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Abstract

Images encoding angular information are common in image analy-
sis. Examples are the hue band of colour images, or images encoding
directional texture information. Applying mathematical morphology
to image data distributed on the unit circle is not immediately pos-
sible, as the unit circle is not a lattice. Three approaches to this
problem are presented. Firstly, difference based operators are studied
(e.g. gradient, top-hat). Secondly, a definition of grouped circular
data is suggested, and “pseudo” morphological operators, which op-
erate only on grouped data are introduced. Lastly, the treatment of
these images as labelled images is presented, leading to the develop-
ment of a cyclic opening operator. Applications to treating the hue
band of colour images and to finding perturbations in wood texture
are given.

1 Introduction

In image analysis, one often has to treat data distributed on the unit circle.
The two studies which motivated the development of the theoretical elements
presented in this article illustrate some situations encountered often: The first
involves the description of directional textures, and the other, the filtration
of the hue component in colour images.

*Both authors are with the Centre de Morphologie Mathématique, Ecole des Mines
de Paris, 35 rue Saint-Honoré, 77300 Fontainebleau, France. E-mail should be sent to:
Hanbury@cmm.ensmp.fr



The application of morphological operators to the hue band of colour
images is related to another subject which has received much attention, mor-
phology for vector images, specifically colour images. A number of possible
orders for colour vectors in the RGB colour space have been proposed [1] [2]
[4] [9]. Work using an angular representation of hue, and hence more closely
related to the approach presented in this article is presented by Peters [5],
who develops morphological operators on the hue circle which require the
choice of an origin; Demarty and Beucher [3] who treat image segmentation
in the HLS colour space; and Zhang and Wang [11] who present definitions of
two distances on the hue circle in the context of colour image segmentation.

The unit circle, like the round table of King Arthur’s knights, has no
order of importance, and no dominant position. In mathematical terms,
this signifies that we cannot construct a lattice on the unit circle, unless
assigning it an arbitrary origin. This is a severe verdict against morphological
treatments (i.e. operators relying on lattices) when we use them on the unit
circle.

However, is it really impossible to bypass this interdiction? If we consider
the standard morphological operators, three paths seem possible. Firstly,
there is the class of operators which bring into play a difference, such as
gradients, top-hats, medians, etc. Does this difference not introduce a lo-
cal origin, obviously variable at each point, but sufficient to transfer to the
circular case? Section 2 treats these operators.

The second approach, covered in section 3, considers the grouping of
circular data. Deciding on the number of groups in a dataset is not straight-
forward, so we introduce a simple criterion for grouped data, and define the
basic morphological operators so that they act only if a structuring element
contains grouped data.

The third approach, developed in section 4, involves a different way of
viewing the situation. A sequence of labels with index ¢ € defined on the
unit circle can serve to index the angles. There could be a royal blue class,
an apple green class, etc., with the condition that the labels with numbers
1+ N are identical to those numbered ¢. If every pixel in the image is assigned
a label, then we have an indexed partition of the image. With two labels,
one is in a situation analogous to that of a binary image. For this case, the
alternating filters of type ¢ (i.e. the result of a composition of an opening
by a closing) can also be viewed as the product of two openings operating
successively on the two labelled regions ”foreground” and ”background”. If,
instead of two labels, we have N, and if we perform a cycle of N openings
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Figure 1: The images used in the examples



successively on each of the labelled regions, what is the result?

2 Circular centered operators

We fix an origin ag on the unit circle C' with centre o by, for example, choosing
the topmost point, and indicate the points a; on the circle by their curvilinear
coordinate in the trigonometric sense between 0 and 27 from ay. Given two
points a and o', we use the notation a =+ a’ to indicate the value of the acute
angle aod, i.e.
o |a—d if la—d|<w
aTa_{QW—M—a’] if la—d|>n (1)

If the a; are digital values between 0 and 255 (for example), the expression
7< 7 becomes "< 127”7, and ”"27” becomes ”255”. However, we continue
using the notation in terms of 7, as it is more enlightening.

Relation 1 appears in [5] applied to the treatment of the hue band of
colour images. We use it here to provide a complete ordering of the points
on the circle C' using the following algorithm:

if a; —ag > a; +— ag
aitaj{ t =

orif a; +ap=a;+apanda; —ay <7

2.1 Gradient

We know that in the Euclidean space ¢, to determine the modulus of the
gradient, at point x, of a numerical differentiable function f, one considers a
small sphere S (z,7) centered on x with radius . Then one takes the supre-
mum minus the infimum of the increments |f (x) — f (y)|, where y describes
the small sphere S (z,7), i.e.

29 (x,r) =VAIf () = f W),y € S, r)} =A{If (2) = F ()| y € 5(?6»7“()})

2
Finally, one determines the limit of the function g (z,7) as r tends to zero.
This limit exists as the function f is differentiable in x. In the two-dimensional
digital case, it is sufficient to apply relation 2, taking for S (z,r) the unit cir-
cle centered on z (square or hexagon). This is the classic Beucher algorithm
[7] for the gradient.



Consider now an image of hues or of directions, i.e. a functiona : £ — C,
where F is an Euclidean or digital space, and C' is the unit circle. As the
previous development only involves increments, we can transpose relation 2
to the circular function a by replacing all the |a (z) — a (y)| by |a (x) + a (y)].
This transposition then defines the modulus of the gradient of the circular
distribution. For example, in ¢, K (z) indicates the set of neighbours at
distance one from point x, hence

(arad : a) (2) = 2v{la(2) = a(y)] v € K (1)}~ 3A{a () = a ()] .y € K (2))
(3)

As an illustration, consider the hue component of figure la, shown in
figure 2a. This image was chosen as it is mostly red in colour, and in the
angular hue encoding, red usually usually has hue values around 0°. This
means that pixels which appear red could have low hue values (for example, 0°
to 30°) and high hue values (330° to 360°). A large discontinuity is therefore
visible in the hue image, with red pixels appearing at the extremities of the
histogram (figure 2b). A classical gradient on this hue band produces a large
number of spurious high-valued pixels, as shown in figure 2c.

These high-values are present even though the neighbouring pixels appear
very similar in colour, and are due to the discontinuity in the hue encoding. A
good illustration of this is the outer part of the halo, which appears smooth
in figure la, but results in very high gradients in figure 2c. The gradient
calculated using equation 3, shown in figure 2d, overcomes this problem.
Note that if we rotate the hue band pixel values by 7, the classical gradient
will be the same as the angular gradient. The angular gradient is, however,
invariant to rotations of the pixel values.

2.2 Top-hat

The notion of the "top-hat”, in the sense of F. Meyer [7], is the residue be-
tween a numerical function and its transformation by an opening. It therefore
only involves increments, and hence can be transposed to functions of values
in C'. We explain below the algorithm for the use of openings by adjunction
(i.e. products by composition of an erosion by the adjunct dilation). We
begin by reminding the reader of the relation which gives the value vz ()
of the opening by the structuring element B, at point x. If we indicate by
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Figure 2: a: The hue band of the virgin image (figure 1); b: The histogram
of the hue band; c: The classical gradient on the hue band; d: The angular
gradient on the hue band.



{B;,i € I} the family of structuring elements which contain point z

vp (x) =sup {inf [f (y) ,y € Bi],i € I}

For the top-hat f (z) — vg (x) we therefore write

f(x) =g (x) = —sup{inf [f (y) — f (), y € B i € I} (4)

in which there are only increments of the function f around point z. We can
therefore transpose to functions of circular values a exactly as we did for the
gradient, and give the definition

(top — hat) () = —sup{inf [— (a () - a(y)),y € B;],i € [} (5)

An example of a top-hat of this type is given in figure 3. Figure 3a is a
subsection of the luminance band of figure 1b which contains some regions
(indicated by the white rectangles) in which the dominant colour is red, that
is, they fall on the hue discontinuity, as is seen in the corresponding regions
in the hue image, figure 3b. A classical white top-hat (equation 4) applied
to the hue band is shown in figure 3¢, with its histogram in figure 3e.

Once again, it is evident that even though there is not much visible change
in the colour within the indicated regions, they result in very noisy top-hats.
This is further demonstrated by the relatively large number of pixels near
the upper end (360°) of the histogram. The result of applying the circular
centred top-hat (equation 5) is shown in figure 3d, with its histogram in
figure 3f. In this image, the spurious high-valued pixels do not appear.

An alternative definition of the top-hat is given in section 4.

3 Pseudo operators

The main shortcoming of the unit circle morphological operators proposed in
[5] is the requirement to choose an origin, which in some cases would lead to
the user having to make an arbitrary choice. In this section, we propose an
alternative formulation, where one is not required to choose an origin, but
instead must provide a definition of grouped circular data. We introduce a
possible definition of grouped data in the framework of the morphological
centre, and then extend this definition to the erosion and dilation operators.
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Figure 3: a: A subsection of figlb with the red parts marked (image size 311
x 227 pixels); b: The hue band of image a; c: The classic white top-hat with
a 3x3 square of image a; d: The circular centred top-hat with a 3x3 square
of image a; e: The histogram of image c; f: The histogram of image d.
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Figure 4: Four distributions of circular data, a , b and ¢ are w-grouped, d is
not.

3.1 Morphological centre

The morphological centre is a notion which naturally appears in the self-dual
morphological filters [8]. Consider n numerical values ¢; € R and a number ¢
which we wish to bring closer to the ¢;. The ” Morphological Centre” operator

K acts as follows
At it < At

Vvt if vt <t

In particular, for n = 2 we find the median between three values t;, to and
t. The identification can be expanded by iteration to n > 2. We, however,
limit ourselves to transposing algorithm 6 to circular data.

A difficulty is, however, apparent. On the line, we can always say whether
a value t is exterior (superior or inferior) to ¢;. On the circle, we can make
sense of this expression in the case of distributions such as those in figure 4a,
b and ¢, but not in figure 4d, where the data is too dispersed. We describe
two approaches:



1. We replace a unconditionally by the closest a;, by applying
ko (a) ={ai|(a; +a) =N(a; +a),ie€l}

2. Alternatively, we construct conditions similar to those in relation 6. It
therefore becomes necessary to formally define the notion of a group of
points, of which figures 4a—c give an intuitive idea.

Definition: We say that a family {a;,7 € I} of points on a unit circle are
w-grouped when there exists an origin such that

(Va,iel)—(Najiel)<w<m (7)
where w is an angle less then or equal to 7.

The condition w < 7 suppresses the case shown in figure 4d. The following
proposition characterises the groups of points using their coordinates.

Proposition: The family {a;, i € I} of the points on the unit circle C' forms
an w-group if and only if one has

V{a,i€l} —N{a,iel} <w (8)
for an arbitrary origin ag, or for the origin ag + .

Proof: If the a; are w-grouped, there exists a partition of C' into two semi-
circles so that all the a; are found in one of the semi-circles. If we take
for ag some point in the opposite semi-circle, the relation 8 is verified,
because ag does not belong to the envelope of the group of points (i.e.
to the smallest sector of the circle which contains them all). Conversely,
if the relation 8 is satisfied for an origin ay, it is sufficient to move this
origin to the point A{a;,i € I} to get relation 7, the definition of an
w-group of the a;.

The algorithm defining the circular morphological centre develops directly
from the preceding proposition. It is sufficient to take as the origin the point
a that we wish to compare to the family {a;}. We simply remember that,
as we must use positive coordinates, the differences implicit in a change of
origin are written thus

a; — a if a;, —a >0
27 4+ a; — a otherwise

i 01,0) = {
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Definition: Given a family {a;,7 € I} and a point on the unit circle, and
hence a grouping angle w, the transformation « (a) of a by morpholog-
ical centering is defined as

a if a>n
k(a) =1 Aa; if a<rmand (a+A{a;,i€l})<(a+V{a,icl})
Va; if a<mand (a=+V{a,i€l})<(a+AN{a;ie€l})

with a = Vv {dif (a,a;) ,7 € I} — AN{dif (a,a;) i € T}.

In other words, if there is an w-group and a is outside the group (a < 7),
one replaces a by the extremity of the group closest to a. If there is no
grouping, or if a is inside the w-group of the a; (v > 7 for both these cases),
one leaves it unchanged. In the case of figure 4, if we take the origin as the
point to transform, it does not change for figures 4b and d, and becomes the
circled point in figures 4a and c. In [10], a similar subject, the colour median
filter operating on three-dimensional colour vectors in RGB space, is treated.

3.2 Erosion and dilation

The notion of an w-group (relation 7) suggests the introduction of two op-
erators which approximate a supremum and an infimum. Consider a finite
w-group {a;, i € I}. For all the origins for which relation 8 is valid, the num-
ber amax = V{ai, i € I}, even though variable as a function of the origin,
always corresponds to the same point of the group. The same applies to the
infimum A {a;,i € I}. These two extremities therefore have a significance
partially independent of the choice of the origin on the unit circle.

This observation leads naturally to the introduction of a ” pseudo-dilation”
operator. Consider a function a : E — C, i.e. for every point x in the space
E, a(zx) is a value on the unit circle, and let B (x) be a structuring element,
i.e. an arbitrary function B : E — P (E). The pseudo-dilation ¢ : C¥ — CF
is defined as

(6 (a)) (z) = { ;/({x@)i (y),y € B(x)} ioftheijviis(g) ,y € B(x)} forms a m—group

The operator § certainly depends on the choice of the origin but, by con-

struction, commutes with the rotations on the unit circle (i.e. with changes
of the origin). It is not a dilation, as one cannot find an underlying order
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relation, and not, a fortiori, a lattice. Nevertheless, for all symmetric B we
can define, by duality, a ”pseudo-erosion”

(e(a)) (z) = { 2({;)1' (v).y € B(z)} iofthei(i;is(g) ,y € B(x)} forms a m—group

It follows that all the classic extensive operators in mathematical morphology,
such as openings, closings, reconstruction, levelling, etc., have a ”pseudo”
version.

Figure 5 provides a comparison between the pseudo-erosion and standard
erosion. Figure ba is the hue band of a subsection of figure 1b. Figure 5b
shows a pseudo-erosion and figure 5c, a standard erosion of this hue band.
The region in which the differences are most pronounced is for the red fruit
to the left of the image. The hue values for red straddle the discontinuity at
0°/360°, and the standard erosion reduces these to small values greater than
zero. The pseudo-erosion, however, replaces the pixels with the infimum of
the group of values around 0°. One should notice the regions, such as the
base of the wine glass, where this erosion operator does not change the pixel
values as they do not form an w-group.

In introducing these pseudo operators to avoid the necessity of choosing
an origin, one unfortunately loses a number of desirable properties of stan-
dard morphological operators. One example is that the pseudo-opening and
pseudo-closing operators are not idempotent (but are usually idempotent af-
ter a few iterations). This lack of idempotence is due to the pseudo-operators
not acting in the same way on all pixels, but leaving some pixels in their orig-
inal states. The decision as to whether to leave a pixel or change it depends
on the distribution of the values of the pixels in the structuring element, and
this distribution changes after each application of an operator.

4 Labelled openings

Circular data may be treated in another manner, which is more set oriented,
and where there is no obligation to define groups or work on increments. This
third approach is based on the idea of first labelling the points of the working
space according to the local hue or angle, then processing the obtained sets,
and finally combining the results in an isotropic way.

12



Figure 5: a: The hue band of a subsection of figure la (image size 231x134
pixels); b: A pseudo-erosion of image a; c¢: A standard erosion of image a.
Both erosions are 5x5 pixel square
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4.1 Theory

Denote by A (a,w) the set of those points © € E whose angular value a ()
lies in acute sector [o, o + w]

A(a,w)={z:2 € E,a(z) € [o,a + w|}

Now let {7,, A > 0} be an opening of size A on P (E). The opening v, A (o, w)
is performed as for a binary opening, with A (o, w) treated as the foreground,
and the rest as the background. In order to isotropise this operation, we take
the union of all transforms ~, [A (o, w)] as « traces out the unit circle, i.e.

1()‘7(“)) = U{/V)\ [A (a,w)] ’ 0<a< 27T} (9)

The result is a binary image containing as foreground all the pixels which
are not removed by the action of the opening for one of the angles a. The
residue (in the sense of the top-hat) of this opening is obtained by inverting
7 (A, w), that is,

R, (Aw) =7\ w) (10)

The residue consists of the pixels which were eliminated by the opening
for all angles a.

When the angle w varies from 0 to m, it is clear that the opening v
is an increasing function of w. As usual, this opening is also a decreasing
function of the size parameter \. These considerations lead to the following
proposition:

Proposition: Let a : F — C be a function of circular values, v, a granu-
lometry on P (E), and A (o, w) : P (E) — P (F) the angular restriction

A(a,w)={z:2 € FE,a(z) € [o,a+ w]}

Then the operator

1()‘7(“)) :U{/V)\[A(Oévw)]voga SQ’/T}

is an isotropic opening. The family {1 AT—w),0<w<mTA> 0}
engenders a double granulometry with respect to the two parameters A
and ™ — w.

The above labelled openings treat the data in a parallel way (each 7, [A (o, w)]
could be performed by an independent processor, for example).
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4.2 Application

An industrial application of the labelled opening is presented. When sorting
oak boards destined to be used to make furniture, it is necessary to find the
knots, and to measure the sizes of the small light patches. These two charac-
teristics have been highlighted in figure 6a, where the knots are surrounded
by black rectangles and the light patches by white rectangles (the three light
horizontal lines in this image are chalk lines drawn on the board). Knots can
be found using colour and texture characteristics, as they are usually much
darker than the surrounding wood, and usually perturb the directions of the
surrounding grain lines. The light patches are generally of a similar colour to
other parts of the wood, but tend to cut grain lines, causing a disruption in
the dominant local texture orientation. An application of the labelled open-
ing operator to finding regions of anomalous texture orientation is presented
here.

Wood texture is oriented, meaning that there is a dominant direction
in the neighbourhood of each image point. This texture can therefore be
represented by an image encoding the dominant orientation in each pixel
neighbourhood. An algorithm based on that developed by Rao [6] is used to
extract these orientations. The steps in this algorithm are:

1. Detection of the edges of the wood and cropping of the image to contain
only the wood.

2. Convolution by a Gaussian filter of size 5 x 5.

3. Calculation of the angle at every pixel in the image from the horizontal
and vertical gradients.

4. Determination of the dominant angle within a moving frame of size
16 x 16 pixels, moved in steps of 8 pixels horizontally and vertically.

5. Construction of the reduced size orientation image which encodes the
dominant orientation in each frame by a single pixel.

As the orientation of a grain line can equally well be described by two
directions, namely # and #+180°, the angles have values between 0° and 180°,
such that 6 + 180° = #. The reduced size orientation image for figure 6a is
shown in figure 6c.
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Figure 6: a: an oak board with knots (indicated by black rectangles) and
light patches (indicated by white rectangles) (image size 608x955 pixels); b:
The residue of the labelled opening on the orientation image expendd and
projected onto the original image (the regions enclosed by the white outlines
correspond to the residue); c¢: The reduced orientation image (size 50x112
pixels) calculated using the Rao algorithm; d: The union of the opening of
each labelled region; e: The residue of the labelled opening on the orientation
image
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The aim is for the regions of anomalous orientation to appear as the
residue of a labelled opening. We used a connected labelled opening (open-
ing with reconstruction) with w = 45° and a square structuring element with
side of length 9 pixels. The isotropisation of the opening (equation 9) was
approximated by varying a from 0° to 157.5° in steps of 22.5°. The result-
ing label definitions are shown in figures 7b and 7d, and the corresponding
labelled images in figures 7a and 7c (two labelled images are shown as the
angular values of the labels overlap). The numbers shown on the label defi-
nition diagrams indicate the order of the labelling as the value of « increases.
The result of the opening on each of the labels in 7a and 7c are shown respec-
tively in Te and 7f, where the lightest grey represents the regions eliminated
by the opening operator. The union of the labelled regions not eliminated
by the opening (equation 10) is shown in figure 6d. The residue (the inverse
of figure 6d) is shown in figure 6e, and this residue expanded and projected
onto the original image is shown in figure 6b, where the regions enclosed by
the white outlines correspond to the residue.

The region of severe perturbation of grain lines due to the knots on the lower
part of the wood is found, although the upper part of the largest knot
is not detected as it is parallel to the grain lines forming the largely
homogeneous upper region of the board. Most of the light patches are
also detected. There are afew false detections, corresponding to regions
where there is a change in the direction of the grain lines without an
associated defect (for example, at the top left of board), or to tiny
misdetections which could be eliminated by a subsequent area opening.

This algorithm has been applied to an algorithm of 60 oak images with
good results. However, even though defects are associated with texture orien-
tation perturbations, the presence of such a perturbation does not guarantee
the presence of a defect. The results of this transform should therefore ide-
ally be used as input to a decision procedure, which uses colour and further
texture information to calculate the likelihood of a defect being present.

5 Conclusion

Three possible approaches to applying mathematical morphology to angular
data have been presented. The first involves using differences (increments),
the second makes use of a definition for grouped circular data, and the third
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Figure 7: a and c: The labels defined on the orientation image (figure 6¢); b
and d: The labelled definitions; e: The opening by a square of side 9 pixels of
each label shown in image a ( the lightest grey represents the labelled regions
eliminated by the opening); f: The same opening performed on image c.
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uses labels. Difference versions of the gradient and top-hat are presented.
Secondly, a formulation of ”pseudo” versions of the erosion and dilation op-
erators are given, which can be expanded to create the other standard mor-
phological operators. They have the advantage of not requiring the choice of
an origin on the circle, but unfortunately suffer from some unfortunate prop-
erties such as the non-idempotence of the pseudo-opening and pseudo-closing
operators. Lastly, openings on labelled images are presented. Applications
of these operators to the hue band of colour images and to images encoding
angular texture information are given. In practical applications, we find that
the use, if possible, of the circular-centred operators or labelled operators
give the best results.

The reader should be aware that in most cases, angular data does not
appear alone, but is combined with other non-circular values. For colour im-
ages, these are usually luminance or intensity and saturation; and for oriented
textures, measures of magnitude or coherence. More generally, the question
arises with vector data, when one wants their processing to be independent
of the choice of the vector base. For example, a 2-D Euclidean vector (z, y)
may be represented in polar coordinates (p,f). Then any processing that
combines the above circular operators (for #) with operators on p yields a
result that does not depend on the orientation of the initial base (z,y). A
similar comment applies in 2 when vectors are decomposed into their spher-
ical or their cylindrical representations. The development of operators which
treat these non-angular values along with the related angular quantities in a
rotationally invariant way is an interesting topic for further development.

Finally, we note that a detailed experimental comparison of the angular
morphological operators with standard operators on the same data set is not
done, as it is immediately obvious from the data which approach should be
used. If, during the analysis of a set of data or an image, one has to choose an
arbitrary origin before applying an operator, then the rotationally invariant
operators in this article are to be preferred.
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