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ABSTRACT

The use of mathematical morphology in the CIE L*a*b* colour space is discussed. It is possible
to impose a total order on the colour vectors in this space by using a weighting function and
lexicographical order. An order analogous to one by colour saturation is suggested by making use
of a weighting function based on an electrostatic potential. This weighting function assigns a lower
weight to colour vectors near the colours with maximum chroma, and higher weights to colour
vectors near the lightness axis. The use of morphological operators with the colour vector order
imposed by this function is demonstrated. Finally, a top-hat operator making use of the Euclidean
colour distance in the L*a*b* space is introduced.
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INTRODUCTION

Much research has been carried out on the application of Mathematical Morphology to colour images, mostly
based on defining orders for the vectors in the RGB colour space (Comer and Delp, 1999). Use of these
formulations usually presents the disadvantage of having to arbitrarily choose one of the red, green or blue
channels to play a dominant role in the ordering, although attempts have been made to overcome this limitation
through the use of, for example, bit-interlacing (Chanussot and Lambert, 1998). The application of mathematical
morphology in a colour space which has an angular hue component (Hanbury and Serra, 2001b) can overcome
this disadvantage, allowing a non-constrained choice of the dominant hue, or permitting the implementation of
rotationally invariant operators independent of the hue.

In 1976, the International Commission on Illumination (CIE), introduced the L*a*b* and L*u*v* colour
spaces, which were designed to be perceptually uniform and device-independent (i.e. independent of the devices
which produce and display the image). These spaces also allow one to take into account the illumination
characteristics of an image. Due to its device-independence, the L*a*b* space is ideal for exchanging colorimetric
measurements between different observers. Nevertheless, a transformation from the RGB space to the L*a*b*
space results in an irregularly shaped gamut of colours, its shape being dependent on the illumination conditions.

It is possible to show that in order to avoid introducing false colours when applying morphological operators
in a vector space, it is sufficient to find an injective function mapping the vectors to a complete lattice. In
other words, one needs a function which associates a unique numerical weight with each vector in the colour
space, allowing the vectors to be ordered by using their weights. As it is very difficult to find such a function, the
requirements can be made less demanding through the use of a lexicographical order (Hanbury and Serra, 2001a).

In the L*a*b* space, a measure of colour saturation does not exist, but is it possible to introduce one? In this
article, we consider the use of a weighting function to simulate a colour order by saturation.

MATERIALS AND METHODS

THE L*a*b* SPACE

The principal advantage of the L*a*b* space is its perceptual uniformity. Two colours which appear similar to
a human observer lie close together in the L*a*b* space (their separation is measured by the Euclidean distance).
The transformation from the RGB to the L*a*b* colour space is done by first transforming to the CIE XYZ
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space, and then to the L*a*b* space (Wyszecki and Stiles, 1982). When one captures an image using an RGB
device, each colour in the image is specified as a triplet of values giving the amount of each of the device-
specific primaries (red, green and blue) in the colour. The XYZ coordinates of these device-specific primaries
can vary between devices, hence the RGB image is device-dependent. When one transforms from RGB to
XYZ coordinates, the coordinates of the device-specific primaries are taken into account, thereby making the
transformed coordinates device-independent. The white point (nominally white object-colour stimulus) of the
image, which is the colour obtained when the R, G and B coordinates assume their maximum values, depends
on the illumination of the scene captured. The white point is taken into account by both the RGB to XYZ, and
XYZ to L*a*b* transformations. If one knows the illumination conditions used when acquiring the image, then
the white point can be directly specified. If the illumination conditions are unknown, a hypothesis must be made,
the most common being to choose the CIE D65 daylight illuminant, which has been done for the transformation
in this article. Alternatively, algorithms exist for estimating the white point of an image (Risson, 2001).

In the L*a*b* colour space: L � represents the lightness; a � encodes the red-green sensation, with positive a �
indicating a red colour, and negative a � a green colour; and b � encodes the yellow-blue sensation. The grey-levels
or colourless points are located on the lightness axis

�
a ��� 0 � b ��� 0 � , with black at L ��� 0, and white at L ��� 100.

In a cylindrical coordinate representation of the space, if we take the lightness L � as the “vertical” axis, then in
the polar orthogonal space, one has the hue h � , measured anti-clockwise from the positive a � axis (different to the
HLS or HSV hue H); and the chroma C � , the perpendicular distance to the L � axis. These cylindrical coordinates
are a more convenient representation for the solution of some problems.

The colour difference ∆E �ab between two colours, each expressed in terms of L � , a � and b � is given by the
Euclidean metric

∆E �ab �	� � ∆L � � 2 
 �
∆a � � 2 
 �

∆b � � 2 � 1
2

(1)

In the cylindrical representation, the Euclidean distance between two colours
�
L �1 � h �1 � C �1 � and

�
L �2 � h �2 � C �2 � , is

∆E �ab �	� � ∆L � � 2 
 C �1 
 C �2 � 2C �1C �2 cos
�
h �1 � h �2 � � 1

2
(2)
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Fig. 1: (a) The a � b � histogram which results from transforming an RGB cube to the L*a*b* space. (b) The values
of the extrema of the chroma C � � 
 � and their corresponding lightness L � ��
 � as a function of hue h � .

We now consider the shape characteristics of the colour gamut in the L*a*b* space. To visualise the
distribution of the points in the RGB space when transformed to the L*a*b* space, a two-dimensional chrominance
histogram is calculated by transforming from an RGB colour cube containing points equally spaced by 1/256

throughout the region � 0 � 1 � 
 � 0 � 1 � 
 � 0 � 1 � . For each point � R � G � B � , the resulting coordinates a � and b � are
rounded to the nearest integer, and the bin � a ��� b ��� of the histogram is incremented. A plot of the histogram is
shown in figure 1a. In this image, the grey-level at each point � a � � b � � indicates the number of pixels in the RGB
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cube mapped to this point. In the full three-dimensional L*a*b* space, these pixels would be mapped to different
lightness values. However, this two-dimensional histogram allows one to make some useful observations: Firstly,
the largest number of points are found at the origin, the position of the lightness axis; and secondly, the distribution
of colours is not circular — the maximum value assumed by C � depends on h � .

The extremal points of the colour gamut in the L*a*b* space are those points which are furthest away from
the lightness axis, i.e. the points with the maximum values of C � . These extrema are visible on the histogram in
figure 1a. It is, however, interesting to find the lightness value corresponding to each of these extremal points.
For the transformation from the RGB cube, for each integer value of h � , the point with the largest chroma C � was
found. In figure 1b, the value of C � is plotted for the extremal points corresponding to each integer value of h � ,
along with the lightness L � of the extremal point. These functions are henceforth denoted as Cext

�
h � � and Lext

�
h � � ,

where the values can be read off the graph for integer values of h � , and interpolated for non-integer values.

MATHEMATICAL MORPHOLOGY

We aim to order the colour vectors in the L*a*b* space in a way analogous to an order by colour saturation.
Hence, equal prominence should be given to the vectors closest to the extremal points of the colour gamut, and
the position of the lightness axis should be taken into account. Due to the irregular shape of the colour gamut,
one cannot simply define the supremum to be the colour with the largest value of C � , as the maximum possible
value of C � varies with hue. We also cannot use the Euclidean distance of colours from the edges of the colour
gamut, as the lightness axis is not in the geometrical centre of the colour gamut, and hence the maximum value
of this distance function does not coincide with the lightness axis. Use of two-dimensional homothetic distance
functions centred on the lightness axis in the planes perpendicular to this axis does not allow one to the take
extremal points into consideration, and gives an equal weight to all the points on the edge of the colour gamut.

We wish to define a weighting function which assigns a weight to each colour as a function of its distance to
an extremal point. The weighting function w associates a weight wi with each colour vector fi

w : � 3 � � : fi � �
L �i � h �i � C �i � � wi

where a lower weight implies a colour closer to the extremal points, and a higher weight indicates a colour closer
to the lightness axis. The best solution found is to take the weighting as the value of an electrostatic 1/r potential
function in the L*a*b* space obtained by placing “charges” at various astutely chosen positions. Note that the
electrostatic potential model was chosen for convenience. We are in no way modeling a physical situation, only
making use of a concept which is well understood to simplify the problem at hand. We therefore do not make use
of any units or constants from electrostatic theory. The values and positions of the charges in the L*a*b* space
are, of course, heuristically chosen to produce the most useful potential function. As the numerical values of the
potentials are not important, the magnitudes of the charges can be adjusted to produce values in a useful range.

The potential is set up in the L*a*b* space by placing a line of positive “charge” on the (vertical) lightness
axis, thereby ensuring that the surrounding greys have the highest potential; and placing negative “charges” at
the extremal points of the colour gamut, imposing minima on the potential function. The potential due to a line
charge can be determined analytically. Given a line charge of length l, and a point on the line at a distance x from
the line centre, the potential V � at a point with a perpendicular distance of d from point x on the line charge is

V� � λ ln � b 
�� b2 
 d2 � � λ ln � � a 
�� a2 
 d2 � (3)

where λ is the charge per unit distance, a � l
2 � x and b � l

2

 x. Note that for a numerical implementation, it

is not advisable to combine the two log terms into one, as this leads to numerical instability. For the lightness
axis, we aim to give a slightly lower potential to lighter greys. This is accomplished by using a positively charged
line of length 200 lightness units, with the L � � 0 point of the lightness axis placed at the centre of this line. To
summarise, at the point i with coordinates

�
L �i � h �i � C �i � , the potential due to the positive line charge is calculated

using equation 3 with λ � 1, l � 200 and x � L �i and d � C �i .

The line of negative “charge” at the extremal points is approximated by placing equidistantly spaced charges
of equal magnitude at positions given by the functions Lext

�
h � � and Cext

�
h � � . Because of the variations in the

distance between these charges and the lightness axis, it is necessary to take into account the spatial distances
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between the changes, one cannot simply separate them by equal angular distances. In summary, we construct the
line of extremal charge as a set of n point changes of magnitude � q, having coordinates � Lext

�
θi � � θi � Cext

�
θi � �

with i � �
1 ������� � n � . The values of the θi are chosen so that the charges are equidistantly spaced, that is to say that

the Euclidean distance between each pair of neighbouring charges is equal to a constant dext. The potential V � at
point i due to these charges is

V� � � n

∑
j � 1

q
r j

(4)

where r j is the Euclidean distance from an extremal point j to the point i at which the potential is being calculated.
The distance r j is given by equation 2. The positions θi of the charges were calculated with dext � 2, and the
charges were assigned unit magnitude (q � 1). The values of dext and q give the level of approximation of
the line of negative charge by the set of points. Values of dext � 1 and q � 1/2, for example, would give a better
approximation, but with a longer calculation time. In a practical application, the calculation time is not necessarily
critical — one could initially calculate the weights for all the colours in the L*a*b* gamut once, and then use a
look-up table to associate them with each pixel in an image.

The weight at point i is then calculated as the sum of these two potentials (equations 3 and 4), i.e. w i �
V� 
 V� . A diagram of the equipotential lines due to the suggested charge distribution on a slice along the
lightness axis in the L*a*b* space is shown in figure 2. Colours along each line have identical weights.

Fig. 2: The equipotential lines for a vertical slice through the L*a*b* space. The hue value on the left of the
lightness axis is 180 � , and on the right 0 � . The potential decreases from the centre outward.

In order to apply a morphological operator to an image in the L*a*b* space, we first calculate the weight
for each colour vector in the space. A weight image corresponding to a colour image can then be produced by
replacing each colour pixel with its corresponding weight, as shown in figure 3. In the weight image, the grey-
level represents the weight of the colour vector, and hence darker pixels indicate colours which are closer to the
extremal points.

(a) (b)

Fig. 3: (a) The example image and (b) its weight image.

With the potential function approach, we have created a lattice of equipotential surfaces. The colour vectors
making up an equipotential surface have not yet been ordered. When defining colour morphological operators,
it is advantageous that no pairs of vectors exist for which an order is not explicitly specified. To obtain such a
total ordering of the vectors, we make use of the lexicographical order. The order of the equipotential surfaces is
placed at the first level. For two vectors in the same equipotential surface (i.e. having equal weights), we say that
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the one with a higher lightness value is larger than the other. If the lightness values are also identical, then the
hue must be taken into account. This lexicographical order for two arbitrary colour vectors f i and f j is

fi � f j if

���� wi � w j
or wi � w j and L �i � L � j
or wi � w j and L �i � L � j and

�
hi � h0 � ��� h j � h0 	 (5)

where h0 is an arbitrarily chosen hue origin, and a1 � a2 represents the acute angle between angles a1 and a2,
calculated as

a1 � a2 ��
�� a1 � a2 � if � a1 � a2 ��
 180 �
360 � � � a1 � a2 � if � a1 � a2 ��� 180 � (6)

In a practical application of a morphological operator to a “normal” image, the second and third levels of the
lexicographical order are rarely used (Hanbury and Serra, 2001a). It is, nevertheless, possible to influence the
level of usage of these lower levels by quantising the weights in the first level. If the weights are quantised so as
to be represented by integer values from 0 to N, then it is clear that when N has a smaller value, the lower levels
of the lexicographical order have a larger influence on the result.

Once these orders have been defined, the morphological operators are defined in the standard way. The vector
erosion of an image f at point x by structuring element B is

εB f
�
x � � �

f
�
y � : f

�
y � � inf � f � z � � � z � Bx � (7)

and the corresponding dilation is obtained by replacing the inf by a sup. An opening γB is an erosion followed by
a dilation, and a closing ϕB is a dilation followed by an erosion.

One can create an operator analogous to the grey-scale top-hat (Serra, 1982) for use on images in the L*a*b*
space. The L*a*b* space top-hat introduced here produces a grey-scale image which encodes the colour distances
between pixels in the initial L*a*b* colour image and either its opening or closing. The closing top-hat is

THϕ
�
x � � ∆E �ab

�
f
�
x � � ϕB f

�
x � �

for all points x in f , and the opening top-hat is obtained by replacing ϕB f
�
x � by γB f

�
x � . The notation ∆E �ab � ci � c j �

indicates the colour (Euclidean) difference between vectors ci and c j (equations 1 and 2). Notice that as the
distance is always positive, the order of the images passed to the operator does not matter.

RESULTS

The image to which the operators are applied (figure 3a) was purposely chosen as it contains highly coloured
regions — the mosaic tiles — separated by grey lines. The result of the erosion, dilation and closing operators are
shown in figure 4a–c. The operators produce the expected results, with the dilation operator enlarging the tiles,
and the erosion operator enlarging the regions between the tiles.

An example of a closing top-hat is shown in figure 4d. The closing top-hat, as expected, extracts the lines
between the mosaic tiles. The grey-levels of the pixels are proportional to the colour distance between the tiles
and the lines surrounding them. Hence, the lines surrounding the bright orange tiles are represented in the top-hat
image by a higher grey-level than those surrounding the light blue tiles, for example.

DISCUSSION

The colour vectors in the L*a*b* space are ordered by using an electrostatic potential function obtained by
placing “charges” on the lightness axis and at the extremities of the colour gamut. The resultant order of the
equipotential surfaces is analogous to an order by colour saturation. The dilation operator therefore chooses the
most saturated pixel, and the erosion operator the least saturated pixel in the structuring element. One should be
aware, however, that with two adjacent regions with different colours (hues) but similar weights (saturations) the
choice between the colours can appear arbitrary.
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(a) erosion (b) dilation

(c) closing (d) closing top-hat

Fig. 4: An (a) erosion, (b) dilation and (c) closing of the example image with a square structuring element of
size 2 (5



5 pixels). (d) The closing top-hat of the example image with a structuring element of size 2.

A top-hat operator is also introduced, for which the resultant grey-level image encodes the Euclidean colour
distances between the initial image and its opening or closing. This operator can be used to extract small regions
of lower or higher saturation than their surroundings in order to characterise the colour difference with their
surroundings. This demonstrates an application making use of an order giving equal importance to every hue,
and of the perceptual uniformity of the L*a*b* space.

The potential function is easily adaptable to other L*a*b* colour gamuts obtained under different illumination
conditions. The line of positive charge should always be placed on the lightness axis, and one simply has to find
the positions of the extremal points in order to place the negative charges.

In summary, this technique allows one to impose an order analogous to an order by saturation on the colour
vectors in the L*a*b* space, allowing the use of mathematical morphology operators giving equal importance to
every hue.
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