ) < (6m)" (). Hence by (15) we obtaiby, (z) < o (z).

Suppose now thaim(g:) < n < m. Foranyy < 6, (x), asd,, is a closing onL[m] which is> d,,,
we have

—~ o~~~ —~

dm(y) < 0m(y) < 5m(5m($)) =0m(r) <n
and asn < m, we get:

On(y) = 0(y) An=0d(y) A(mAn) = (0(y) Am) An = dm(y) An=om(y) -

Thus eachy < 3\( ) verifiesén(y) = 6, (y). Now for everyi > 0 we have(é,,)!(z) < 6Am(:z), so that
by induction we ge(6 Yi(x) = (6m) (). Hence by (15) we obtaiﬁ?,l(m) = S;(x). Thusn = 3,;(:15)
impliesé,, (z) = S (), and so for a fixed;, S (z) acts as an opening on the argument

3) By Lemma 2.1§ is a closing, so we apply item 1 with = §. O

A well-known case of geodesic reconstruction system is giveh ferP(Z?), and forX C M C E,
p(M)(X) is the union of all 4-connected components\éfhaving a nonvoid intersection witki. Here
p(M) is obtained according to item 2, by taking fbthe map which adds to a set its 4-neighbourhood.
The same holds with 8-connectivity and 8-neighbourhoods.

Remark 3.1. In the definition of a geodesic reconstruction system, the maskd the markex play
dual roles. More precisely, from the map: L — U,,c; L [m]*I™ we define the map* : L —
Umer, L*[m]* ‘™l by p*(x)(y) = p(y)(z), and therp is a geodesic reconstruction system (dn <)

iff p* is a geodesic reconstruction system on the dual latfice>). For p*, the dual marker (equal to
the mask forp) is above the dual mask (equal to the markerdprLet us illustrate this for the geodesic
reconstructions given in Proposition 3.3. We say that the laftisgnfinite infimum distributivéin brief,
[ID) if the binary join operatiorv distributes the infimum operatiofy, that is

Ve e L, Vy; € L (i €l), xv(/\yz>:/\(:p\/yl) .

el el

For an erosion, the least opening ¢ is the erosion
o0
The dual geodesic restriction ta of an operator) : L — L is is the operatof)™ : L*[m] — L*[m)]

defined by)™ (z) = v(z) vV m for everyz € L*[m]. The dual version of Proposition 3.3 states thus that
the following choices op(m)(z) (m € L, z € L[m]) give geodesic reconstruction systems/on

ld Ae)’

||>8
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1. p(m)(z) = ~v*(m) = vy(m) V z, for an openingy on L;
2. whenL is ISD, p(m)(x) = % (m) for an erosiore on L;
3. p(m)(xz) = £€%(m) for an erosiore on L.
The second case corresponds to the classical geodesic reconstruction by erosion.

We will now extend eaclp(m) to an operatof. — L[m]. This can be done in two ways. For every
m € L we define theminorationmapu,, : L — L][m]| by setting for each: € L:

z ifz <m,
lf'm(w):{ L ifz £m. (16)

The other mag. — L[m] that we consider is thmeetmapz — = A m. Note that form # T, L, up, IS
not increasing; on the other hand the meet map is always increasing, andvigE8D, it is a dilation.
Also, both maps induce the identity drm], and only on it: forz € L we have:

r€Lm] <= upm(z) =2 <= zAm=uz .

Finally, we always have,,(z) < z A m.
We can thus consider the following extensiondtof the geodesic reconstruction inside a marker
m: theminoration geodesic reconstruction

: . _ ) op(m)(z) ifz<m,
pu(m) L= Lm] & = p(m) (7)) = { L) oz )
and themeet geodesic reconstruction
pa(m): L — Lim] : z — p(m)(z Am) . (18)

When restricted ta: € L{m], bothp, (m) andp,(m) coincide withp(m). Note also that since the meet
mapz — x A m andp(m) are increasingp,(m) is increasing. Wherl. is ISD andp(m) = 5, for

a dilationd on L (cfr. item 3 of Proposition 3.3)p,(m) will be a dilation. Finally, since every € L
satisfiegu, (z) < z A'm, andp(m) is increasing, we havg,(m) < pa(m).

Althoughp,(m) andp,(m) are defined as mags — L[m/], they can more generally be considered
as operatord, — L, and from this point of view they are idempotent. Indeed, singen)(z) €
Llm], we havep, (m)(pu(m)(x)) = p(m)(p,(m)(@)) = p(m)(p(m)(um () = p(m)(um (@) =
pu(m)(z), thanks to the idempotence of pfm); a similar argument holds fqr, (m).

We illustrate in Figure 6 these two mappings in the case whereP(Z?), and forX C M C E,
p(M)(X) is the union of all 4-connected components\éthaving a nonvoid intersection with .

An interesting fact is that both, () andp, (m) lead to geodesic openings @n

Theorem 3.1. Let p be a geodesic reconstruction system/orior a fixedr € L, the two operators on
L

Yo i m = pu(m)(z) (29)
and
Ve 2 M pa(m)(z) (20)
are openings, and we hayg < ..
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M M
X
a) X X
b) N o
M M Y
C) Y
d) T -

Figure 6. L = P(Z*) and forX C M C E, p(M)(X) is the union of all 4-connected componentsidf
intersectingX . a) X (hatched) not contained i¥ (in grey). b)pa(m)(X) = pa (X N M) (in light grey) consists
of all 4-connected components 8f intersectingX, while p,,(m)(X) is empty. )Y (hatched) contained if/

(in grey). d)p,(m)(Y) = pa(m)(Y") = p(M)(Y) (in light grey) consists of all 4-connected component3bf
intersectingy”.
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Proof:
By the definitions (17,18) of,(m) andpx(m), we havey,(m) = p,(m)(z) = p(m)(um(x)) € Lim]
andy.(m) = pa(m)(z) = p(m)(z A m) € Lim]; thus~,(m) < m andv,(m) < m, hencey, and+,,
are anti-extensive.

Let us now show tha,, and~., are increasing. Let < m; by Definition 3.2, every € L[n] gives
p(n)(y) < p(m)(y). Forvy, we have three cases:

e z <n.Thenz < m,soby (17) we have,(n) = p,(n)(z) = p(n)(z) andy,(m) = p,(m)(z) =
p(m)(z). AS € L[nl, p(n)(z) < p(m)(z), S07(n) < 7a(m).

p(n)(L) while vz (m) = p,(m)(z)
(m) is increasing orL[m], we have

e 1 £ nbutz < m. Here (17) givesy,(n) = pu(n)(x
p(m)(z). Now asl € L[n], p(n)(L) < p(m )l
p(m)(L) < p(m)(x); hencex,(n) = p(n)(1) <

ez £ m. Thenz £ n and here (17) gives,(n) = pu(n)(z) = p(n)(L) andy,y(m) =
pu(m)(@) = p(m)(L). ButasL € Lfn], p(n)(L) < p(m)(L), and soy, (n) < 7o(m).

Thus in all three cases < m givesy,(n) < v,(m), that isy, is increasing.

On the other hand (18) giveg (n) = pa(n)(z) = p(n)(zAn) and similarlyy..(m) = p(m)(zAm).
Asz An € Lin], we havep(n)(z An) < p(m)(z An); sincez An < z Am andp(m) is increasing on
Lim], p(m)(z An) < p(m)(xz Am). Therefore we get’.(n) = p(n)(z An) < p(m)(z Am) = ~v5(m),
and hence/, is increasing.

Let us now prove the idempotence of. Form € L, we setn = v,(m), and we must show that
n = 7v,(n). Note thatn < m, becausey, is anti-extensive. We have two cases:

o z < m. Heren = y,(m) = pu,(m)(z) = p(m)(x). As p(m) is extensive on.[m], we have
z < p(m)(x) = n; theny(n) = pu(n)(z) = p(n)(z). Asz < p(m)(z) = n < m, by
Definition 3.2 we have(m)(z) = p(n)(z); hencey,(n) = n.

o & £ m;thenz £ n. Heren = y,(m) = pu(m)(z) = p(m)(L), andy,(n) = p,(n)(z) =
p(n)(L). As L < p(m)(L) = n < m, by Definition 3.2 we have(m)(L) = p(n)(L); hence

Yz(n) = n.

Therefore in both cases the equaltity(n) = n holds forn = ~,(m), and soy, is idempotent.

We now prove thaty, is idempotent. Similarly as above, we takee L, setn = . (m), and we
must show that = +..(n). By the anti-extensivity of/, we haven < m. Here (18) gives = . (m) =
pa(m)(z) = p(m)(z A m). As p(m) is extensive orl[m|, we haver A m < p(m)(x A m) = n, and
asn < m, we getz An = z A m. Hencevy.(n) = pa(n)(z) = p(n)(z An) = p(n)(z Am). As
z Am < p(m)(z Am) =n < m, by Definition 3.2 we have(m)(z A m) = p(n)(z A m). Therefore
n = p(m)(z Am) = p(n)(z Am) = y,(n).

Being anti-extensive, increasing and idempoteptand~. are openings. Also fom € L, since
everyz € L satisfiequ,, (z) < x A'm, andp(m) is increasing, we have

Yo(m) = pu(m) (@) = p(m)(pm(x)) < p(m)(@ Am) = pa(m)(z) = v, (m) ,

so thaty, < .. |
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Note that by (17,18), for. < m, v,(m) = p(m)(z) = v.(m), while for z £ m, we havey,(m) =
p(m)(L) = ~yL(m), butal(m) = p(m)(z A m) = Yorm(m) = Yapm(m).

Forz € L, we will call v, theminoration geodesic openirfgr z, and~,, themeet geodesic opening
for z. We will see in the next subsection that under certain circumstances the minoration geodesic
opening can lead to a connection.

3.2. Connection from geodesic openings

We will give here the axioms for connectivity on a complete latticevith a sup-generating family,

then show how such a connectivity can arise from the minoration geodesic openings when the closings
of the geodesic reconstruction system are strongly symmetric and prelsetivis will in particular be

the case when these closings arise from weakly symmetrical climbing dilations.

After we wrote the first version of this paper in 1999, Braga-Neto and Goutsias obtained indepen-
dently (see [5], especially its Section Ill) some results on the relation between connection and geodesic
reconstruction similar to some of ours in this section. However their point of view is different from ours:
they start with connections, and characterize related geodesic reconstructions, while we start from a geo-
desic reconstruction system and see whether it leads to a connection. Hence their exposition is different
from ours, and in some cases ours is more detailed. Whenever there is such a similarity, we will indicate
before the statement of our result which one of Braga-Neto and Goutsias is related to it, and if necessary,
we will briefly discuss the differences.

Connectivity on complete lattices was studied in [17], and we will consider the variant of it with
“canonic markers” (the sup-generating fam#y, which was briefly dealt with in Section 2.3 of that
paper. Indeed this variant follows more closely the set-theoretical version investigated previously in
[16], but most of all it allows to express more clearly the bijection between connections and systems of
connectivity openings. We recall here the two equivalent axiomatics for this type of connectivity. The
first one is, according to [17]:

Definition 3.3. Given a complete latticé with sup-generating familys, a connectionon L is a class
C € P(L) satisfying the following three conditions:

1. LedC;

2. SCC,

3. givenX C C suchthat\ X # L, we have\/ X € C.
The family of connections o# is writtenC(L).

The family C(L) of connections orl. is ordered by inclusion, and closed under intersection; the
greatest connection iE. It follows that to everyP C L corresponds theonnection generated by,
which is the least connection dncontainingP, and we write itC'(P); furthermoreC(L) is a complete
lattice for the ordering by inclusion: a family of connectiafis(: € I) has as infimum its intersection
M;cr Ci and as supremum the connection generated by its uﬁi(:@,iel C’i).

While the above set of axioms describes the family of “connected objecfs tle second axiomat-
ics explicits the notion of “connected component” of an object containing a marker. We adopt the version
given in Section 2.3 of [17], where the markers are restrictest to
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Definition 3.4. Given a complete lattic& with sup-generating family, a system of connection open-
ingson L is a mapS — L’ associating to every € S an openingy,, such that for every,t € S and
x € L we have:

4. v4(s) = s;
5. %s(z) Ay(z) # L = 7s(x) = ne(2);
6. s = v(x) = L.
The family of systems of connection openingsiois writtenT'(L).

Let us give some consequences of these axioms. For everyg, by item 4 and the fact thay; is
increasing, fos < x we haves = v5(s) < vs(z); combining with item 6, this gives:

Vs(r) # L = s<z <= s<(z) . (21)

Now fort¢ € S, if t < v5(x), by the anti-extensivity of; we havet < z, so thatt < ~,(x), and item 5
gives theny,(z) = ~;(z); in other words

Vte Slys(z)],  mlz) =s(2) . (22)

The family'(L) of systems of connection openings brcan be ordered as follows: given two such
systemsy; and«. (s € S), we write(ys, s € S) < (v, s € S) iff for eachs € S we havey, < 4.
Then the greatest system of connection openings is given by setting:

if s <
Vse S, z €L, vs(z) = v !8_36’
1 ifsLux.

The equivalence between the above two concepts was incompletely analysed in [17]. Another version
of itis given in Theorem 3.1 of [5]. We give here a more precise statement of this equivalence. The proof
is relatively straightforward, but nevertheless interesting for its logical clarity.

Proposition 3.4. There is a bijection between the famiyL) of connections ori and the familyl’(L)
of systems of connection openings 6n A connectionC' and the corresponding system of connection
openingsys, s € S, define each other by the following two equivalent relations:

e Forz € Lands € S, vs(z) = V{c € C | s < ¢ <z} inother wordsy,(z) = L if s £ z, while
for s < zitis the greatest € C such thats < ¢ < .

o C={vy(x)|s€S, zeL}

Furthermore, this bijection preserves ordering, and so it is an isomorphism between the partially ordered
sets(C(L),C) and(T'(L), <), in particularT'(L) is a complete lattice.

Proof:
We have to show that i€/ is the mapC(L) — T'(L) building 7, s € S, from C, and K is the map
I'(L) — C(L) building C from ~,, s € S, then:
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a) for everyC € C(L), G(C) € I'(L);

b) for every(v,, s € S) € T'(L), K(vs, s € S) € C(L);

c) foreveryC € C(L), C = K(G(C));

d) for every(ys, s € S) € T'(L), (75, s € §) = G(K (75, s € S));

e) foreveryC,C’' € C(L),C C ' = G(C) < G(C");

f) for every (vs, s € S), (7., s € S) € (L), (75, s € S) < (7}, s € S) = K(ys, s €85) C
K(v., s €8).

a) For a connectioty, G(C) is given by setting for every € S andz € L: y5(z) = \/{c € C | s <
¢ < z}. Clearlyys(z) = \/ 0 = L for s £ x; thus axiom 6 holds. On the other hand foK z, the set
{c € C'| s < ¢ < z}is not empty, since it contains and by axiom 3 its supremum belongsothus
vs(z) € C and obviouslys < v,(z) < x; thereforey,(z) is the greatest € C such thats < ¢ < z. In
particular,ys(z) € C forall s € S andz € L.

Obviouslyy,(z) < x, and forz < y, the set ok € C with s < ¢ < z isincluded in the setof € C
with s < ¢ < y, so we havey,(z) < v;(y). Fors £ = we havey,;(z) = L, so thatys(y,(z)) = L also;
on the other hand for < z, asvy;(z) € C ands < v4(x), we getys(vs(z)) = vs(x). Thereforeys is an
opening.

Fors € S, ass € C, we gety;(s) = s, so axiom 4 holds. Gives ¢t € S such thaty(x) Ay (z) # L,
we havey,(z),v(z) € C, so axiom 3 givesys(z) V v (z) € C, and ass < v4(x) V y(z) < x and
vs(x) is the greatest element 6f betweens andz, we must havey;(z) V y.(z) = vs(z), in other
wordsy,(z) < vs(x); we obtain similarlyy,(z) < v(x), so the equalityys(z) = 7;(z) follows, that is
axiom 5 holds. Henc€&'(C) € I'(L).

b) Letys, s € S be a system of connection openings, anddet K(vs, s € S) = {vs(z) | s €
S, x € L}. Fors € S, asv; is anti-extensive, we have (L) = L, soL € C, andC verifies axiom 1.
Now axiom 4 givesys(s) = s, so thats € C, andC satisfies axiom 2. Finally, tak& C C such that
AX # L; lets € S such thats < A X. Givenc € X, we havec = v,(z) for somet € S andz € L;
by (22),c = vs(x). As~, is an opening, the family of al};(z), z € L, is sup-closed (see [13]); as each
¢ € X belongs to that family, so doég X, and we have somg € L with \/ X = ~4(y). Therefore
\V X € C, andC verifies axiom 3. We have thus shown tiiat= K (s, s € S) € C(L).

c) LetC € C(L) andC’ = K(G(C)); we show thatC' = C'. Forc € C ands € S|c|, we have
¢ = vs(c), soc € C'; henceC C C'. Lety € C', we havey = ~,(z) for somez € L ands € S, and
vs(z) € C, as explained at the end of the first paragraph of a); héticé C. The equalityC' = C’
follows from the double inclusion.

d) Take(v,, s € S) € I'(L), and let(v., s € §) = G(K(vs, s € S)); we show that both systems
of connection openings are equal, thayjs= . for everys € S. For everys € S andx € L we have:

Yo(z) = \/{n) [t €S, y € L, ands < y(y) < z} .

If s £ z, then clearlyy!(z) = \/ 0 = L = 4(z). Suppose now that < z. For any suchy,(y) between
s andz, (22) givesy,(y) = vs(y), and asy;(y) < = andv; is an opening, we get;(y) = vs(vs(y)) <
vs(z); thusy:(y) < vs(z). On the other hand < v(z) < z, so we have shown that(z) is the
greatesty;(y) such thats < v;(y) < z, and hencey,(z) = vs(z).

e)lfC C C' thenfors € Sandz € L,{ce C | s<c <z} C{ce ' |s<c<z}, sothat
vs(z) < yL(z) for G(C) = (vs, s € S)andG(C') = (7., s € S), that isG(C) < G(C").

f) Let (vs, s € S) < (v, s € S); thusys < 4. for eachs € S, and by [13] we have/.ys = ;.
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Any element ofK (vy,, s € S) takes the formy,(z) for somes € S andz € L; now~(z) = vivs(z) =
v (vs(x)), and so it is also an element &f(v., s € S). ThereforeK (s, s € S) C K(v., s € S).

As the partially ordered set€ (L), C) and(T'(L), <) are isomorphic, anC(L), C) is a complete
lattice, (I'(L), <) is also a complete lattice. O

The form of connectivity given in Definition 3.4 allows us to obtain a connection from the openings
v, defined in Theorem 3.1, and whénis ISD, to obtain in this way every connection.

Definition 3.5. The geodesic reconstruction systgrfon L) is calledconnectingf for all m € L, p(m)
is strongly symmetrical and fam # T, p(m)(L) = L. Write G(L) for the family of connecting
geodesic reconstruction systemsian

Our next result is similar to Theorem 3.3 of [5]. However, given the difference of point of view, there
are some differences between the two, which will be detailed after the proof. Also our statement is more
precise:

Theorem 3.2. The construction of,, s € S, according to (17,19), gives a map from the fangiff.) of
connecting geodesic reconstruction systemd. @o the familyI’(L) of systems of connection openings
on L, and whenL is ISD, this map is surjective. More precisely:

1. Letp be a geodesic reconstruction system/onThe openingsy,, s € S, defined according to
(17,19), namely

Vse S, ¥meL,  vs(m)=pu(m)(s) = p(m)(pm(s)) , (23)

constitute a system of connection openingdgif and only if p is connecting. We have then

p(m)(s) if s <m,

1L ifsgLm. (24)

Vs e S, Vm € L, vs(m) = {

2. Assume thaL is ISD. Lety,, s € S, be a system of connection openingslgrand define the map
piL = Uner L[m]L[m} by
p(m)(x) = \/ 7s(m) . (25)

s€Sx]

Thenp is a connecting geodesic reconstruction systenh,gin( T)(L) = L, and (23) holds.

Proof:
1) Letp be a geodesic reconstruction system/gmnd lety,, s € S be given by(23).

We know from Theorem 3.1 that thg are openings. Let us show that they always verify axiom 4 of
Definition 3.4: ass < s, we havey,(s) = p(s)(s), and ag(s) is an extensive operator dijs], we have
s < p(s)(s) € L[s], thatisy,(s) = p(s)(s) = s.

In order for they,, s € S, to constitute a system of connection openings, we need to verify axioms 5
and 6; we show that they hold iffis connecting, that is for every. € L, p(m) is strongly symmetrical
and form # T, p(m)(L) = L.
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a) Suppose that for every € L, p(m) is strongly symmetrical and for. # T, p(m)(L) = L. We
show axioms 5 and 6, as well as (24).

Note that (17,19) givess(m) = p(m)(s) if s < m, and~ys(m) = p(m)(L) for s £ m; however for
s £ m we must haven # T, and we assume here thatn)(L) = L, we get theny;(m) = L, so that
(24) holds in this case.

Letm € L ands,t € S such thaty;(m) A y:(m) # L. In particular we havey(m),y.(m) # L,
so by (24) we have,t < m, and alsoys;(m) = p(m)(s) andvy;(m) = p(m)(t). Taker € S[ys(m) A
v:(m)]. We haver < v4(m) = p(m)(s) andr < v(m) = p(m)(t), and as(m) is strongly symmetri-
cal, we gets, t < p(m)(r). As p(m) is increasing and idempotent drym/|, the four inequalities

r<pm)(s), r<pm)(t), s <plm)r), t<pm)(r)

imply that
p(m)(r) < p(m)(p(m)(s)) = p(m)(s) ,
p(m)(r) < p(m)(p(m)(t)) = p(m)(t) ,
p(m)(s) < p(m)(p(m)(r)) = p(m)(r),
and  p(m)(t) < p(m)(p(m)(r)) = p(m)(r) ,

in other wordsp(m) (r) = p(m)(s) = p(m)(t). Hencey,(m) = p(m)(s) = p(m)(t) = 7(m). We
have thus shown that axiom 5 is verified.

Givenm € L ands € S, if s £ m, theny,(m) = L by (24), so that axiom 6 holds.

b) Suppose that axioms 5 and 6 hold. We show that for eveey L, p(m) is strongly symmetrical
and form # T, p(m)(L) = L.

Letm € L ands,t € S[m]| such thats < p(m)(t). Ass,t < m, (23) givesys(m) = p(m)(s) and
ye(m) = p(m)(t). Sos < y(m), and by (22) we have,(m) = v.(m); hencep(m)(s) = p(m)(t),
and ag < p(m)(t) by the extensivity ofp(m), we deduce that < p(m)(s). Hencep(m) is strongly
symmetrical.

If m # T, then there is € S such thats £ m. By axiom 6, we havey;(m) = L; by (23) we have
vs(m) = p(m)(L); combining both, we get(m)(L) = L.

2) Let,, s € S, be a system of connection openings, anclee defined by (25). We show first
that p satisfies the requirements of Definition 3.2, next #at)(L) = L for all m € L (in particular
for m = T), and finally that (23) holds. Then it will follow from item 1 that for every € L, p(m) is
strongly symmetrical. Hengewill be a connecting geodesic reconstruction system.

Letm € L andz € L[m]. Fors € S[z], asv; is anti-extensivey;(m) < m, and ass < x < m, by
(21) we haves < «(m); we deduce that

x:\/S[m]g \/ vs(m) <m ,
s€Sx]

that isz < p(m)(z) € L[m]. Hencep(m) is an extensive operator dijm].
Giveny € L[m] such that: <y, S[z] C S[y], so that

pm)(@) = \/ 7s(m) < \/ 7s(m) =p(m)(y) ,

s€S[x] s€S[y]

that isp(m) is increasing.
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Lett € S[p(m)(x)]; by (25) we have < \/ g, 75(m). By ISD we get

t=tn \/ vm)=\/ (tAv(m) ,

seS[z] seS[z]

from which we deduce that there is somiec S|[x] such that A~y (m) # L. There is thus somié € S[t]
such that’ < v, (m). Ast < m, (21) givest < y,(m); sincet’ < ¢ < v(m) andt’ < g (m), axiom 5
implies thaty,(m) = vy (m). Therefore every € S[p(m)(x)] verifiesy;,(m) < Vg, vs(m), so that

pm)(pm) (@) = \/  mm) <\ 7s(m) = p(m)(z) ;

tes [p(m)(x)] s€Sz]

as p(m) is extensive, we have the reverse inequafifyn)(z) < p(m)(p(m)(z)), and the equality
follows. Hencep(m) is idempotent.

Suppose now that < n < m. For everys € S[z], as;s is increasing, we haves(n) < ,(m), and
we deduce that

pin) (@)= \/ 7)< \/ v(m) =p(m)(z) .
s€Sx] s€S[z]

Suppose finally that < p(m)(z) < n < m. By (25), for everys € S[z], vs(m) < p(m)(z), so that
vs(m) < mn < m. AS -, is increasing and idempotent, we gei{n) = vs(m); as this holds for all
s € S[z], by (25) we deduce that(n)(z) = p(m)(x).

We have thus shown thatis a geodesic reconstruction system on Now we show that for all
m € L, p(m)(L) = L;indeed

pm)(L) = \/ v(m)=\/0=1L.

seS[L]

Let us finally show that (23) holds, that is, for everye S andm € L, vs(m) = p(m)(um(s)).
Suppose first that < m. Fort € S[s], t < s < m, so by (21,22);;(m) = ~s(m). Hence

p(m) (pm(s)) = p(m)(s) = \/ w(m) = ~5(m) .

teS[s]

Suppose next that £ m. Then by axiom 6y,(m) = L, and (17) givep(m)(um(s)) = p(m)(L) = L;
thusp(m) (pm (s)) = vs(m).

As p is a geodesic reconstruction systemomnd (23) holds, it follows from item 1 that(m) is
strongly symmetrical for every: € L. O

Note that this surjectiod (L) — I'(L) is not always a bijection. Indeed the system of connection
openingsys, s € S, determines the value @fim)(s) for m € L ands € S[m] (namely,p(m)(s) =
vs(m)), but the values op(m)(z) for x € Lim] \ S are not determined. Take for examgle= P(E)
with a connectiorC such thatF has at least 3 connected componentsGowve definey’ as follows:

Upex w(M) if3Y €C, X CY,

VMCEYXCM, pM)(X)= { M otherwise
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In other wordsp’(M)(X) is as in (25) ifX lies in a connected componentBf but it givesM otherwise.
Theny' is a geodesic reconstruction system which gives through (23) the conné€ttias does the
geodesic reconstruction systendefined in (25); this happens becayse\M )(p) = p(M)(p) for any
point p. Howeverp' # p; indeed takingX = E; U E, for two connected components; and F, of E,
we havey' (E)(X) = E, butp(E)(X) = X.

Remark 3.2. Theorem 3.3 of [5] is restricted to the case whatie ISD (which we assumed only for the
surjectivity in item 2). Moreover, they consider a restricted class of connecting geodesic reconstruction
systems. Indeed, they assume (under another terminology) a geodesic reconstructiop systethat

for all m € L, p(m) is strongly symmetrical, and for everyc L we have

p(m) (@) = \/ p(m)(s) . (26)

s€Sx]

Clearly this implies thap(m)(L) = L for all m € L, sop is connecting. Note that this equation is
satisfied wherp(m) is a dilation. WriteG*(L) for the family of connecting geodesic reconstruction
systems orl, which satisfy (26). As Braga-Neto pointed out to us in a private communication, we have
then a bijection betwee@* (L) — I'(L) given by (23,24), whose inverse is given by (25). This bijection
implies thatG* (L) has the same the lattice-theoretical structur€ds).

A consequence of the above theorem is that we get a connection from the geodesic restriction of a
strongly symmetrical closing, or of a climbing weakly symmetrical dilation:

Theorem 3.3. The,, s € S, given in (23) constitute a system of connection openingd.dar the
following choices ofp(m), m € L:

1. p(m) = ¢n, for a strongly symmetrical closing on L satisfyingp(L) = L;
2. whenL is ISD, p(m) = 5; for a climbing weakly symmetrical dilatiofion L;

3. whenL is ISD, p(m) = om for a climbing weakly symmetrical dilatiofion L.

Proof:

By Proposition 3.3, all three choices pfm) constitute a geodesic reconstruction systemZonlf
¢(L) = L, then for eachn € L we havep(m)(L) = ¢, (L) = ¢(L) Am = L. Asd is a dilation,d
is also a dilation by Lemma 2.1, $¢L) = L, and hencé,, (L) = (L) Am = L. WhenL is ISD, by
Proposition 3.3, is a dilation onL[m], so that we havéAm(L) =1.

If ¢ is strongly symmetrical, then by item 1 of Proposition 3¢, is also strongly symmetrical.
Assume now that is ISD. If 4 is climbing and weakly symmetrical, then by Theorem 2.1 strongly
symmetrical. By item 1 of Proposition 3.1,, is also strongly symmetrical. Furthermore by items 1
and 2 of Proposition 3.1, is also climbing and weakly symmetrical; by Theorem 2,1,is strongly
symmetrical.

Hence all three choices @f(m) give p(m)(L) = L andp(m) strongly symmetrical. Applying
Theorem 3.2, the;, s € S, constitute a system of connection openingd.on |
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Note that when the elements Sfare not all atoms, we cannot obtain a connection by usingee
(20)) instead ofy,, because axiom 6 in Definition 3.4 will not hold. Indeed §af .S not an atom, there is
m € L such thats £ m ands Am # L; then by (18,20) we have,(m) = p(m)(s Am) > sAm > L,
contradicting axiom 6. On the other hand, for every atomve have alway$:,,(a) = a A m for all
m € L, so thaty, = +/; if all elements ofS are atoms, we have thys = v/ for all s € S.

Note also that the dual geodesic reconstruction systems given in Remark 3.1, in pastieular) =
v(m) V z for an openingy, do not lead to connections.

WhenL is ISD, asd,, > o by Proposition 3.2, the connected componweitin) of m containings
will be larger withd,,, than Withg,;. In other words, the connection correspondin@/,ioNill be a subset
of that corresponding té,,. Similarly, if we have a family of dilationg[\] depending on a parameter
A, such that[)] increases with\, thené[/A]\m will increase with), and the same holds fé‘fk]m, so that
the corresponding connection will also increase within particular the connection openings, with

—

varying parametek, corresponding to the geodesic dilatiafs], , will form a granulometry

For example withl, = P(Z?), taking for each integen > 0, 6[n] to be the dilation by thé2n +
1) x (2n + 1)-square centered about the origin (in other words, the set of pixels at 8-distance at most
n from the origin), clearly§[n] is strongly symmetrical and climbing, and it increases witthere the
connection built from the geodesic dilatioﬁg]\M for all masksM C Z2, is made of the following
“connected”sets: alk C Z? such that for every, y € X there is a sequence= z, ..., z, = y with
x; at 8-distance at mostfrom x; 4 fori = 0,...,r — 1. Obviously this connection increases with

4. Examples

We will describe here several examples of connections corresponding to the connection opgnings
arising from a connecting geodesic reconstruction system according to (23).
The most interesting case is when the geodesic reconstruction system is given oy 5; for a
climbing weakly symmetrical dilation on L, following item 2 of Theorem 3.3. Here the lattiédemust
be ISD. This will be illustrated in Subsection 4.1 by examples with binary, grey-level, and colour images.
Non-ISD lattices, especially partitions, will be considered in Subsection 4.2. There we will also
briefly discuss flat zones and connected operators for grey-level images; we will explain that these con-
cepts do not correspond to a connection on the lattice of grey-level images, because they rely on a
non-climbing dilation for the geodesic reconstruction. However the “object oriented” approach of Agnus
[1, 2], breaking the numerical order on grey-levels and considering them simply as labels, could lead to
a connection consisting of all flat zones, which can be obtained by geodesic reconstruction.

4.1. Sets, numerical and multivalued functions

A straightforward case is taking = P(FE) for a setE. Here the notions of strong and weak symmetry

of an operator are equivalent; so we will simply say that an operator is (or is not) symmetrical. Also an
increasing operator is climbing iff it is extensive. Suppose that we have a symmetrical relatiof’,

which we calladjacency(see [14] for more details); we define the dilatidadding to a seX all points

which are adjacent to a point of

I(X)=XU{yeE|Tze X, z~y} .
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Figure 7. Partial map of the city of Nice.

Then, given a mask/ C E, for any markerX C M, @[(X) is the union of all connected components
of M having a non-empty intersection wifi; here the connectivity obtained frofr;a\{ is the one arising
from the adjacency relatior in the graph-theoretical sense.

Generally one considerE = Z" or R". In the last example of the previous section, we have
considered a dilation by a structuring element which is connected in some usual sense. But our results
do not require such an assumption. For instance, taking: Z2, the dilation byany symmetrical
structuring element containing the origin is symmetrical and extensive (thus, climbing); hence it leads to
a connection. We illustrate this point by an example. From a city map of Nice, in France (Figure 7), one
would like to extract the alignments

e of a certain thickness,

¢ of houses from a given distandeapart (a characteristic of the type of settlement),
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Figure 8. Alignments in the main direction extracted from Figure 7.

e and in the main direction: of the zone investigated.

The second condition on distance is fulfilled by taking a structuring elel@enade of a triplet of small
discs fromd apart, and the third requirement by orienting the triplet in directioihe origin is located

at the central point of3, which makes the dilation b 65 : P(Z?) — P(Z?) : X — X ® B extensive
and symmetrical.

Building connected components with the connectivity openings defined in (23), where the geodesic
reconstruction arises from the geodesic dilation as indicated in item 3 of Theorem 3.3, we obtain the
image shown in Figure 8, which shows the actual alignments. From Theorem 3.3 it follows that a con-
nection has been generated, i.e., that the alignnsagismenthe set under study. A final reconstruction
after erosion of size has eliminated the narrow components, fulfilling thus the first condition.

Take nowFE to be a metric space, with distanéeFor anyr > 0 andz € E, we defineB,(z), the
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closed ball of radius- centered about, by
By(r) ={y € E |d(z,y) <7} ;

then thedilation of radiusr is the map), : P(E) — P(E) defined by

5(X) = |J Br(2) .

zeX

Note thatd,.({z}) = B,(x); as the distance is symmetrical (thatd&z,y) = d(y,z)), the dilation

0, is symmetrical (recall that for sets, strong and weak symmetry are equivalent)j,. atsextensive,

thus climbing. The connectio@’,. built from the geodesic restriction @f. consists of all--connected

sets; here we say thaf C E is r-connected if for every:,y € X, there exists an integer > 0 and

a sequencey, ..., x,, such thatey = z, z, = y, andd(z;,z;11) < rforall0 < i < n—1. For

r = 0, C, consists only of singletons and the empty set; thus we restrict ourselves to the ca8e

The intersection),., C; is a connection, whose members are the so-caileli+linked sets (a set is
well-linked iff it is r-connected for every > 0, see [6], Chapter 1, Section 19). How does this compare
with connectedness in the usual topological sense, where a set is connected iff it cannot be partitioned
by its intersection with two open sets? We have the following:

Proposition 4.1. Every (topologically) connected subsetiofs well-linked. Every compact well-linked
set is connected.

Proof:
Let X be a connected subset Bf We show that for every > 0, X is r-connected. This is obvious
for X = (), so we assum& # (). Indeed, letX; be a non-void--connected component &f, and let
X9 = X \ X3; X, is the union of all other-connected components &f. Forz € X, everyy € X
such thatd(z,y) < r must be in the same-connected component of asz. Hence forz € X,
B,(z)NX C X1, soX; is open in the topology oX; similarly all otherr-connected components &f
are open inX, so X is open in the topology oX. As X, being connected, cannot be partitioned into
two sets which are open for the topology &nwe haveX, = () andX; = X, thatis,X is r-connected.
Beingr-connected for alt > 0, X is well-linked.

Let X be a compact well-linked subset &f. If X = (), obviously X is connected, so we assume
X # (). Suppose thaX is not connected; there is thus sotkie C X and X, = X \ X; which are both
non-void and open for the topology of. By complementarity, they are closed for the topology’on
and asX is compact inF, X; andX, are compact subsets af Forr > 0, asX is well-linked, there is
a sequencey, . . ., z, such thatey € Xy, xz,, € Xy, andd(x;, z;41) < rforall 0 <i < n — 1; taking
the largest such thatz; € X;, we haver;;; € X, andd(z;, z;+1) < r. Henced(X;, Xy) < r for
everyr > 0, so thatd(X;, X) = 0, and asX; and X, are compact irF, this means thak; N X, # 0,
a contradiction. Hence our supposition is false, &hthust be connected. O

Note that without the compactness assumption, a well-linked set can be disconned@&d(wiith
the Euclidean metric), the séf of points(z,y) such thatr # 0 # y (X consists ofR? minus thex
andy axes) is well-linked, but not connected; its connected components are the four quadrants enclosed
by thez andy axes, and they are at distartéom each other. Another example is given by the closed
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set X consisting of all pointgx, y) such that: > 0 and|y| > 1/z; it has two connected components
(given by the inequationg > 1/z andy < —1/x respectively) at distancé from each other, so it is
well-linked.

Let us now discuss the generality of our approach to the construction of a connection from geodesic
operations. Following Theorem 3.3 we built connected components with a reconstruction from a dilation
§. Indeed, the strong symmetry of, and é,, follows from the fact that the family of strongly (or
weakly) symmetrical dilations is power-closed, as shown in Corollary 2.1; this result relies on item 3
of Proposition 2.1. Would it be possible to obtain a similar result by starting from an extensive and
increasing operator which is not a dilation? The answer is negative, we give an exar®gé’inwith
a symmetrical increasing and extensive operagtauch thaty” for n > 1 and¢) = V2,4 are not
symmetrical; the same will be true @fy, and@ for a maskM. Thus item 3 of Proposition 2.1
and Corollary 2.1 require indeed the assumption that we have a dilation, and Theorem 3.3 requires also
dilations for the connection from geodesic reconstruction.

We consider subsets @?. Let the structuring element4 and B consist of the origin and its left
and right neighbours, witlB containing in addition the top neighbour of the origin (see Figure 9.a). We
define the operatap onP(Z?) as follows: forX C Z? we have

B(X) = { XA if x| <1,

XoeB if | X|>1,
in other wordsy () = 0, ¢({p}) = A, for a pointp € Z?, while )(X) = X & B for a setX C
Z? containing at least two points. Since bathand B contain the origing/ is extensive; as) uses
Minkowski addition with a structuring elementi(or B) which increases with the sap, is increasing;
finally ¢ is symmetrical because the structuring eleméns symmetrical: forp,q € Z?, we have
p € Ay < q € A,. Forevery integen, > 0, let us writen 3 for the Minkowski sum of53 takenn
times; in other wordd B = B andnB = B @ (n — 1) B for n > 1. Itis easily seen by induction that
4™ verifies for everyX C Z2:

P = { X@de@m-1B if|X] <1,
X &nB if | X|> 1.

We illustrateyy? ({p}) = (A ® B), andy*({p}) = (A & 2B), in Figure 9.b. As the structuring element
A®(n—1)B is not symmetrical for. > 1, ¢)" is not symmetrical: take € (Aea(n—l)B)p =" ({p})
lying abovep, and therp ¢ (Aea(n—l)B)q = ¢"({q}); this is shown forn = 2 andn = 3 in Figure 9.b.

Now we definey = \/52, %; it is easily verified that for everX C Z? we have)(X) = X @ H,
whereH is the digital half-plane made of all points &2 lying above the origin. A = H & H, ¢
is an idempotent dilation, it is thus the least closingy. Again, ) is not symmetrical, becausé is
not symmetrical: fory abovep, ¢ € ¢({p}) butp ¢ 4 ({q}), so if we wanted to define a connection
from 1, ¢ would be in the connected componentZsf containgp, while p would not be in the connected
component ofZ? containingg, contradicting (22).

Let us now give an example with numerical functions (grey-level images); for the sake of simplicity,
we consider function&? — Z, although most of what we say can be extended to functions T,
whereE is an arbitrary set, an@ = Z or R. HereS consists of the “impulse” functiofy, ;) (p € Z?,
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Figure 9. a) The two structuring elementsand B; hereo designates the origin (shown circled).1)({p}) =
(A® B), andy?({p}) = (A ® 2B), for a pointp € Z> (shown circled); there is a poigt(shown surrounded by

a square) such thate > ({p}) butp ¢ 1*({q}) (respectivelyy € ¢*({p}) butp & ¢*({q})).

t € Z) defined in (1). Recall that theupportsupg f) of a functionf consists of all point® such that
f(p) > —oo, and then we have: suppAg) = supd f) Nsupdg) and suppf & g) = supf f) ®Supgg).

Let the structuring functiom have as support the 5-pixel crogsin Z? made of the origiro and
its 4 neigbours in the vertical and horizontal directions. We assumevthat> 0. We consider the
dilationd : f — f @ v by v. As supgv) is symmetricalg is weakly symmetrical (see Subsections 1.1
and 1.2). Asu(o) > 0, ¢ is climbing. The connection whose connected components are obtained from
the geodesic reconstructignm) = 5; using the geodesic restriction éf consists in all functions
having a 4-connected support. Thus, for a mask functioand an impulsé, ,, < m, the connected
component ofm containingi, ;) is the functiong whose support is the 4-connected component of
supfm) containingp, and we have(xz) = m(x) for x € supyg).

Let us explain this concretely. Given a mask functiarwith supportM, for every functionf < m,
the geodesic restriction te of the dilate off by v, namelyd,,(f) = (f ® v) A m, has support

sup((f @ v) Am) = (supff) @ supdv)) N supdm) = (suppf) ®V)NM .

AsV consists of the origin and its 4-neighbourhood, the dilafior» X &V by V' adds to a set all points
4-adjacent to it. Thus, iterating,,, we get that sup@m(f)) consists of all 4-connected components of

supfdm) which intersect supff). As d is climbing, on this support the functioi/;;(f) will have the
same value as:; indeed, aften iterations ofé,,,, a pointg is reached in the support SLm(f)) with
valuey onq; as f(o) > 0, every application off increases grey-levels by at leg&to), and there is
some integek > 0 such that such that + & - f(0) > m(q), so iteratingd,, k£ more times, we will
gets™ k() (q) = m(q). If we start withf = i(p,1)» S SUPRi(, ;) = {p}, we get the function whose
support is the 4-connected component of guppcontainingp, and having the same valuesra®n this
support.

If we took as support o the 3 x 3 square centered about the origin, this would have given as
connection the family of functions whose support is 8-connected. The same construction works for any
connectivity onZ? arising from an adjacency relation: we take then as suppartioé set consisting of
the origin and the pixels adjacent to it.
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Figure 10. We consider functio@s— Z, and the connectivity class 9%(Z) made of all integer traces of convex
subsets oR.. a) The mask functiom. b) The structuring function; hereo designates the origin. b) Starting from
an impulse(, ;) belowm, and iterating the geodesic dilation byvith maskm, one will progressively reach any
impulsei(,, ) in the connected componentef containingi(, ;); here the numbers indicate how many iterations
are needed to reach an impulse.
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We illustrate in Figure 10 the analogue of this construction for functibns Z, whith the connec-
tion on’P(Z) based on the adjacency relatiendefined byz ~ y iff |z — y| = 1; here connected sets
correspond to integer convex sets.

In Subsection 4.2 of both [17, 19], Serra considered such a type of connection, namely the family of
all functionsE — T whose support belongs to a given connection (connectivity clasB) &), such as
the family of all 4-connected€sp, 8-connected) sets.

We finally give some examples of connections on colour images which can be defined from geodesic
dilations. Here we assume a 3-dimensional colour space, so a colour image is a vector-valued function
fE—=T3:pw (folp), fi(p), f2(p)), or it is represented as a triplét= (fo, f1, f2) of numerical
functionsf; : £ — T (j = 0,1, 2), calledchannels here E is an arbitrary set, an@ = Z orR. The
setL of colour images is then an ISD lattice for the product ordering w.r.t. the ordering on each channel.
We take as generators the single-channel impu‘[%g;(j =0,1,2,pe E,t € T\ {£oo}) defined by

- iy i k= j,

The support of a colour image is defined as the set of points where at least one of the channels gives
a value> —oo, in other words it is the union of the supports in the 3 individual channels: ($yipp
supi fo) U supp(f1) U Supp(f2).

It follows from the exposition in [9] of morphology on product spaces that a dilation on colour images
can be represented a8 & 3 matrix of dilations for numerical functions. More precisely, given a dilation
8, for f = (fo, f1, fo) we haved(f) = (go,g1,92), Whereg; = \/5_od;x(fr) for j = 0,1,2, and
eachd;. is a dilation on numerical functions; hefg, gives the contribution of channélin the input
image to channel in the output image. It can be seen thas weakly/strongly symmetrical iff eacfy;,
weakly/strongly mirrorsj;, and thav is climbing iff eachd;; is climbing.

Let us describe some connections that can be obtained from geodesic dilations. As in the previous
example we takeZ? = Z? with 4-connectivity onP(E), andT = Z. We consider again a numerical
structuring functiorw : £ — T whose support is the 5-pixel crogsin Z2 made of the origir and its
4 neigbours in the vertical and horizontal directions, and suchu{lagt> 0.

In our first example, we take fara diagonal matrixd;; is the dilation byv: f; — f; @ v, while for
j # k, §;; is constantL: f;, — L. Given a mask image: = (mg, m1, m2), the geodesic restriction to
m of § is

So, starting from a single-channel impul e 1) and applying the infinite iteratio@ we will get a
geodesic reconstruction on chan[jlelandL in other channels. Thus the connected component of
contamlngz(p, H is a single-channel functiog, such thalg, = L for k # j, andg; is the restriction of
m,; to the 4-connected component of sypy) containingp. Thus the connection consists of all colour
images having on one channel a numerical function with 4-connected support, and the other two channels
reduced tal .

In our second example, we take forthe constant matrix: for alf, k, d;; is the dilation bywv:
fr — fr ®v. For the mask image: = (mg, m1,ms), we get as geodesic dilation:

6m:(f03flaf2)'_>(f6af{afé) with f]{:((f()Vfl\/fg)@U)/\mj.
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Here the dilation behaves as if all 3 channels were identical, and the geodesic dilation behaves somewhat
as a grey-level operator. Starting frofn 6 will reconstruct impulses af: in all 3 channels together,
spreading them successively through 4 -adjacency on the base points, continuing as long as one still
has impulses (i.e., one does not get outside of the support) ofThus the connected component of

m contalnlngz( B is the restriction ofn to the 4-connected component of the supporirofthat is,

supg(m) = supfmg) U supg(my) U supfmz)) containingp; then the connection consists of all colour
images with 4-connected support.

In our third exampley,; is the dilation byv: f; — f;®v, while forj # &, §; is the identity operator.
Applying 4 to a single-channel impulse, this impulse is dilated lay its own channel, and simply copied
into the other two channels. Here the pattern of geodesic reconstructignisfto alternatively spread
impulses in one channel through 4-adjacency, and switch to another channel while keeping the same
position. Then the connected componenhotontainingi{p,t) is the restriction ofn to the subsel” of
supfm) consisting of all pointg such that there is a path= zy, ..., 2z, = ¢ (with n > 0), where for
everyi =0,...,n — 1, z is 4-adjacent ta; . ; and there is a channglwith z;, z; 11 € supdmy).

The 3 choices of in the above examples can be ordered: the first one is the least, the second one
is the greatest, and the third one is intermediate. The same ordering applies then to the corresponding
connections.

4.2. Weighted patrtitions, flat zones and related topics

Image segmentation takes the form of a partition of the space on which the image is defined. The family
of partitions of a sett! has a fine to coarse orderin® (< Q means that partitio is finer than
partition Q, in other words every class @& is included in a class of), and forms a lattice which is
not distributive. The least (finest) partition has the singletons as classes, while the greatest (coarsest)
partition has the single clags.

Given a connectior€ on FE, the family of partitions with connected classes is closed under the
supremum, and it contains the least and greatest partitions. It is thus a complete lattice.

In[17, 19] Serra defined a grey-level extension of partitions calleighted partitionsWe give here
a simplified definition of them, which corresponds nonetheless to the same concept. We assume a metric
space E, d) and consider function8 — T', whereT is a closed part dR. = R U {+o00, —oo}. Lety be
a functionR™ — R which is continuous, increasing and sublinear (thapig, + b) < p(a) + ¢(b)).
A function f : E — T is calledp-continuousf

Vp,ge E,  |f(p)— f(@)] < e(d(p,q)) .

Here y is called themodulus of continuity As ¢ is continuous at the origin, @-continuous function

is uniformly continuous. Well-known examples are Lipschitz functions ¢f¢r) = ¢) and constant
functions (forp(t) = 0). Note that the set ofp-continuous functions is a complete sublattice of the
lattice T'F of functions, in other words the (pointwise) infimum (resp., supremum) of a family-of
continuous functions is againgcontinuous function. Aveighted partitionis an ordered paiff, P),
whereP is a partition of £ and f is a functionE — T such that for every clasS of P, the restriction

fc of fto C is p-continuous. We take the product ordering on weighted partitiofisP) < (g, Q)

iff f <gandP < Q. For this ordering the family of weighted patrtitions is a complete lattice: for
a family (f;, P;) (¢ € I) of ordered partitions, its infimum i6A;.; fi, A;c; Pi). and its supremum is
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(f, Vier PZ-), wheref is the least function> \/,_; f; such thatfc is o-continuous for every class of
Vicr Pi. (We used here the fact that thecontinuous functions form a complete sublatticerdt.)

We can also consider the weighted partitions with connected classes, that is weighted partitions
(f,P) where the partitior? has connected classes for a connectioon E. They form a complete
lattice.

For X C E, write Xp for the partition whose classes akeand all singletons included i \ X.

Write L for the least element &f. For a functionf : E — T, write fc | for the function defined by

foL(p) = flp) ifped,
ot 1L ifpeE\C.

Given a connected’ C E, acylinder of baseC is a weighted partitior{ f, Cp) such thatfp\o = L.

Serra showed [19] that cylinders of connected base form a connection in the lattice of weighted partitions
with connected classes. For a weighted partitigrP) with connected classes, its connected components
are all the cylindergfc |, Cp) whose base€’ are all the classes d?. Wheny(t) = 0, this corresponds

into a decomposition of into flat zones (the so-calletht zone connectionf [19]). When we have

»(z) = max(z,c) for a constant > 0, the cylinders form the so-callgdmp connectiorof [19]; the
generators of the lattice are the cylinders whose base is a singleton.

The segmentation of a functighamounts to finding a maximal weighted partitiof, P), in other
words a maximal partitio® such thatf is p-continuous for every class of P. We cannot use the
results of the previous sections concerning geodesical dilations, because the lattice is not ISD, so in fact
we circumvent the structure of the lattice by working separately on each class (which is a set). We start
with the finest partition (with singletons as classes), and each cylinder of singleto(fpase, {p}r)

(for p € E) is iteratively grown into a maximal cylindéifc | , Cp). For the flat zone connection, there
is a unique maximal segmentation, namely the decompositidi ioto flat zones, in other words the
connected components of all level sgts! (), t € T. For the jump connection, there is no such unicity,
because fop # 0, we can have two intersecting pafsD of F such thatf- and fp arep-continuous,
but foup is not.

Connections on functions and weighted partitions have not been used often in practice. A more
popular generalization of connectivity on sets is the notion of flat zones. Assume a condeatidhe
spacel. Given a numerical functioifi : & — T, whereT' is the space of numerical values (grey-levels),
aflat zoneof f is a maximal subse¥ of E which is connected4 € C) and on whichf has constant
value @t € T, Vp € Z, f(p) = t). The flat zones off form a partition ofE. In the case of binary
imagesf : E — {0, 1}, flat zones correspond to the connected components of the figu(e) and of
the background —1(0).

Then an operatog on numerical functions is callecbnnectedf for every functionf, the flat zone
partition of( f) is coarser than that df, in orther words for every flat zong of f, ¢/(f) has a constant
value onZ. An interesting fact is that the best known connected operators are geodesic reconstructions
(by dilation and by erosion) with a “symmetrical” flat structuring function. Assume that the connection
C arises from a translation-invariant adjacency relation (e.g., the 4- and 8-connectivities), &nddet
the neighbourhood of the origimfor that adjacency. HerB is a symmetrical structuring element. We
extendB into a flat structuring functiorf given by f(p) = 0 for p € B and f(p) = —oo for p ¢ B.

Here f satisfies the followindlat symmetryequirements, which should be compared to the strong and
weak symmetry for functions defined in Subsection 1.1:
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1. supf) is a symmetrical set, and

2. for everyp € suppf), f(p) = 0.

Writing ¢ for the dilation by f, then for every mask functiom and marker functionv < m, the flat
zone partition associated @(w) is coarser than the one associateaitoso the mapn — g;(w) isa
connected opening on the family of functiohrsw.

If we compare the dilation by and the geodesic reconstruction using the dilationfhyith the
analysis made in Subsection 3.2, we see an important differehég:weakly symmetrical, but not
climbing. Hence$/\m will not be strongly symmetrical. In fact we have the following type of “symmetry”
for 0,,: given two impulseaf(p,t> and U(q,5)» if Ugs) < 6m(i(p,t))1 thens < ¢, Ups) < 5m(i(q,s))1
andi(g,) < 6Am(i(p,s)). If we turn to the openings, defined in (23), we see that they do not satisfy
requirement 5 of a system of connection openings (Definition 3.4): two distinct “connected components”
can overlap. What happens in practice is the following: from an impilse < m (that is,t < m(p)),
the flat zoneZ containingp gets the grey-level in the reconstruction, and from a flat zo#ehaving
grey-levelt in the reconstruction, a neighbouring flat zaffewill get in the reconstruction the grey-level
min(t,m(Z")).

It might be possible to devise an axiomatic for “generalized connected components”, where the
requirement 5 about the absence of overlap between distinct connected components would be replaced
by something weaker. Here the geodesic reconstruéﬂpwould transform an impulse undet into
the “connected component” ef. containing it. The corresponding symmetry for the closing= 6.,
would be:

Vs, t €S, s<(t) = tAp(s) € Sands < p(tAp(s)).

Such a geodesic reconstruction does not isolate flat zones. From a given flat zone, neighbouring flat
zones with a lower grey-level are added in the geodesic reconstruction, until the whole space is covered.

Agnus [1, 2], under the terminology of “object-oriented morphological operators”, introduced (some-
what informally) the idea of considering grey-levels as mere labels associated to pixels, without any
numerical ordering between them, except with the least and greatest greydeaptdT: | <t < T
for everyt € T (so thatT is a complete lattice). Under this framework he defined “object-oriented”
anti-extensive erosions and the geodesic reconstruction by a neighbourhood dilation. The first author
is working with Agnus on morphological operators in the function latfice= 7% with this ordering
(which is not distributive folT'| > 5), and it seems that our theory can be applied in this framework:
there is a connection made of flat zones (cylinders of connected base with constant grey-level on it), and
for a functionm : E — T such thatn(p) # T for everyp € E, its connected components are its flat
zones, which can be obtained by geodesic reconstruction from markers. This work will be the subject of
an incoming publication.

5. Conclusion

We have given a new theory of geodesic operations on a complete lattice, in particular we studied exten-
sively geodesic reconstruction systems and the associated openings, and then the generation of connec-
tivity from such a geodesic reconstruction when the latter uses symmmetrical dilations. We found that
several known cases of connections on sets or numerical functions arise from a geodesic reconstruction
system obtained by iterating a geodesic dilation. We gave also a practical example of a new connection
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on sets constructed in that way, that can be used to detect alignments in maps. Finally, through geodesic
dilations, we could define several connections on colour images.

This work is an illustration of the use of recursion in theoretical computer science. Indeed, geodesic
reconstruction is by nature a recursive operation defined from a dilation, and the fact that dilation dis-
tributes the supremum operation allows us to transform it into a countable iteration (cfr. Lemma 2.1);
for finite images, it becomes a finite iteration. In [11] we had also highlighted the relation between the
design of idempotent filters in mathematical morphology, and the theory of abstract interpretation of
programming, where both use Tarski’s fixpoint theorem and its generalizations.

Practical algorithms could be devised for the implementation of the construction of connected com-
ponents through such iterated geodesic dilations, for example using hierarchical queues.

Our main problem has been the clarification of the notion of a symmetrical operator, which is straight-
forward and unique for sets (€ ¥({y}) < vy € ¥({z}) for all pointsz, y). We saw that for general
complete lattices, in particular the one of numerical functions, at least two notions of symmetry must be
considered: the weak and strong ones. In the case of a translation-invariant dilation for numerical func-
tions, these two symmetries can be expressed in terms of a form of symmetry of the structuring function
f: for weak symmetryf must have symmetrical support, and strong symmetry requires furthermore that
f(p) = +o0 on that symmetrical support.

In the case of numerical functions, there is a third form of symmetry that has been used for con-
structing annular openings [13]: here the symmetry of the structuring fungtioreans thatf has a
symmetrical support and satisfig&p) + f(—p) > 0 on that support. We called it heasnular symme-
try. In Subsection 4.2 we have also considered the particular case yhassa symmetrical support and
satisfiesf (p) = 0 on that support; the corresponding “flat symmetrical” dilation leads through geodesic
reconstruction to a connected filter (in terms of flat zones), but not to a connection on the lattice of nu-
merical functions. The axioms satisfied by such “flat” geodesic reconstructions from arbitrary markers
are worth investigating; they are weaker than those for a connection.

As can be seen from the study of annular filters on complete lattices [14], this third notion of annular
symmetry can take two slightly different forms in a general complete lattice (the two forms are equivalent
for numerical functions). This hints that the two forms of symmetry considered here (weak and strong)
could admit some variants in a general lattice (and the same problem would arise for the generalization
of flat symmetry to the lattice-theoretical framework). This question will be dealt with in future papers.

The mathematical theory of connectivity on abstract pictorial objects is a difficult research topic.
From the set-theoretical axioms in [16], further studied in [8, 10, 12], the corresponding concepts and
axioms for lattices were derived [17]. This has led [4, 5, 18, 19] to some theoretical developments,
together with examples of practical applications for some lattices, in particular the one of numerical
functions (grey-level images), and the one of partitions (image segmentations). As can be seen in this
paper (and also [5]), many results on geodesic reconstruction require the lattice to be ISD; this require-
ment is met by the ones of sets (binary images), numerical or multivalued functions (grey-level or colour
images). It would be interesting to see what can be obtained in a lattice which is not ISD, like the one of
closed sets (which is distributive, but not ISD), or the one of convex sets and the one of partitions (which
are both not distributive).
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