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Abstract

The present study deals with the analysis of three-dimensional bi-
nary objects whose structure is not obvious nor generally clearly visible.
Our approach is illustrated through three examples taken from biological
microscopy. In one of our examples, we need to extract the osteocytes
contained in sixty confocal sections. The cells are not numerous, but are
characterized by long branches, hence they will be separated using a di-
rectional wavefront.

The two other objects are more complex and will be analysed by means
of a spherical wavefront. In the first case, a kidney of a rat embryo, the
tissue grows like a tree, where we want to detect the branches, their ex-
tremities, and their spatial arrangement. The wavefront method enables
us to define precisely branches and extremities, and gives flexible algo-
rithms.

The last example deals with the embryonic growth of the chicken shin-
bone. The central part of the bone (or shaft) is structured as a series of
nested cylinders following the same axis, and connected by more or less
long bridges. Using wavefronts, we show that is possible to separate the
cylinders and to extract, and count, the bridges that connect them.

Our presentation is completed with more theoretical results, showing
the connections between geodesy, metrics and connectivity.

1 Experimental context : three-dimensional mi-
Croscopy
The approach we present here was born from experience, more precisely from

two separate issues in three-dimensional optical microscopy which were recently
presented to me.



Figure 1: a) Kidney under study (supremum of the sections); b) other kidney
specimen.

1.1 1st issue : the kidney

In February 1999, Dr. John BERTRAM!, nephrologist and serving Chairman
of the International Society for Stereology, spent two days at the CMM, during
which he presented his current work. The subject of his research is the embry-
onic development of the kidney studied in animals such as the rat. He takes
advantage of the property of embryonic kidney to develop in vitro, which en-
ables him to study the organ evolution by confocal microscopy without animal
destruction.[1].

Dr. Bertram proposed to work with a student from the Ecole des Mines,
provided his data could be processed quantitatively. He asked more specifically
our opinion on two sets of digital sections. A preliminary study, carried out
during his stay, gave promising results and showed that it was possible to bi-
narize and follow the tree from one section to another in each of the two series.
Hence the decision to launch an internship [3] (Gabriel FRICOUT, 3rd year,
2000/2001), which is currently under way.

We can see in figure(1) an image of each kidney after binarization, showing
that the structure develops in the form of a tree. The expected morphological
description goes far beyond the preliminary study. It bears on the geometry of
the tree, and involves two objects :

- extremities : where are they located ? how are they arranged in space ?

- branches : where are they located ? according to which hierarchy and
length 7

Confocal microscopy results in a highly anisotropic sample. Each series
contains 29 sections 30 p thick ; in which the orientation is roughly perpendicular
to the trunk.

On each section, the pixels are arranged according to a square grid, whose
spacing is about 4u. The digital volume element (voxel) looks like a cylinder
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with a square base, which is seven times as high as it is wide. Each branch
extremity is surrounded by nephrons, whose number is indicative of the future
capacity of the fully-grown kidney. The nephrons, which cannot be seen here,
will become visible through a double staining. Then, we will have to study the
relationship between the shape of the tree and the number of nephrons it can
receive.

1.2 2nd issue : the shinbone

Dr. Staub? and engineer M. Mendjeli®> study the morphogenesis of long bones,
and work on the shinbones of chicken embryos. Dr. Staub designed a dynamic
model of the long central zone (shaft), where the compact future bone appears
as a series of nested co-axial cylinders[14](see figure2)

The experiment conducted by M. Mendjeli has consisted in slicing the shin-
bone shaft, perpendicularly to its axis, into a series of a hundred semi-thin
sections, roughly like slicing a sausage. Their computer registration produced
a matrix of data under the form of a nearly isotropic cubic grid whose step is
close to the p and whose size is approximately 300 x 300 x 100.

Unlike the previous example, the primary difficulty here is to detect the
object under study. The nested cylinders are not directly visible, and one has
no idea of the number of gaps and holes they may contain. However, the bone
image is virtually binary. Finally, as in the preceding example, the space is
”oriented” from a marker : here the central marrow space ; there, the contact
zone between the kidney and the gelatine (bottom of the tree).

Is it possible to segment the concentric cylinders of the bone, and to describe
them in quantitative terms (thickness, porosity, contacts between cylinders, etc

)7

2 Method : wavefronts

2.1 Choquet’s theorem

When a stone is thrown into a lake and generates a disturbance, a wave string is
being created and spreads out while going around the possible obstacles, until
the most remote points from the middle. The wavefront, circular in the case of
a lack of borders, laps the islands and the lake contours and finally covers them
completely(3).

In order to extract connected objects selected by markers, F. Meyer[9] and
J.C. Klein [6] were the first ones to transfer these notions to mathematical
morphology, and the very first formalization, named ”geodesic metrics” was
established by C. Lantuejoul and S. Beucher [7]. Indeed, in figure 3, the zone
of the reference set Z, swept between instants 0 et A by the wavefront born
from point z at the original instant is a disk By (z), smaller than the Euclidean
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a) b}

Figure 2: Two horizontal sections of a shinbone epiphysis

a) by

Figure 3: a) Geodesic disc ; b) Geodesic distance function in two dimensions



disk with a radius A and completely containd in Z. When the reference set Z
is compact, the induced metrics {Bx(z),z € Z} satisfy the following theorem,
from G. Choquet ([2],theorem 11-6)

Theorem 1 Let E be a metric compact space and let A et B be two disjoint
closed subsets of E. If there exist rectifiable curves with extremities in A and B
respectively, and if A stands for the lower limit of their lengths, then there exists
a stmple arc whose length is \ and whose extremities lie in A and B respectively.

In what follows, we will always suppose that reference sets Z are compact,
and that for any points z, y selected in a same connected component Z, there is
a rectifiable path with a length limited by a Amax(Z, z) and linking these two
points. This happens, particularly, when in R™, the set Z is the topological
closure of a bounded open set. Rectifiable arcs, as a precaution, are meant to
exclude compact sets such as, for instance, a spiral which winds indefinitely
around a circle.

2.2 The ultimate elements of the wavefronts

This section takes up C. Lantuejoul’s and S. Beucher’s results [7], but presents

them differently. When using geodesics, it becomes possible to associate any

point z € Z,Z € R™ with the point or points y € Z which are the furthest
(o]

away from z. Indeed, let B (), z) be the geodesic open ball of radius A and centre
z, and Agbe the upper limit of the X\ such that B (A, z) be strictly contained in
Z. As the non empty compact sets {Z \]?3 Nz), A< )\0} decrease and that R™
is a separated space, the intersection

N [Z\%(A,x)] (1)

z<Ao

is itself a non empty compact set, whose points are all at the maximum distance
Ao from z. This intersection is named ”geodesic ultimate eroded set”, and

o]
B (Ao, z) is the ”geodesic ultimate dilated set” of point x.

The existence of extreme points may also be considered in a regional frame-
work, and not a global one anymore. We must suppose that, Z and x being
given, it is possible to find a u (Z, ) < Ao (Z, x) such that each connected com-

ponent of Z \ B (A, z),u < A < Ao decreases without subdividing. Then, the
previous analysis should simply be applied to sets

Km[Z\f;(A,x)] 1< A< Ao

o]
where the Kj,¢ € I refers to the connected components of Z \ B (u, ). There-
fore, we obtain the farthest connected components from point z, such as, for
instance, the fingers tips for « taken around the middle of the wrist.



Figure 4: Cube-octahedron

Both algorithm families about geodesics correspond to both our points of
view. Invasion by geodesic balls led to all the particles reconstruction variants
(deletion of the grains crossing the field border, hole filling, individual analysis,
etc ...) and the search for extreme residues led to the ultimate eroded points, to
the objects limits and to the length of a connected component ( as a supremum
of the distances between pairs of extreme points).

2.3 Digitization

The digitization of geodesic operations may cause errors, but limited ones ;
indeed, it is advisable to choose, as a circle or unit sphere, the closest shapes to
their Euclidean homologues. Therefore, in 2D the hexagon, whose six vertices
are equidistant from the center is better than the square, and, for the same
reason, the cube-octahedron is better than the cube in 3D.

This Z3 ball is very easy to build, when a numerical data network in square
grid is available[13]. It suffices to shift all even planes by half a diagonal of the
unit cube (any diagonal, but always the same one). In practice, data are of
course not moved, but only structuring elements. For example, the substitute
for the 13 vertices of the regular cube-octahedron (4) is calculated by dilating
the central point according to the staggered unit cube-octahedron presented in
figure(5). It requires three successive planes and differs whether the center lies
in an even plane or in an odd one.

The wavefront emanating from this central point starts with the point 12
neighbours ; when the interplane equals a/ V2 (a = square grid spacing of the
horizontal planes), the structure becomes completly isotropic and the 12 neigh-
bours are equidistant from the center. This will be our assumption (section 5)
about the shinbone, but this hypothesis is not essential, and, in any case, cannot
be ventured for the study about embryonic kidneys (section 3)
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Figure 5: Staggered successive planes, for simulating a cube-octahedron on a
cubic grid

The switch from the unit ball C(z) of Z® (octahedron, prism or cube) to its
geodesic version B (z) inside a mask Z is

Bi(z)=C(z)NnZ

and the geodesic ball B, (z) of the size is obtained by n iterations of the
previous one :
B, () = By [Bp-1 (2)|NZ

The corresponding wavefront, or geodesic sphere equals

F,(z) = Bny1 (2) \ Br (2)

2.4 Wavefronts and tree diagrams

Let Z be a compact set in R™ and = € Z, be a point in Z. We propose to study
the evolution of the connected components number of the wavefront F (), z)
when, as A increases, the compact space Z is swept. The two types of branching,
division or confluence, supposedly remain in finite number when A € [0, Aax],
so that for any branching at A = A\g < Apax, it is always possible to find an open
interval ]A1, A2[ containing Ao, and inside which there are no other branching.
The number of branches which may gather in A\g is supposed to be finite. Finally,
as the branching may take the two dual shapes (division or confluence) when A
increases, it is conventionally agreed in the proof below that the passage A1 — A
corresponds to a division

Therefore, we are led to the situation described in figure (6), where point

x is in black, the ball B (Mg, ) in light grey, its complement K (Xg) in Z in
dark grey, and where the white wavefront indicates the precise moment of the
branching. So, the compact set

KO\ =2Z\B(\2)

has a unique connected component, when A < )Ag, and more when A > Ag.
In order to determine what happens when A = )g, we first observe that for
compact sets, we have N{K (A), A < Ao} = K (Xg).



Figure 6: Example of branching

The compact K (Ag) is composed of only one connected component. Other-
wise, they would be separated by a minimum distance d ; but this is incompatible
with the fact that, for any dilation of size €, with 0 < € < d, the geodesic dilate
of K(Ag) becomes connected. Therefore, the front F (Ag, ) itself is connected,
as otherwise, to switch from one of its components to another one, it would
be necessary to cross a K(\) with A > X, but these K (\) are not connected
anymore.

When Z has several branchings, the same description applies for each branch,
upwards or downwards from the propagation from point x, which consequently
partitions the set Z into a series of successive pieces.

The case of the X branching has also to be considered. It occurs when at
least two branches stop at the critical front, and at least two of them start from
there. In this case, the intermediary connected region is reduced to the front
in Ag, for, if it was larger, we would come back to the previous case; and if the
front was not taken into accout, we would no longer have a critical element,
but only separated branches. By gathering these results, we can state :

Proposition 2 Let Z be a compact of R™. If, for any point x € Z, the wavefront
F (A x) emanating from x admits a finite number of connected components,
with a finite variation, then, as radius A varies, F (\,x) partitions Z into a
finite number of connected sections, corresponding to open intervals of \, and
separated by connected components of the front which are located at the critical
points of the branchings.

Clearly, the mapping * — P (z) which associates with any point z € Z the
tree diagram characterized by the proposition, depends on the choice of point z,
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Figure 7: a) Perspective view of the binarized kidney; b) confocal section n°®14

even if, when considering the common meaning of a tree, the partition remains
almost the same for all the points selected low enough in the trunk. Besides, in
this case, the tree may be defined as a partition for which there is no confluence
for a suitably selected origin z (i.e. in the trunk).

Note that we are talking about connectivity here, and not about homotopy:
in R3 particularly, the sections may show closed pores or toric holes.

3 Use of the tree diagram for embryonic kidneys

In order to illustrate the above matter, we propose to segment the first one of
the two kidneys ofl. The analysis contains four steps :

1/ set construction from the initial data ;

2/ geodesic distance function of a marker in the set;

3/ extremities;

4/ branches.

3.1 Binarization

This simple operation only requires a thresholding between 60 and 255, followed
with the fill-in of the bi-dimensional internal pores. Still, the main connected
component has to be extracted. In order to do this, we take as marker = one
point at the beginning of the trunk. The reconstruction shows that the kidney
tree diagram is broken around the middle in two separated parts. This is caused
by the inaccuracy of confocal microscopy. In order to put it right, both parts
have been reconnected by a small closing, as shown in figure(7a).



Figure 8: Geodesic distance function from the anchorage point (negative view
of the supremum of the sections)

3.2 geodesic distance function

The geodesic distance function starts from marker x at the base of the kidney
and progresses inside the tree according to unit cube-octahedra (see figure (8))

3.3 Extremities

The extremities are nothing but the region maxima of the previous geodesic
function. These ultimate eroded points are shown on figure(9a), where lots of
quite unsignificant but very small real maxima can been observed. They are
removed by a small surface opening (figure(9)b). When using this algorithm in
routine, we would better start with a regularization of the set under study by
means of an isotropic tridimensional opening of size 1 or 2, providing that it
does not break the connectivity.

3.4 Branchings

The extraction of branchings, which is conceptually simple, may lead neverthe-
less to a consequent computing time. Considering the quite visible structure of
the projected tree, the algorithm used below is slightly less precise, but faster
an easier to implement.

In a first step, bidimensional branchings on the tree projection are investi-
gated, then, we get back to the 3D space by building vertical cylinders whose
bases are located at the 2D branchings, and slightly dilated (size 2). Finally, we
take the intersection between these cylinders and the 3D tree. The operation
leads to figure(10).
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Figure 9: a) All extremities of the Kidney ; b) Filtered extremities.

Figure 10: Projection of the 3D branchings
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3.5 Results

In all, starting from the connected kidney tree, we got to its segmentation into
disjoint branches separated by thin branchings. Some branches contain one
or more, of the tree extremities. From such a segmentation, it beomes now
possibleto replace the object under study by a ”tree” in the meaning of graph
theory, where the edges can be weighted geometrical characteristics (volume,
length, location of its center, possible end points ... etc).

4 Euler-Poincaré number and space graphs

Historically, the Euler-Poincaré constant (in brief: EPC) appeared in two slightly
different domains of mathematics. Firstly, there was Euler’s reasoning about
the relations between the polyhedrons vertices, edges and faces, which was for-
malized in terms of planar graphs by Cauchy. This way of thinking leads to
counting algorithms, which are based on the elementary edges, squares and
triangles (in the hexagonal grid). It extends to various cubic, cube-octahedron
and rhombo-dodecahedron of R?, without any particular theoretical difficulty,
but with a growing heaviness of the elementary operations to be carried out.
The second way, Poincaré’s, and Hadwiger’s later on, links the successive
definitions of EPC thanks to an induction holding on the dimensions of the
space [5]. When transposed to a digital grid, this approach is limited to cubic
(or to parallelepipedic) grids, but, in return, leads to a much simpler and faster
expression than the graphs one. Thus, for a bounded digital set A, we have :

In Z, vy (A) = N (vertices) — N (edges) = N (8) — N (—)
In Z2, for the square grid :
vy (A) = N (vertices) — N (edges) + N (faces)
=N(e)=N(-)-N()+N(@O)

Still in Z2, if we agree on calling Ny (A) the sum of the constants 77 of the
horizontal sections of A, we can see that

va (A) =71 (4) -1 (49 ),

where A© | stands for the Minkowski substraction of A by the unit vertical
segment.
In Z3, this is the same, and Euler’s number v3 (A) defined as

vz (A) = N (vertices) — N (edges) + N (faces)- N (blocks)
is expressed by the same increment as before, for

v3 (A) =12 (A) — 73 (A0 |) (2)

12



vid)= N(*) -N(—) - N(7) + N(=)
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Figure 11: Euler-Poincaré Constant in R3

when 73 (A) is the sum of Euler bidimensional numbers of the horizontal sections
of A, and where © stands for he Minkowski substraction of A by the unit vertical
segment (equation (2) can easily be extended to R™ by recurrence). Constant
vs is independent of the choice of the ”vertical” direction.

From an experimental point of view, the equation (2) is very convenient, for
in image processing systems, Euler bidimensional constants are generally rapid
to get and the unit linear erosion between two consecutive planes is a simple
operation too. It is this equation (2) that has been implemented in the shinbone
example below.

Finally, remember that the EPC of a simply connected object (i.e. homeo-
morphic to a cube) equals 1, that of a torus (typically, a donut) equals 0, and
that of spherical crown (such as a football) equals 2. Moreover, the constant v
is C-additive, which means that

v(A)+v(A)=v(AUA)+v(ANA),

an equation that allows one to reduce complex figures to the most simple ones.
Thus, the ECPC of lampshade pierced by 1000 pin holes equals -1000.

5 Shaft of chicken embryo shinbones

5.1 Purpose

The bone zone under study is situated in the central part of a chicken embryo
shinbone, whose axis defines the vertical. The experimental data form a series of
98 rectangular slices of 320 x 310 pixels each. The uniform grey of the shinbone
phase allowing an easy threshold (seel2a), the two problems to be solved are
then the following :

1/ Implementing and checking Dr Staub’s model, that is to say switching
from the model of nested cylinders to an effective segmentation of the bone
into nested structures thanks to some convenient quantitative criterion (to be
found);

2/ Once the segmentation is achieved, extracting more specifically the bridges
that link two successive cylinders, and calculating the homotopy of both bridges
and cylinders.

13



Figure 12: a) perspective view of bonel; b)Central cylindric marker M

5.2 Algorithm

For the sake of pedagogy, we work, on the one hand, on all 98 slices, and on the
other hand, on the first 14 ones only. We call "bone” the first file, and "bonel”
the second one. Thanks to reduced thickness file bonel, some structures are
made more easily visible; moreover, the comparison between the wavefronts of
bone and bonel will inform us about the representativity of sample bonel.

If the nested cylinders model is correct, the wavefront stemming from the
central medulla zone and penetrating into the bone should propagate more
rapidly when it floods a cylindrical crown than when it crosses the narrow
isthmuses that link the crowns altogether. Therefore, we have to :

- generate a relevant central marker M;

- plot the curve of the wavefront surface F' (A, M) versus distance A, which
should show oscillations with more or less periodic minima ;

- decompose the geodesic wave into sections limited by minima values (bone
segmentation);

- extract the wavefront at each minimum, which will result into bridges;

- calculate Euler constant for bridge sets, and cylinders;

. all operations that will now be executed.

5.3 Results

The central marker M is obtained by working one section after the other, and
by extracting the central pore after opening (algorithm bonel), see12b

The measurement variation of the wavefront surface, for both files bone and
bonel is plotted in figure(13). Their minima are approximately on the same
abcissae, for instance 16 instead of 13 or 6 instead of 5, which is an auspicious

14
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Figure 13: Plot of the wavefront surface versus the propagation steps

start.

Bone and bonel segmentations, carried out from the following minima ab-
cissae

6;22:44; . for bone
5;18,24;41,65; .oiieeeiiiiiieeee for bonel

lead to the results shown in figure (14).

In order to extract the branchings between cylinders, a stronger and partially
false hypothesis has to be made: the wavefronts corresponding to each minimum
of the plot are supposed to be exclusively located in these narrows. Based on
this approximation, the bridges between cylinders n°: and ¢ 4+ 1 match with the
set difference between the m + 1 and m sized-geodesic dilates, where m is the
abcissa of a minimum. The contact zones between the first two cylinders, for
both files bone and bonelare displayed on figure (15).

We now treat the last point, about countings on the various extracted sets.
As one can note on the following table, the bone is quite pierced and broken.

Region FEuler Poincaré number
bone bonel
initial bone - 1536 - 237
connected component, adjacent to the marker -1885 -275
bridges between the first two cylinders 1447 205
same bridges, followed by a unit dilation 32 10
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Figure 14: 3D segmentations of two slices.

a) by

Figure 15: Perspective views of the dilated bridges, for "bone” and ”bone 1”
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Broken, for when reducing the object to its part adjacent to the central
marker, at least 1885 - 1 536 = 349 small isolated parts are removed (experi-
mental artifacts?). Pierced, for this main connected component has 1885 holes, if
it is admitted that it does not contains internal closed pores (this seems realistic
when we consider the thicknesses).

The EPC of the bridges (1447) seems quite high. In fact, more than a nut
linking one cylinder to the following one, a joint rather looks like a bundle of
fine fibers. This is the reason why an elementary dilation (the 13 voxels of the
unit cube-octahedron brings Euler-Poincaré number 1 447 down to 32.

6 Metrics and dilation

In both examples, we decided to start from digital metrics, those whose balls
are the cube-octahedron of Z2. Then, we considered the cube-octahedra By ()
centered in z, € Z3, and with a size 1 as the structuring elements, and we have
used their successive iterations to generate the wavefronts. Finally, we have
considered the wavefronts as the spheres in a new metric, named geodesics,
thanks to the Choquet theorem.

Meanwhile, we have approximated sets and Euclidean operators with finite
representations: neither the kidney, nor a mammal bone can be reduced to some
points on a square lattice. But we have also surreptitiously replaced the metric
balls with a set of dilations when time came to implement the first ones. Are
these two notions equivalent ? More generally, to what extent does a dilation
family {0, A > O} on a lattice £ generate metrics on £ ? Is it sufficient that
the ¢, increase with the positive parameter A ? This is what we are going to
study now.

In a first step, we will compare the dilations to ecarts rather than to dis-
tances. First, because it is more simple, and second because the notion of an
ecart better suits the lattice structure.Following G. Choquet ([2],p. 61)

Definition 3 We call an ecart on a set £ any mapping of L ® L in Ry such
that

i (x=y) = (e(z,y) =0)

i/ e(x,y) =e(y,z)

i) e(x,y) <e(x,z)+e(zy)

The two differences with the notion of a distance, namely that the ecart e
may equal +o0o and that two distinct points may have a zero ecart, are essential
to structure the ecarts into complete lattices, which is impossible to do with
distances. Actually, let e (z,y) = sup{e; (z,y),j € J}, when the e; are ecarts.

Clearly, mapping e : £ ® £ — R satisfies both axioms i/ and i/.
On the other hand, we have for any i

ei(z,y) <ei(z,2) +ei(zy) <e(u,z) +e(zy)

17



that implies
e(z,y) <e(x, z)+e(zy)

Therefore, the supremum of ecarts is n ecart. Moreover, there is a smaller
ecart e (z,y) =0, Va,y ; as any sup half lattice with a minimal element is a
complete lattice, we can say

Proposition 4 The class of ecarts e : L& L — Ry on a space L is a complete
lattice where the supremum coincides with the numerical supremum.

The links between ecarts and dilations are governed by the following result

Proposition 5 Let L be a complete lattice and {6x, A > 0} be a family of dila-
tions from L into itself, depending on a positive parameter X\. The §) generate
an ecart on L if and only if

v/ =1 (0 is extensive for any A > 0)
v/ 030 <Oxpp  Ap=0 (3)
Then, the family & is increasing in \ and the quantity
e(@,y) =inf Mz <ox(y),y<dr(z)}  zyel (4)
defines an ecart on the lattice L.

Proof. The two axioms iv/ et v/ imply the increasingness of the application
A — 0y, as, for any p and any A, we get

I< 6>\ — 5# < 5;“5,\ < 6#4_)‘.

Let us prove that they also imply the three axioms of an ecart. As z < dy ()
for any A\ (axiom 4v/), the quantity e (z,z) = 0 for all = (axiom ¢/) ; the
axiom 7/ results from the symmetry of the inequality 3. In order to verify
the triangular inequality 4ii/, let us consider three elements z,y,z of £ with
M =e(y,2),\a=¢e(z,z),\3 =e(z,y).

If Ay or A3 = oo, then A\g < Ay + A3. If not, from the inequalities
T < 6xz4e () and Y < Oxzte ()
for any € > 0, and from
Y < e (2) and 2 < Oarqe (¥)
we draw by application of axiom v/ that
T < Ox34e0a14¢ (2) < Iar4a3+2¢ (2)
and similarly that z < dx14 342 (¢). Therefore,

Ao <A+ A3+ 2¢

18



for any € > 0, which implies the triangular inequality.
Conversely, start from an ecart e on £ of closed balls §

ox(z) ={y:e(z,y) <A} (5)

Axiom 4/ implies that the §, are extensive (axiom iv/). In order to prove
axiom v/ note that for any element z < 0,9, (), there is an element y < 0, (x)
with z < 6y (y), Le.

e(z,y) < p and e(y,z) <A
which implies, by triangular inequality i3/
e(z,z) <e(w,y)+e(y,z) SA+p
therefore z < dx4, («) and finally
510, () = \/ {2+ 2 <020, (2)} < brss (@)
which is axiom v/ ®

It results from the proposition that both equations 4 and 5 joining ecart and
dilation are equivalent and reciprocal.

6.1 Distances

When considering distances, things become a bit more complicated. Firstly, we
have to limit ourselves to those families of elements of £ & £ which admit finite
ecarts (a class which does not need to be a sub-lattice of £), and, furthermore,
the extensivity axiom iv/ is not enough to guarantee axiom i//

i/ (x =y) < (d(z,y) = 0) (6)
For instance, if we consider the family
a(z) = {z,26,Y0} A>0

0o (z) = Az}

where x, and y, are two fixed and distinct elements of £, then proposition5
applies : we do have an ecart, but no distance, for e (z,, y,) = 0 whereas z, # yo.
The simple extensivity v/ has to be replaced by the axiom iv// of monotonous

convergence:
W AL 0 =6y |1

which is a lot more severe (it means that the §) increase with A and that
I = A{dx,\>0}). When this condition is satisfied, then d (x,y) = 0 implies,
according to the equation 4 that

v < \{6r (), A> 0} =y

and, as well, that y < x. Conversely, the counter-example just presented with
(20,Yo) proves that the condition is necessary. Therefore, we can state:
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Proposition 6 Let {0x, A > 0} be a family of dilations of lattice L into itself.
The 65 generate a metrics if and only if

wl/X |0 implies 05 | I
0/838 < Bxt

and if its domain is restricted to the classes L’ of elements of L such that, for
any x,y € L' we get

d(z,y) =inf {A:2 <o (y),y <oa(2)} < o0 (7)
when d is the ecart induced on L ® L by the .

The Hausdorff ecart on P (R™), which becomes a distance when restricted to
the non-empty compact sets of R™ perfectly illustrates the distinction between
propositionsband6. In addition it shows how, when applied to a lattice such as
P(E), the Hausdorff type equation 7 leads to a ecart on E if restricted to the
singletons of P(E).

The ball By (), with a radius A and centered in z is easily expressed if we

V
introduce the dilation § reciprocal of §, and defined by the equivalence

r<8(y) = y< b(x)

Whether ecart or distance are concerned, considering the equations 4 and 7,
we get,

B (@) = {y: d(e.0) <) = | 00| A [ 2,00(0) (3)

When §) is |-continuous for any A, the equation is reduced to

By () = 6 (2) A 63 ()

Finally, if the dilation is symmetrical, i.e. is equal to its transpose, we
finally get By = 0. This is the case, for instance, when the 4, are homothetic
of a symmetrical convex set. In P (R™), G.Matheron [8] proved that if the 0y
commute under translations, and therefore, express Minkowski additions, they
satisfy an additive semigroup of a positive parameter, i.e.0x6, = dx4, if and
only if the d, are homothetic and symmetrical convex sets (it is easy to prove
that magnification implies §36, > 0ayy,, which finally leads to the equality
dx0, = dxa4p , but the converse proposition is less obvious).

7 Connectivity, geodesics and semigroup

For being able to build wavefronts, the data of a prior metric is a necessary
but insufficient condition. We must also make sure that any point of the space
remains accessible from any other one by a series of arbitrary small dilations,
namely, in the digital case, of the unit size. Expressed in terms of distance, this
condition leads to the concept of a well linked metric space ([2], p 76).
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Definition 7 a metric space E is well linked if, for any pair (a,b) of points in
E and for any € > 0, there is a finite sequence of points in E : aj...an, with
a1 =a and a, = b so that d(a;,a;11) < e forany i < n.

Such a definition allows one to interpret the connectivity notions in terms of
metrics. In fact :

Proposition 8 For a compact metrical space, the properties of being connected
(in the sense of topological connectivity), and being well linked are equivalent (

2], » 77)

Proposition 8 validates the geodesic extraction procedures of connected com-
ponents and gives a Euclidean meaning to these digital approaches ([11], p 82)
if and only if the underlying metrics are well linked.

Intuitively, we see that non well linked metric contains some kind of vertical
walls of distances, more or less long and thick, and placed in the space. For
instance, in the Euclidean plane of co-ordinates of x and y, the sum d of the
Euclidean distance dj, plus the following ecart dg

)

do [(z,y) (/,9")] =0 if z and 2'<0 or if z and 2’ >0
do [(z,y) (2',y")] =1 otherwise

is still a distance, as the sum of a distance and of a bounded ecart, but it does
not allow one to cross the ordinates axis with dilations smaller than 1.

Choquet poposition n°8 links the connectivity of a compact set with a metric
characteristic about paths. However, image processing brings into play the dual
point of view. It uses the wavefronts which emanate from this point, but without
paying attention to the corresponding radius. The following proposition allows
one to pass from one point of view to the other :

Proposition 9 Let {0x, A > 0} be a family of symmetrical dilations from lattice
L into itself, which generate a metric on L. This metric admits geodesics if any
only if the 6, satisfy the semi group of law

5)\4_“ = 5>\5M /\,,u >0 (9)

Proof. Let us suppose that the equation 9 is correct. Therefore, considering
the |-continuity of the ¢, at the origin, we get :

< — = pr—
0 < ué,\(;” v/>\05A+“ u/>\05“ 0x =0,
Therefore, the equation 8 of the ball By () is reduced to
B)\(.T):(s)\(.%')/\ 6>\(x)
As, moreover, {0, (z),z € L} are symmetrical, they become identified with

the balls By (x) of the infered metrics. Let then z,y € £ with d (z,y) = A+ p ;
from equation 9 , we get

Y € O () = 0,05 (2) 5
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therefore, there exists an element z € £ such that z < §, (z) and y < 4§, (2), or,
considering the triangular inequality between x, y and z such that :

d(z,z) +d(zy) <A+ p=d(z,y) <d(z,y) +d(zy).

Element z is exactly at the distances A from x and g from y. When A and p
vary, element z describes the geodesics between x and y.

Conversely, let us suppose the existence of a geodesic from x to y, and let
Y < 6xyp (z). Let us consider an element z on this geodesic, in the ratio of the
distances ﬁ to x and 2= toy. As d(z,y) < A+ p, the distance from z to x
satisfies the inequality

d(z,z) d(z,y) <A or z <4, (x)

Similarly, we have z < §, (y), or as well y < §,(2), and by composition
product y < §,65 (x), so that 0x;, < 0x6,, which ends the proof. m

When coming back to Choquet proposition 8, it is enough to note that, as
the existence of geodesics is a stronger characteristic than a well linking of the
space, dilations that satisfy the semigroup 9 enable us to extract the connected
components (as soon as finite distances only are involved).

Furthermore, it is easy to notice that, when the metric lattice is discrete, the
well linking condition is equivalent to the existence of geodesics. Therefore, in
this case, the semigroup dilations 9 are the only ones that can extract arcwise
connected components.

8 geodesics and digital connections

In the previous sections, we explored various metric structures by compar-
ing them with topological connectivity (in P(R™)) or arcwise connectivity (in
P(Z™)). However, in mathematical morphology, set connectivity is replaced by
the wider concept of a connection on P(E), defined as follows [11].

Definition 10 Given space E, we call connection on P(E) any class C C P(E)
that satisfies the three following axioms :

i/ C contains the empty space : ) € C

it/ C contains the singletons : x € E = {z} € C

iii/ the union of any family of elements of C with a non-empty intersection
still belongs to C : {A; € C}, NA; #0 = UA; €C

Any set A C E is partitioned into its connected components, so that they
turn out to be the invariants of a family {,,z € E} of point connected openings,
as they are called, such that for all {z,y} € E and any A C E, we have

- Yz (A) = v, (A) or otherwise v, (A) Ny, (A) =0

-z g A=, (A)=0
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Conversely, the data of a family of openings, associated to each point of E
and satisfying these three properties is the characteristic of a unique connection
([11], theorem 2.8).

The connection concept is too wide to let us hope that all the previous results
can be extended. For instance, given a partition A of E, of classes D(x), if we
consider the connection

C={D()NA, zeR* AcP®R"}IUN

and the Euclidean distance, the existence of ultimate eroded points is not sure
as soon as some classes D(x) are topologically open. This is the reason why we
will restrict ourselves to discrete metrics, while maintaining its generality to E,
and we consider uniquely those distances that map E @ E into Z...

The relationships between metrics and connection may be considered as two
reciprocal formulations, depending whether it is wondered to what extend a
metric induces a connection or conversely. The answer to the first question is
given by the following proposition, from Ch. Ronse and J. Serra [12][10].

Proposition 11 Let E be an arbitrary set, o : P (E) — P (E) be an extensive
and symmetrical dilation, and let x € E and A € P (E). Then the limit under
iteration

s (A) :U{(a @)NA™, n> o} (10)
considered as an operation on A is a point connected opening.

Note that it is not necessary to provide P (E) with a connection beforehand.
So, even disregarding any possible arcwise connectivity, dilations by unit balls
of R™, such as square, cube, hexagon, etc ... do generate connections, that
they use to extract the connected components afterwards. But proposition 11
goes further, as it extends this characteristic to any extensive and symmetrical
dilation. ”Dilation” may even be replaced with ”increasing operation”.

We now look into the converse question, and wonder how a given connection
C on P (E) may induce a metric. Associate with every point z of E, the class
C (z) of the connected components containing = and whose intersection with
any set A C F containing z is itself connected

C(z)={C:z2€CeCxze€ACE = ~,(ANCeC\}

This class is not empty, as it contains the singleton {z}. As it is obviously
stable for the union, it admits a maximal element § (z). In order to match the
conditions of proposition 11, we have to make § symmetrical, that is to say
replace it with

a(x):5(x)ﬁg(w) where g(w):{y:xeﬁy)}

v
As x € §(x), it also belongs to 4 (x), and «(x), connected, is therefore
an element of C (z). The equation 10, applied to the dilation by a structuring
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element o (z) then leads to a new point opening, v* say, which characterizes a
new connection C*. As a (z) € C (z), we have for any set A containing point =

{z} Cla(@)nA™ c A

therefore v% (A) C v, (A). However, the inclusion may be strict. For in-
stance, if we take for E the completed digital line, for C the arc connection,
and for A a connected set containing a point at infinity, then set A remains
inacessible to any marker with finite co-ordinates. To sum up, we can state the
following

Proposition 12 Any connection C on P (E) ,where E is an arbitrary space,
induces on P (E) a wider extensive and symmetrical connected dilation, which,
in its turn (prop. 12), generates a new connection C*, which is less rich than

C.

We can see things differently, and notice that C* is the experimentally acces-
sible subset of connection C. Besides, the components of C*, or of C, happen to
be reached from the first dilation step of , when a(® = a. For instance, if we
consider the above-mentionned connection, which is induced by the intersection
of the classes D(z) of a fixed partition A, we find for any point z € F

5(z) = ‘(/S(x):a(x):D(m):a(") (z)
Y2 (4) = 7, (4)=AND(z)

and if two points in A are two different classes of the partition, their ecart is
infinite.

9 Examples of digital geodesic metrics

From the previous sections, it is clear that the semigroup structure §,6, = x4,
is unavoidable. But fortunately, a number of families {05} can be built, that
can satisfy it. Here are a few, in two or three dimensions. It is reminded that
in the discrete spaces, the semigroup 9 is equal to

6n = (61)"
but that §; (z) can change its shape from one point to another one.

Metrics of regular lattices : those are precisely the ones where d; (z) shape
does not change, i.e. which are translation invariant on a a regular grid, such
as,

in Z? the symmetrical unit square of 9 or 5 points (diamonds), or the 7 point
hexagon.

in Z3 cube (27 points), the hexagonal basis-cylinder (21 points) or the cube-

octahedron (13 points), the last one being the finest and the most isotropic.
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geodesic metrics of a first mask : In practice, the previous metrics are only
useful when the studied object is contained in a rectangular mask, Z say, which
does not happen very often. Most of the time, on the contrary, the mask has cut
out a region in a wider field, and, in order to manage this border effect, §; () is
replaced by 1 (z) N Z. The same construction is correct when Z is an arbitrary
given set, as the examples of sections 3 and 5 have shown it. Besides, iterating
a first geodesic used as an initial metric, in order to build a second one, is not
forbiden.

Non unit dilations : Let us consider now as a unit ball the dilate §,, of size
n of the unit isotropic dilation of the grid, i.e. the square 3 x 3, or the 13
voxels cube-octahedron, for instance. The procedure consists of changing the
connection, by replacing arcwise connectivity by that of the d,. It means that
the component containing a given point x is not a one piece object anymore,
but a group of objects whose dilate by §,, is in one piece.

This non unit geodesics may save considerable time in 3-dimensional pro-
cesses. Suppose for example we want to extract the arcwise connected compo-
nent A, at point z of a given set A. We can begin by eroding A by 0,, then
reconstruct it w.r. to the unit ball §,,, and ending the process by geodesic di-
lations according to the unit ball d;. For large diameters of A compared to n,
the computing time is asymptotically divided by n.

Sections and projections : As we have seen before about the kidney branch-
ings, the projection of the stack of sections pile projection normally to their
plane may be used as a basis for a tridimensional analysis. Consider for exam-
ple a 3-D set A (in R2%or in Z2), of connected component =, (A4) at point .
Let Ag and zg be the projections of A and « respectively on a horizontal plane
subspace.Then the vertical cylinder of basis the connected component of Ay (in
the 2-D sense) that includes z contains v, (A). Such a property allows an easy
extraction of 7, (A), specially when the connected components of A are rather
well separated.Beyond projection procedures, here again, it is not difficult to
find non unit dilations and the accompanying connections. But in this case,
only vertically aligned points can be gathered.

The following example illustrates this projection technique.The sequence un-
der study comprises 57 8-bit digital images of 512 x 512 pixels. They come from
a bone tissue, examined by confocal microscopy, with a one micron digital spac-
ing. In this small volume of bone, we can see three osteocytes which are located
at various depths. On both slices of 16, the nuclei appear, as well as portions
of long fibers of cytoplasm, that we are about to segment.

By taking the supremum of the 57 slices (17a) and filtering them, we keep
the three largest projections only (17b) where the three disjoint connected pro-
jections of the osteocytes are visible. Consider the vertical cylinders with these
projections as the bases, and restrict each of 57 sections to the inside of the cylin-
ders. This results in figurel8, that shows a perspective view of the extracted
cells.
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Figure 16: Sections numbers 15 (a), and 35 (b), from a stack of 57 confocal
sections of osteocytes.

Figure 17: a) Threshold version of the supremum ; b) Extraction of the three
largest objects.
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Figure 18: Perspective view of the extracted oesteocytes

In geodesic terms, these operations are equivalent to geodesic dilations by a
vertical segment, taken as the unit dilating ball. This segment size is not one,
but about fifteen points (otherwise, the whole cylinder could not be found).
Then, only objects whose vertical dilate is arcwise-connected are considered
connected, which finally yields the three largest cells of the stack.

10 Conclusion

Remarkably, the same wavefront concept in R™ or Z™ allows one to describe :
- the connected components,via its surface measurement;
- the bottlenecks, via the minima of its variation;
- the branches, via the variation of its connectivity;
- and the extremities, via through its ultimate locations;
and its application to complex 3-D histologic structures proves the outstanding
power of this tool.

From a theoretical point of view, the wavefront properties bridge the three
concepts of connection, metrics and dilation. An additive semi-group of dila-
tions is equivalent to a metric that admits geodesics, as well as to the compact
connected components of a connection. This double equivalence opens the door
to an a-priori infinite number of possibilities ; in fact, it seems up to now that
connections by dilation are the only ones to have proved their practical useful-
ness.
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