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Abstract

A panel of several recent studies on colour processing at CMM is presented, and re-
ferred to G. Matheron activities. A first section introduces new representations of the
triplet "luminance, saturation, hue" that are consistent with a few basic quantization
prerequisites. One of these representations, which derives from the L; norm, produces
alignments in luminance/saturation histograms. A physical model of light propagation
provides an interpretation of such alignments. The next section starts from the partic-
ular role of the saturation, which balances the opposition between luminance and hue,
and uses it to combine the segmentations of the three components into synthetic colour
segmentations. A new section deals with mathematical morphology applied to image data
distributed on the unit circle, such as the hue. It is followed by another section where the
question of colour images interpolation is treated by means of Hausdorff geodesics. The
last section proposes a morphological approach to multivariate analysis of heterogeneous
data, and applies it to the segmentation of colour images coded by palettes.

Key words : colour, segmentation, saturation, norms, light propagation, unit circle,
interpolation, multivariate analysis

1 Introduction

During his long and fruitful career, Georges Matheron never tackled the two themes of seg-
mentation and colour processing of images. At the beginning of the nineties, when I was
entering the first theme via connected filters, I asked him why he had avoided them. He told
me that he could not take up working on all possible problems, and after a silence, added
with his marvellous tactful smile: ”besides, I guess it is already left to you”.

Indeed, G. Matheron was partly right. The work on connected filters contained the seed
of a morphological theory of segmentation that arose ten years later [31]. But by this time,
my knowledge about colour processing was just a matter of two ideas. First, one represents
colour by three grey images, in RGB or HLS modes, second, the compressed bit streams of
grey tone images have to be multiplied by two (and not by three) when passing to colour.



I entered the field of colour processing quite accidentally. In 1999, Allan Hanbury, who
was one of my Phd students, was developing a methodology for an automatic classification of
pieces of woods according to their textures (veins, knots, ...). The directional features were,
of course, preponderant and led us to elaborate morphological tools for circular data [11].
Now, in imagery, the two major situations where such data appear, are orientations and hues.
Therefore, we decided to try also our algorithms on colour representations involving hue, i.e.
on the two HSV and HLS systems. It rapidly led us to a critical analysis of both systems, and
to propose more consistent ones [30][15]. In the meantime, A. Hanbury defended his thesis
and left the Centre de Morphologie Mathématique (CMM, in brief) in 2002. I carried on the
approach with Jesus Angulo, another Phd student at CMM, whose thesis subject did not
really involve colour processing, but who was enthusiastic about the question. Together, we
started from the new colour systems and discovered that, in the 3-D histograms generated by
the L representations, the pixels of an arbitrary image used to present specific alignments.
What did it mean ?

The new representations had particularly modified the definition of the saturation param-
eter, allowing us to perceive his meaning more clearly. With J. Angulo, we decided to exploit
this parameter to balance luminance versus hue, when segmenting colour images [2].

This thread of ideas is not the only one we developed during these recent years. Since
I was thrown into colour problems, it was an excellent opportunity to have a look at RGB
representations and to those based upon palettes. I developed the first theme jointly with
Marcin Iwanowski [12], and the second with Mariuscz Mlynarczuk [29], both polish Phd
students at CMM.

The text which follows surveys these studies on colour image processing. I shall try and
show how my way of thinking was pervaded by G. Matheron’s one; and since Matheron used
to say that the pedagogical order must be the reverse of that of the discovery, we will begin
by the most recent developments.

2 The 3-D polar representations of the colour

2.1 Light intensities and gamma correction

Consider a television receiver. It uses three different colour representations. On the one side,
the input Hertzian signal is coded as one grey image plus two other ones, associated to green-
red and blue-yellow contrasts (i.e. one luminance and two chrominances). On the other side,
the image on the monitor is obtained from three electrical signals, which excite three layers of
green, red and blue photo-receivers. These two representations are quite different, although
technically sound for their respective purposes. However, the manufacturers take none of
them for the user’s interface, and prefer human adjustments based on light (luminance),
contrast (saturation), and, in case of an old receiver, from hue. Hence, this last triplet turns
out to be the simplest one for human vision.

What are the relationships between these various representations? Do the technological
steps modify the initial light that enters a device? Colour image processing rests on a few
basic operations (addition, comparison,..) and properties (increasingness, distances..). Have



these tools a physical meaning? In colour imagery the basic notion is the spectral power
distribution (SPD) of the light radiating from or incident on a surface. This intensity has
the dimension of an energy per unit area, such as watt per m?. When the light arrives
at a photo-receiver, this sensor filters the intensities of each frequency by weighting them
according to fixed values. The sum of the resulting intensities generates a signal that exhibits
a certain “colour”. The CIE (Commission Internationale de ’Eclairage), in its Rec 709,
has standardized the weights which yield the triplet Rrgg9, G709 Brog [8]. As energies, the
intensities are additive, so that all colours accessible from an RGB basis are obtain by sums
of the primary colours R, G, and B and by multiplications by non negative constants.

The exploration of the spectrum is lower bounded by R = G = B = 0 (zero energy)
higher bounded by a maximum red Ry, green G and blue By that are given by the context
(illumination, technological limits of the sensors, or of the eye, etc.) in which we work.
Generally, each technology fixes the three bounds, which therefore define the reference white,
and then introduces the reduced variables

r:ﬂ, g:g, b=£. (1)
Ry Gy By

The digital sensitive layers of cameras transform the light intensities into voltages; con-
versely, the cathodic tubes (CRT) and the flat screens that display images return photons
from the electrical current. Now, their response is not linear, but a power function of the
input voltage whose exponent ~y, (gamma), varies around 2.5 according to the technologies.
If we want the light intensities of the CRT to be proportional to those of the scene itself, the
gamma effect has to be compensated. In video systems, this gamma correction is universally
at the camera. The Rec. 709 of CIE proposes the following correction function

r’ = 4.5r r <0.018 )
' =1.099794% —0.099 r > 0.018

that we write here for the reduced red intensity r, and wherel /v = 0.45. The same transfer
function is applied to both green and blue bands.

Fig. 1, drawn from [24] depicts the graph of Rel.(2). The variation domain [0, 1] is the
same for the reduced intensities (r) as for the video colours ('), which implies that the white
point Ry Go By is left invariant. The linear beginning in Rel.(2) minimizes the effect of the
sensor noise. An ideal monitor should invert the transform Rel.(2). Indeed, they generally
have neither linear segment, nor gamma exponent equal to1/0,45 [24].

Figure (1) shows that for r closed tol, the graph looks like a straight line. More precisely,
the limited expansion

(1—u)1/7:1—%+6(u) (3)
for small u, leads us to replace the second equation (2) by
7" = (0.55 4 0.45r)1.099 — 0.099 (4)

i.e., numerically
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Figure 1: Gamma correction function.

r 0.9 0.8 0.7 0.6 0.5
v’ 0949 0.895 0.837 0.774 0.705
P 0950 0.901 0.851 0.802 0.753

Tt 01% 0.6% 14% 2.8% 4.8%

r’

In comparison with the noise of the video systems, we can consider the approximation P
is perfect for r > 0.8 and excellent for 0.6 < r < 0.8.

2.2 Colour Vector Spaces

Their linearity provide the intensities r, g, b with the structure of a 3 dimensions vector space,
or rather of the part E which is limited to the unit cube [0, 1] x [0, 1] x [0, 1] of R3. For colour
image processing purposes, it would be wise to go back from the video bands (77, ¢’, ') to the
reduced intensities (7, g, b) by the inverse transform of Rel.(2). When starting from the usual
3 x 8 bits (', ¢’,b") images, the best should probably be to code in 3 x 16 bits for computation
(or in floating variables). But as a matter of fact, people keeps the (r',¢’,0’) video space,
which is implicitly modelled as a part of a vector space, from which one builds arithmetic
means, projections, histograms, Fourier transforms, etc., which often gives significant results.

What are the real consequences of the gamma correction Rel.(2) on the processing of
colour data? Formally speaking, one can always consider the unit video cube (7, ¢’,b') as
a part, E’ say, of a 3-dimensions vector space. This allows us to formulate operations, but
their physical interpretations demand we come back to the intensities (7, g, b).

Fig. 2 depicts the unit cube E’. The vector &', of coordinates (r/,¢’,b’) can also be
decomposed into two orthogonal vectors ¢ and I/ of the chromatic plane and the a-chromatic
(or gray) axis respectively. The latter is the main diagonal of the cube going through the
origin O and the chromatic plane is perpendicular to the gray axis in O. The two vectors &
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Figure 2: Chromatic plane and a-chromatic axis.

and I/ have the following coordinates

3¢ =2r—¢g —-V0,2¢ =0 —1" 20 — 1" — ¢') 5
3l7=(7“/+g/+bl,T/+gl+bl,rl+gl+b/) ()
Consider the red band /(z) over a zone Z in a colour image. What meaning can we give
to the average red in Z 7 As we just saw, the only average that has a physical meaning is the
quantity 7 = % [ (r'(2))” dz, which needs to be corrected into #'/7 for display purposes (for
the moment we neglect the constants 1,099 and 0,099 in Rel.(2)). On the other hand, the
usual segmentations aim to split the space into regions Z where the colour is nearly constant.
Then at each point z € Z, we can approximate 7(z) by the limited expansion

oy =top = 122 gy (22 )

where 7 = L [ r/(2)dz. Under averaging in Z, the coefficient of the 7 term in the right
member becomes zero, so that

(Y =7 e () (6)

Therefore, the arithmetic mean of the video red r’ equals, at the second order, the mean
of the red intensity r followed by the gamma correction. The result remains true when the
coefficients of Rel.(2) are added, when the the average is weighted, and also for the dark
zones Z where the first Rel.(2) applies. It extends to the greens and blues. Rel.(6) turns out
to be a theoretical justification of the "mosaic" based image segmentations (e.g. waterfall
algorithm).

2.3 Brightness

From the point of view of physics, brightness is nothing but the integral of the power spectrum,
i.e., here, the sum of the three components r, g, and b, that stand for this spectrum. For
colorimetric purposes, this sum has to be weighted relatively to the spectral sensitivity of the



eye. The CIE Rec. 709 defines a white point and three weighting functions of the spectrum
which lead to the variables Rvgg, G7o9 and Brgg, then to the luminance

Y709 = 0.212R709 + 0.715G709 + 0.072B79 (7)

and to the luminance Yy of the associated white point. The three coefficients of Rel.(7)
are related to the brightness sensitivity of the human vision and have been estimated by
colorimetric measurements on a comprehensive population. The luminance Y79, as a linear
function of intensities, is an energy (watts/m?).

Human vision responds to intensities in a logarithmic way, according to laws of the type
di/i = constant. Just as we took into account the spectral sensitivity of the eye, we should not
ignore its energetic sensitivity. Now, by an amazing coincidence vision response to intensity
is closed to the gamma correction of Rel.(2) : for example, when the luminance of a source
is reduced to 20%, the eye perceives an intensity reduction of 50% only. Therefore, following
many authors, we can consider the transforms

= Tl/y g/ _ gl/y by — bl/y (8)

for v ~ 2.2 as generating perceptual intensities . For example, the Rec. BT 601-E proposes
the luma yg, as a perceptual brightness measurement

Yeo1 = 0.2997" +0.587¢" 4 0.1440'. (9)

However, this luma, as established from video values has not an energy dimension, and not
any more the deriving additivity properties. The CIE follows the same direction, but defines
the lightness [* by taking a slightly different exponent

Ir = 116(@)1/3 — 16 Y > 0.0089Yiy.
Yw

As regards the operations of segmentation in image processing, the situation is different.
They do not hold on a perceived brightness, but on that of the object under study. In
microscopy, the histological stainings usually range from blue to violet; the spectrum of a
sunset, or that of a human face have nothing to do with the weights given to r, g, and b in
Rel.(7) or (9). Thus in the absence of a priori information on the spectra of the objects under
study, the purpose of segmentation leads us to take as brightness a symmetrical function of
primary colours.

As regards the perceived energies now, consider, in the intensity space E, a vector x whose
direction is given by x, = 7,, go, b, but whose intensity varies, i.e.

z = (A0, Ago, Abo) A € [0, Amax]

The point x describes the segment S which begins in O, goes through (7., go, bo) and ends
on the edge of cube E. In the video space E’ there corresponds to x the point z’ :

2 = (o), (Ago) /7, (Abo) /) = A7z (10)



with aj = réh, gé/v, b(l)h. Similarly, the point 2’ describes a segment S’ in E/. When =z

varies, if we want its perceptual brightness to seem additive, then Rel.(10) implies that the
corresponding brightness of 2’ is a linear function of the three primary components. Finally,
since this "image processing brightness" has to vary from 0 to 1, as r and 7’ do, the only
possibility is to take for it the arithmetic mean m’ of the primary colours :

1
m'=§(T'+g'+b'). (11)
Put N = A7, The two expressions

Im(z1) —m(z2)] = [A1 — A2l m (o)

' (ah) —m'(a)| = AT = 2| (af)

turn out to be different distances in segments S and S’ respectively. The exponent 1/
provides the second one with a meaning of perceptual homogeneity. But image processing is
more demanding, as we must be able to express that a colour point E’ (or more generally
a set of points) gets closer to another even when these two points are not aligned with the
origin. Now, the mean (11) is nothing but the restriction to the cube E’ of the L; norm,
which is defined in the whole space R3 (i.e. for 7/, ¢/, b’ € [~00,+0cd]) by taking a = 1 in the
relation

n (@) = (7 @] + g @)+ @)
(This Rel.(12) introduces indeed a family of norms as soon as a > 1. For a@ = 2, we obtain
the Euclidean norm Lo, and for av = oo, the "max" norm). In a vector space V, any norm n
generates a distance dy, (see [9], section VII-1-4) by the relation

a>1 (12)

dy, (m’l,xé) =n (33'1 — CE/Q) 2y, b eV (13)

Therefore L; is a distance, as well, of course, as its restriction to the unit cube E’.

Thus, for a = 1, both brightness m/(z’) and distance d (2}, z5) = m/ (|2} — 2%|) in E
derive from a unique concept. This latter relation is important, as in segmentation a number
of algorithms which were established for numerical functions extend to vector functions when
a distance is provided (e.g. watershed).

2.4 Saturation

The CIE was more interested in various formulations of the brightness (luminance, lightness
...) than in saturation, that it defines as "the colourfulness of an area judged in proportion
to its brightness". In other words, it is the concern of the part of uniform spectrum (i.e. of
gray) in a colour spectrum, so that any maximal monochromatic colour has a unit saturation
and so that any triplet » = g = b has a zero saturation.

Intuitively, what the CIE means here is clear, but its definition of the saturation lends
itself to various interpretations. From a given point x € FE, one can draw several paths
along which the colour density varies in proportion to brightness. For example, in Fig. 2,



supposed to represent cube E, we can take the perpendicular xc to the chromatic plane, or
the perpendicular zl to the gray axis, or again the axis Oz, etc.. Which path to choose?

Indeed, these ambiguities vanish as soon as we set the context in the chromatic plane.
The cube F is projected according to Hexagon H centered in O. Consider a point z, € F,
of projection ¢g in H, and such that ¢y # O. Following the CIE, we define as a saturation
any non negative function along the axis Ocq that increases from O; in O, it equals zero
(pure gray) and has its maximum value when the edge of Hexagon H is reached, in ¢max
say (saturated colour). The hue remains constant along the segment [0, ¢max], and the hue
of the opposite segment [0, max| is said to be complementary of that of segment [0, cmax]-
For a point ¢ € [0, ¢pax), we have ¢ = Acg, 0 < X < 1. Thus, given ¢y € H, the saturation
s(c) = s(A¢g) is a function of A only, and this function is increasing.

We have to go back to the 3-D cube F, as point cg, projection of zq, is just an intermediary
step (moreover ¢g ¢ E).The saturation s (zg) of point zg € E is then defined by

s (20) = 5 (co)

Note that when a point x € E moves away from the chromatic plane along the perpendicular
coxg to this plane, its gray proportion increases, but its saturation s (z) does not change: it
is indeed a matter of chromatism and not of energy of the light intensity.

As point ¢ describes the radius [0, émax] which is at the opposite of [0, ¢max] in the chromatic
plane, we have

ce [Oaémax] — C= )\CO /\(Emax) < A < 0

where A indicates the proportionality ratio, now negative, between ¢ and ¢g. This purely
vector equivalence admits a physical interpretation if we extend the definition of the saturation
to all diameters D (cg) = [0, Cmax] U [0, Cmax] , co € H, of the hexagon H (saturation was
previously introduced for radii only). This can be done by putting ¢ € D (cp), s(c) =
s(Acg) = s(|A|cp) . Two opposite points have the same saturation, and more generally if
¢1 € [0, tmax] and ca € [0, Cmax], then ¢1 + ca = (A1 + X2) ¢g, with Ay > 0 and Ay < 0. As s is
increasing we have

¢1 € 10, Cmax] 2 € [0, Cmax] = s(e1+c2) <s(c1)+s(ca). (14)

When ¢ = ¢pax and ¢g = Gpax we find in particular Newton’s disc experiment, reduced to
two complementary colours.

When considering the saturation in the video cube E’, the conditions of increasingness of
s’ along the radii (now of H') and of its nullity on the gray axis are still valid. They must be
completed by the two requirements of image processing, namely the symmetry w.r.t. v/, ¢, 0/
and the fact that §'(2} — 2%) must be a distance in E’.

We saw that the mean m’, in Rel.(11), was the Lj norm expressed in the unit cube E’,
and that 3m/ (2’) was both the norm of 2’ and of its projection I on the gray axis, i.e.

L1 (:c') =1 (l') = 3m/ (:1:')



It is tempting to keep the same norm for the hexagon H’ of the chromatic plane. By using
Rel.(5) we find

s (') =Li(d) = % HQT' —q - b" + }2g' —b - r" + ‘21)’ -7 —g'” . (15)

By symmetry, s’ (') depends on the three functions max’ = max(r', ¢’,b," ), min’ = min(r',¢',b,),
and med = mediane(r’,g’,b,) only, which gives

3 (maz’ —m/) if m > med
s = (16)
S(m! —min') i m < med
On can find in [30] the derivation yielding s', and that of the following expression h’ of the
hue (which avoids to bring trigonometric terms into play) ,

1
h/=g )\+§—(—1)

smax' + min' — 2med’
25

(17)
with A equals

Oifr>g>b 1lifg>r>b 2ifg>b>r
Jifb>g>r 4iftb>r>g 5ifr>b>g.

The hue //, as a coordinate on the unit circle, is defined modulo 27. The value A’ = 0 in
Eq.(17) corresponds to the red. For s = 0, colour point lies on the gray axis, so that its hue
is meaningless. The inverse formulae are given in [15], and the detailed proofs may be found
in [30].

The relations (15) and (13) entail that s(c¢} — ) = L1 (¢} —¢) is a distance in the
chromatic plane, which therefore brings into play both saturation and hue. On the other
hand, as L; is a norm, Rel.(14) becomes true for all triplets ¢}, ¢, and ¢} + ¢, that are on a
same diameter of H'. Remark that here the L1 norm is the concern of the projections ¢, the
norm of the vectors 2’ themselves being their arithmetic mean. Finally, the above comments
apply also to the Euclidean norm and to the max-min, which both induce distances in the
chromatic hexagon H'.

When passing from the video variables to the intensities, a first result is obtained by
observing that the averaging of the saturation s’ follows the same law than that of the
brightness m’, namely Rel.(6), in the zones Z where the colour varies weakly. Moreover, the
mapping z{, = (r{, gb, by) — z0 = (14, g0, by) shows that 2’ = Az{ becomes z = Xz, hence

s'(2') = L1 (') = AL1 () = As'(2() < s(x) = L1 (¢) = ALy (co) = As(wo).

In other words, the Li norm is increasing on the radii, and is zero for the grays, on both
chromatic hexagons H of the intensities and H’ of the video variables. Thus it represents a
saturation in both spaces. It seems difficult to go further, as two points zp,z] € E’ whose
projections ¢ and ¢} lie on a same radius of H' may have homolog points zg and z; € E
whose projections are not always aligned with O.



2.5 Two other norms

How to build polar representations which be not contradictory with the previous require-
ments? Besides the L1 norm, we can think of two ones. Firstly, the Euclidean norm Ls. In
practical image processing, it turns to be less convenient than the L; norm, which suits par-
ticularly well to linear and morphological operations, and provides nice inverses. In addition,
the associated 2-D histograms are rather unclear (see Fig. 4).

Another possibility is to correct the classical HLS system [16], by replacing its saturation
by maz(r,g,b) —min(r,g,b). In the whole space, the quantity maxz — min is a semi-norm
only: two distinct vectors ¢ and ¢, whose difference ¢ - ¢’ is a gray have the same maxz —min
[15]. However, in the chromatic plane, max — min becomes a norm. It can be used for the
saturation in parallel with m’ for the brightness. This is what we will do below each time
max — min norm is introduced.

Finally, the norm and distance based approach presents the significant advantage that
it separates the variables : two points xj and z}, € E’ which have the same projection on
the chromatic plane (resp. on the gray axis) have the same saturation (resp. the same
brightness). However, the last property, on brightness, vanishes when the three bands are
given different weights in the means m or m/.

2.6 The classical polar representations

Even though the transformation from RGB to hue, saturation and brightness coordinates
is simply a transformation from a rectangular colour coordinate system (RGB) to a three-
dimensional polar (cylindrical) coordinate system, one is faced with a bewildering array of
such transformations described in the literature (HSI, HSB,HSV, HLS, etc. ). Most of them
date from the end of the seventies [33], and were conceived neither for processing purposes,
nor for the current computing facilities. This results in a confusing choice between models
which essentially all offer the same representation. The most popular one is the HLS triplet
of System (18), which appears in many software packages. The comments which follow hold
on this particular model, but they apply to the other ones. The HLS triplet derives from
RGB by the following system

( ! _ max(r’,¢’,b')+min(r’,g',b’)
HLS — 2
maX(T’,g’,b’)fmin(T’,g’,b’) . /
max(r’,g" b )+min(r’,g’ b if HLS < 0.5 (18)
/ —
SHLS = max(r’,g’.b)—min(r’,g't) e g~ 5
3—max(r’ g’ b')—min(r’ g’ b') 1 HLS = V-

One easily checks that the HLS expressions do not preserve the above requirements of
linearity (for the brightness), of increasingness (for the saturation) and of variables separation.
The HLS luminance both RGB triplets (1/2,1/2,0) and (0,1/2,1/2) equals 1/4, whereas that
of their mean equals 3/8, i.e. it is lighter than both terms of the mean. The HLS saturations of
the RGB triplets (4/6,1/6,1/6) and (2/6,3/6,3/6) equals 3/5 and 1/5 respectively, whereas
that of their sum is 1: it is just Newton’s experiment denial! Finally the independence
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a) Rubber ving b) Ame Blanco

Figure 3: Two test images.

property is no more satisfied. Take the two RGB triplets (1/2,1/2,0) and (3/4,3/4,1/4).
One passes from the first to the second by adding the gray " = ¢’ = ¥ = 1/4. Hence both
triplets have the same projection on the chromatic plane. However, the HLS saturation of
the first one equals 1 and that of the second 1/2.

3 2-D histograms and linearly regionalized spectra

In practice, is it really worth deviating from beaten tracks, and lengthening the polar triplets
list? What for? We may answer the question by comparing the luminance/saturation bi-
dimensional histograms for HLS system and for Li, Lo and max — min norms. J. Angulo
and J. Serra did so on a dozen images [3] [4]. Two of them are depicted below, in Fig.3.

3.1 Bi-dimensional histograms

In the first image, we observe strong reflections on the rubber ring, and various types of
shadows. The corresponding histograms are reported in Fig.4, with luminance on the x axis
and saturation on y axis. No information can be drawn from HLS histogram, some structures
begin to appear in Lo and max — min norms, but the most visible ones come from L; norm.

By coming back to the images, we can localize the pixels which give alignments, as
depicted in Fig.5. They correspond to three types of areas :

e shadows with steady hue,
e graduated shading on a plane,

e reflections with a partial saturation.

Consider now the more complex image of ”Ana Blanco”, in Fig.3b. It includes various
sources light (television monitor, alpha-numerical incrustations), and the light diffused by the

11



-

L, HLS

Figure 4: Bi-dimensional histograms of the "rubber ring” image. The x-axis corresponds the
luminance and the y-axis to the saturation.

Figure 5: Zones of "Rubber ring” associated with alignments. The left two images show
the supports of the alignments detected in Fig.4 for the L1 norm, and the right two images
indicate the locations of the aligned pizels in the space of the initial picture.
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Figure 6: (a) and (b) the two histograms of "Ana Blanco", in the luminance/saturation and
the luminance/hue plane respectively, both in Li norm.

background is piecewise uniform over the space. However, there are still alignments, which
do not always go through points (0,0), or (1,0), and are sometimes parallel. In the lum/hue
plane of the L; norm representation, several horizontal lines (constant hue) are located at
different hue levels, and alternate with elongated clouds of points (Fig.6b).

All in all, we draw from the above histograms four main informations.

1. In the lum/sat histogram, there is no accumulation of pixels at point (1,0). It means
that the sensors we use are not physically saturated, which make realistic the proposed
linear approach;

2. Still in the lum/sat histogram, some well drawn alignments can be extrapolated to
point (0,0) or point (1,0). The others are parallels to the first ones;

3. However, most of the pixels form clouds in both lum/sat and lum/hue histograms are
not aligned at all, whether the model does not apply, or the homogeneous zones are too
small;

4. In the lum/hue histogram, most often the aligned pixels exhibit a (quasi) constant
hue, i.e. draw horizontal lines. But sometimes, these "lines" turn out to be a narrow
horizontal stripe.

Such characteristic structures, such distinct lines suggest we seek a physical explanation
of the phenomenon. This is what we will do now. But besides any physical model, a first
point is worth to be noticed: the only norm that enables us the extraction of reflection areas,
of shadows and gradations is Li. No other polar model results in such an achievement.

3.2 Linearly regionalized spectra (LR model)

If we assume that the alignments are a property of the spectrum, and not an artefact due
to some particular representation, we have to express the spectrum in such a way that the
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sequence
(spectrum) — (r'g'b") — (m's'h') — (m' = as’ + B)

be true (in the alignments) whatever the weights generating r, g and b are, and also whatever
the spectrum itself is. Consider a zone Z of the space whose all pixels yield an alignment in
the Ly histogram. Denote by sp (v; z) the spectrum of the light intensity at point z € Z. We
will say that this spectrum is linearly regionalized in Z when for each point z € Z one can
decompose sp (v; z) into the sum of a first spectrum spg (v), independent of point z, and of a
second one, @W(z)sp1(v), which proportionally varies in Z from one point to another. For all
z € Z, we have

sp (v;2) = spo (v) +@(2)sp1(v) (19)

where @ (z) is a numerical function which depends on z only, and where spg and sp; are two
fixed spectra.

In the spectrum sp (v; z), though spp usually corresponds to diffuse light and sp; to
specular one, we do not need to distinguish between the emitted and reflected components of
the light. It can be the concern of the light transmitted through a net curtain, for example, or
of that of a TV monitor; but it can also come from passive reflectance, such as those described
by Shafer’s di-chromatic model [32], or by Obein’s model of glossiness [22]. But unlike these
two models, the term @(z)sp; may also represent an absorption, when it is negative. Similarly,
we do not need to distinguish between diffuse and specular lights. The term spg may describe
a diffuse source over the zone Z, as well as a constant specular reflection stemming from the
same zone. But above all, the emphasis is put here on the space variation of the spectrum.
It is introduced by the weight @(z), that depends on point z, but not on spectrum sp;. This
weight may bring into play cosines, when the angle of the incident beam varies, or the normal
to a glossy surface, etc...

The three spectra sp, spg and sp; are known only through the weighting functions that
generate a (R, G, B) triplet. We use here the notation (R, G, B) in a canonical manner, i.e.
it may designate the (X,Y,Z) coordinates of the CIE, or the perceptual system (L, M, S)
[35], as well as the (Y,U,V) and (Y, I,Q) TV standards. In all cases it is a matter of scalar
products of the spectra by such or such frequency weight. In particular, the white colour
given by r = g = b = 1 can be obtained from a spectrum which is far from being uniform.
We write

re) = / sp (i) )y = / [sp0 (v) + T(2)spr (] € W) dv = 1o+ 1T (2)  (20)

g(s) = / 5 (v;2) X () dv = go + 13 (2) (21)

and

b(z) = / s(v;2) ¢ (v)dv = by + biw (2) (22)

where £, x and % are the three weighting functions that generate the primary colours r, g
and b.
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As spp and sp; are power spectra, they induce intensities r, g, and b. Now, in the above
histograms, the L; norm applies to the video variables v’ = ri/7, g = 91/7, and b = bl/7 (if
we neglect the behaviour near the origin). Then we draw from Rel.(20)

' (2) = [r (2)]"7 = [ro+@ (2) 1],

with similar derivations for the video green and blue bands.

Is the linearly regionalized model able to explain the alignments in video histograms,
despite the gamma correction? For the sake of simplicity, we will tackle this question by
fixing the order of the video bands as ' > ¢’ > ¥, and m' > ¢’. Then we have

3m/(z) = r'(z) +4'(2) +V(2)
25'(2) = 2r'(2) —g'(2) =V (2)

Alignments with the dark point

In the luminance/saturation histograms in L1 norm, several alignments are in the prolonga-
tion of the point (0, 0), of zero luminance and saturation. The shadow regions of the “rubber
ring” image illustrate this situation.

Suppose that, in the relation (19) which defines the LR spectrum, the term spo(v;z) is
identically zero. Then r(z) reduces to @(z)r;, which gives

r'(z) = P/ = wl/vr}/W = wl/‘*(z)r'l,
with similar derivations for two other bands. Therefore we have
3m/(z) = 51/7(2) r}/w + gi/w + b}/q = 3@1/7(z)m’1
and
25/(2) = 2'(2) = (=) =¥ (2) =37(2) |2} = " = 0})"

hence m/(z)s) = m}s'(z). In the space E of the intensities, we find in the same way that
m(z)s1 = mi1s(z). Therefore the nullity of the constant spectrum spo(v) entails that both
m’ and s’ on the one hand, and m and s on the other one, are proportional. Each wvideo
alignment indicates a zone where the intensities spectrum varies proportionally from one
point to another.

Alignments with the white point

The “rubber ring” image generates also an alignment along a line going through the point
(1,0), i.e. the point with maximum luminance and zero saturation. That suggests to suppose
the spectrum spg(v; z) constant and equal to 1, and in addition that the three colors r1, g1, by
are not identical (if not, the saturation s’ should be zero). We have

r(z) =1+w(z)r (23)
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and the two sister relations for g(z) and b(z). Under gamma correction, 7(z) becomes
r(2) = (L+@(2)rm) 7.

Now, to say that the alignment is closed to a point of maximum luminance comes down
to saying that 1, g1, and b; are small with respect to 1, or again that

w(2)
g

r'(z) =1+ —=r1 +&(r), (24)

hence m/(z) = 1+ @ml and §'(z) = @ [2r1 — g1 — b1]. We observe that the two conditions
r1 > 0 and 7} <1, jointly with Rel.(24) imply that the coefficient @(z) is negative. Moreover,
as the three colours 71, g1,b; are distinct, the condition s'(z) > 0 implies in turn that the
quantity 2r; — g1 — by is strictly negative. By putting 01 = —(2r1 — g1 — b1) > 0 (o1 is not

the saturation at point z1), we obtain the following linear relation with positive coefficients
m'(z) =1— —5'(z2). (25)

As in the previous case, but without approximations, the mean m(z) and the saturation
s(z) of the intensities are linked by the same equation (25): it is a direct consequence of
Eq.(23). Again, both video and intensity histograms carry the same information, and indicate
the zones of almost white reflections.

Alignments with a gray point

There appears in some images, as “AnaBlanco”, series of parallel alignments. Their supports
go through points of (quasi) zero saturation but their luminance is strictly comprised between
0 and 1. The interpretation we just gave for the case of reflections extends to such a situation.
It is still assumed that ro = go = by, but with 0 < rg < 1, and that the terms @(z)ry, @W(2)g1,
and @(z)b; are small with respect to ro. Then we have,

r'(z) = (ro —Q—E(z)rl)l/’y = ré/’y + 7“(1]/7_1%7“

)

and the two sister relations for ¢’ and ¥’. Hence

m/(z) = réh + ré/vfl—w(z)ml,
Y

)

S/(Z) — _T(l]/’Y—lw(z)o_

so that, finally
m/(z) = r(l)M — ﬂ3'(2).
g1
When the colour component (71, g1, b1) remains unchanged, but that the gray component
(r0, 90, bo) takes successively various values, then each of them induces an alignment of the
same slope ’?—11 The property extends to the histograms of the intensities themselves. Finally,
we derive from Eq.(17) that, in the three cases, the hue remains constant in each of these

zones.
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4 Saturation weighted segmentations

The most radical change between the classical HLS system and those based on norms holds
on the saturation equation. In system (18), when min(r, g,b) = 0, (with [ < 0.5) or when
max(r,g,b) = 1 (with [ > 0.5), then the saturation equals 1. Now for human vision, the
most significant parameter is the hue in high saturated areas, and it turns to luminance when
saturation decreases. Any person whose reaction to colours is normal can easily check it. In
the darkness, or, at the opposite, in white scenes (e.g. a landscape of snowy mountains),
the eye grasps the contours by scrutinizing all small grey variations, whereas when the scene
juxtaposes spots of saturated colours, then the eye localizes the frontiers at the changes of the
hue. But how to transcribe quantitatively such a remark by a saturation function that takes
its maxima precisely when the colours loose their saturation, as the classical HLS system
does?

The norms based representations correct this drawback, so that their saturations may
serve to split the space into hue-dominant versus grey-dominant regions. This very conve-
nient key to entering the segmentation of colour images was initially proposed by C.Demarty
and S.Beucher [10]. They introduce the function maz — min on the image under study, and
threshold it at a level sg that depends on the context. Then they adopt the HSV representa-
tion, but they replace its saturation by 1 in the regions above sy and by 0 elsewhere. Their
downstream segmentations become easier and more robust.

However, they did not take the plunge of a new representation, and they worked at
the pixel level, which is not the most informative. In order to go further in the same way
of thinking, J. Angulo and J. Serra propose, in [2], the following two steps segmentation
procedure:

1. to separately segment the luminance, the saturation and the hue in a correct Newtonian
representation;

2. to combine the obtained partitions of the luminance and of the hue by means of that
of the saturation: the later is taken as a criterion for choosing at each place either the
luminance class, or the hue one.

The three bands of the "parrots" image of Fig.13, in L; representation, are depicted
in Fig.7(a~c). Each band is segmented by the jump connection algorithm [31] (one groups
in same classes all points « where f(z) differs by less than k of an extremum in the same
connected component, these classes are then withdrawn from the image, and one iterates).
The method depends only on the jump positive value k.

As the parameter k increases, the over-segmentations reduce, but in compensation het-
erogeneous regions appear. A satisfactory balance seems to be reached for & = 20 (for 8-bits
images), up to the filtering of a few very small regions. We obtain the two segmentations
depicted in Fig.8.

4.1 Synthetic partition

How to combine the two partitions of images 8a and 8b? The idea consists in splitting the
saturation image into two sets Xy and XY of high and low saturations respectively, and in
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Figure 7: Representation of the"Parrots" image 13 in L1 norm : a) luminance, b) saturation,
c) hue.

Figure 8: Grey segmentations of the luminance (a) and the hue (b). Both are depicted in
false colour.
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Figure 9: a) Segmentation of the saturation (presented in grey tones); b)optimal threshold of
a); ¢) final synthetic partition, superimposed to the initial image.

assigning the hue partition to the first set, and the luminance one to the second. A class of
the synthetic partition is either the intersection of a luminance class with the low saturation
zone X ¢, or the intersection of a hue class with the high saturation zone Xj. If the classes of
the luminance, the hue, and the synthetic partition at point x are denoted by A,(x), Ap(z),
and A(zx) respectively, we have

A(z) = Ap(x)NX; when € X§ (26)
A(z) = Ap(z)NXs when x€ X,

The simplest way to generate the set X, consists, of course, in thresholding the satura-
tion image. But this risks to result in an irregular set X, with holes, small particles, etc.
Preferably, one can start from the mosaic image of the saturation provided by the same seg-
mentation algorithm as for the the hue and the luminance (Fig.9a). An optimal threshold
on the saturation histogram determines the value for the a-chromatic/chromatic separation
(Fig.9b). By applying Rel.(26) we finally obtain the composite partition depicted in Fig.9c,
which is excellent.

5 The unit circle and the hue

The unit circle, like the round table of King Arthur’s knights, has no order of importance,
and no dominant position. In mathematical terms, this signifies that we cannot construct
a lattice on the unit circle, unless assigning it an arbitrary origin. This is a severe verdict
against morphological treatments (i.e. operators relying on lattices) when we use them on
the unit circle.

However, is it really impossible to bypass this interdiction? If we consider the standard
morphological operators, three paths at least seem possible, that A. Hanbury and I investi-
gated in [11]. Only he first path is presented here, because it was designed it by transposing
Matheron’s idea of working on increments, that underlies the whole linear geostatistics. He
did it because the range of fluctuations of the grades, in some mineral deposits, seems prac-
tically infinite, although the increments at finite distances remain finite. In the case of the
hue, we are not disturbed by the infinity, but by the choice of an origin, which arbitrarily
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forces the reds to be the smallest values and the purples largest ones (see for example the
histogram of Fig.11). Can we transfer to the circular case the class of operators which bring
into play differences only, such as gradients, top-hats, medians, etc.?

5.1 Circular centered operators

We fix an origin ag on the unit circle C' with centre o by, for example, choosing the topmost
point, and indicate the points a; on the circle by their curvilinear coordinate in the trigono-
metric sense between 0 and 27 from ag. Given two points a and a’, we use the notation a +a’
to indicate the value of the acute angle aod’, i.e.
! : !
L la —d'| if la—d|<nm
+a = . 2
aa {27r—|a—a’| if la—d|>7 (27)

If the a; are digital values between 0 and 255 (for example), the expression "< 7”7 becomes
<1277, and 727 becomes ”255”. However, we continue using the notation in terms of 7,
as it is more enlightening. Rel.(27) appears in [23] applied to the treatment of the hue band
of colour images.

5.2 Circular hue gradient

We know that in the Euclidean space R™, to determine the modulus of the gradient, at point
x, of a numerical differentiable function f, one considers a small sphere S (z,7) centered
on x with radius r. Then one takes the supremum minus the infimum of the increments
|f (x) — f (y)], where y describes the small sphere S (z,7), i.e.

2g (z,7) = [V{If (@) = F (W)l ,y € S @, I\ IMNMIf @) = F )y € S (@)} (28)

Finally, one determines the limit of the function g (x,r) as r tends to zero. This limit exists
as the function f is differentiable in z. In the two-dimensional digital case, it is sufficient to
apply Rel.(28), taking for S (z,r) the unit circle centered on x (square or hexagon). This is
the classic Beucher algorithm for the gradient.

Consider now an image of hues or of directions, i.e. a function h : E — C, where F is
an Euclidean or digital space, and C' is the unit circle. As the previous development only
involves increments, we can transpose Rel.(28) to the circular function h by replacing all the
|h (x) — h(y)| by |h(z) + h(y)|. This transposition then defines the modulus of the gradient
of the circular distribution. For example, in R", K (z) indicates the set of neighbours at
distance one from point z, hence

2|grad h| (2) = [V {|h(2) = h(y)],y € K ()] \/ M|k (2) = h(y)l,y € K (@)}]  (29)

As an illustration, consider the hue component of Fig.10a, shown in Fig.10b. This image
was chosen as it is mostly red in colour, and in the angular hue encoding, the red has value
zero. This means that pixels which appear red could have low hue values (for example, 0°
to 30°) and high hue values (330° to 360°). A large discontinuity is therefore visible in the
hue image, with red pixels appearing at the extremities of the histogram (Fig.11). A classical
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Figure 10: a) Pere Serra’s Painting of the Virgen (detail, St Cugat Monastery, Barcelona);
b) corresponding image of the hue in HLS system (image size 352 x 334 pizels).
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Figure 11: Histogram of the hue band.
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Figure 12: a) Classical morphological gradient on the hue band; b) Circular centered gradient
on the hue band. The gradients were calculated using a 3 X 3 structuring element

gradient on this hue band produces a large number of spurious high-valued pixels, as shown
in Fig.12a.

These high-values are present even though the neighbouring pixels appear very similar in
colour, and are due to the discontinuity in the hue encoding. A good illustration of this is the
outer part of the halo, which appears smooth in Fig.10a, but results in very high gradients in
Fig.12a. The gradient calculated using Eq.(29), shown in Fig.12b, overcomes this problem.
As its range is relatively small, we reinforced its contrast for the display, and the texture of
the underlying canvas becomes visible. Note that if we rotate the hue band pixel values by
7, the classical gradient will be the same as the angular gradient. The angular gradient is,
however, invariant to rotations of the pixel values.

5.3 A wuse of the circular hue gradient

Consider a colour function f, and its L; norm representation. The circular gradient of the
hue of f can be inserted in a global gradient |grad f| which takes the three components of f
into account. There are number of such gradients, but the above comments on the saturation
in L; norm representation suggests us to construct a barycentric gradient, where the L;
saturation balances the effects of luminance and hue gradients, i. e.

5« lgrad h| + (1 — i

max max

lgrad f| = . ) x |grad 1] . (30)

It is well known that the watershed of the gradient |grad f| of a numerical function f
provides us with the contours of f [19]. This property extends to the vector functions of the
space, because then the term |grad f| is still a numerical function, which is sufficient for the
theory. We can then use Rel.(30) to segment the parrots image, and compare the result with
that we obtained by combined partitions in Fig.9c .
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Figure 13: a) Initial "Parrots" image; b) watershed partition at level 4 of the waterfall pyramid
(superimposed to the initial image).

Under iteration, the watershed operator turns out to generate the so-called waterfall
pyramid, which is non parametric, and increases the partitions [19]. For the parrots, the best
fit occurs at the fourth level of the hierarchy, see Fig.13b. The obtained segmentation is fair,
but less convincing than that by combined partitions of Fig.9¢ : in the watershed process,
the reduction (colour)—(numerical) by Rel.(30) arises too early.

6 Colour Interpolation

6.1 Morphological interpolators

During the nineties, the need for image interpolation arose with the development of video
coding. Several proposed algorithms were efficient, though no theory justified them; one could
not say whether they were optimal in some sense, just as kriging derives from a variance
minimization for example. I asked G.Matheron which concept could serve as a substitute
for variance in morphological interpolation, and he suggested me to see whether Haudorff
metric admitted geodesics. The Hausdorff distance p is a metric defined on the class of the
non empty compact sets of R by the relation

p(X,Y) =inf{A: X Cdy(Y);Y C (X)) (31)

where &) stands for the Minkowski dilation by the ball of size A. The value p indicates a
degree of similarity between the two sets. A geodesic (if it exists) between sets X and Y
from distance p apart is an ordered family {Z), 0 < X\ < pu} of sets. Each Z) is at distance
A from X and p — A from Y. They are optimal interpolators in the sense that for any A the
sum p (X, Z)) +p(Zx,Y) =X+ (p — A) is minimum.

Matheron’s intuition was right: the Hausdorff distance admits geodesics, and more than
one [28]. However:

-1 the intermediary sets Z, are always inflated, but one geodesic swells less than the
others;
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Figure 14: Morphological interpolations based on the Hausdorff distance.

-2 they are not self dual, as the interpolator of X°¢ and Y differs from the complement
of the interpolator between X and Y ;
-3 when one of the two sets, X say, is shifted or rotated, the Z)’s are modified.

Moreover, the duality between dilation and erosion w.r.t. complementation suggests to
play with both Hausdorff distances by dilations, on X NY, and by erosions, on X UY . Then,
the less inflating geodesic permits a self dual variant which gives, for A = 0.5p, the so called
morphological median

MX,Y)=JI(XNnY)®eBN[(XUY)OoB] (32)
a>0

(assuming X NY # ). Concerning the third point, one can always find a displacement
that minimizes the distance p (X,Y), hence optimizes the median [28]. Rel.(32) establishes
a common theoretical basis to the previous works of F. Meyer [20], and S. Beucher [5]. Nice
developments based on distance function have also been proposed by P. Soille [34], J.R. Casas
[7] and by P. Moreau and Ch. Ronse [18].

M. Iwanowski found a method to determine the best displacement, and generated se-
quences of geodesics by subdividing morphological medians [14] [13]. A binary example is
depicted in Fig.14.

6.2 A false colour case

In Rel.(32), the passage to the corresponding numerical version is straightforward. As the
operator increases with both arguments, it suffices to replace all U and N by V and A re-
spectively. The extension to colour images is more subtle. For the first time in this paper,
we have to produce a colour image, and neither a partition, nor a modulus of gradient. By
treating separately the three bands, of any representation, we would obtain new colours that
risk to parasite the quality of the result. The only way to be sure that every colour vector
of the transform is already present in the initial image consists in totally ordering the set of
the colour vectors. There are many ways to generate such a lattice. For the scenes of the
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Figure 15: Maps of the temperatures at two consecutive days.

everyday life M. Iwanowski tried several possibilities and finally adopted an ordering with
the luminance [ = 0.3r + 0.6g + 0.1b first, then ¢ and finally r [12].

But the reference to G. Matheron leads me propose an example in the themes of geostatis-
tics. The two maps depicted in Fig.15 come from the web-site of the American Meteorological
Institute, and indicate the daily maximum temperature on January the 5th and the 6th, 1996.
They are themselves interpolations from point measurements, but we do not mind about it
and take them as an input. The complete series comprises seven maps, for one week, and
which cover the whole country. The final interpolated sequence contains 102 images. Here
we just calculate the morphological median between the two maps of Fig.15.

The gamut of colours, artificial, has been established in such a way that the temperatures
linearly decrease with the hue. Moreover, for graphic reasons, the saturation is maximum
everywhere. Not only the circularity argument against the hue vanishes, but this parameter is
the most representative of the physics of the phenomenon. Therefore the convenient ordering
is as follows

f'(h,1,s,) > f(h,l,s) when either W/ <h
or ' =h and I’ >1
or W =h =1 and s’ > s

It results in the morphological median depicted in Fig.16a. The arithmetic mean of the
same maps is placed at the right (Fig.16b) for the sake of comparison. The morphological
operator better follows the fronts because it keeps unchanged the number of gradations of
the temperatures scale.
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Figure 16: a) Morphological median between the two maps of figure 15; b) linear interpolation
between the same maps.

7 A morphological approach to multivariate analysis

This last study on colour imagery commemorates G. Matheron less by the approach than
by the theme of the application. Indeed mathematical morphology is born on the occasion
petrographical problems [17], and it is my pleasure to conclude the survey by an example
which recalls our beginnings.

In digital processing, it occurs that a series of different descriptors be attached to each
pixel, and that one wishes to segment the space into the homogenous regions on the basis
of this information. The descriptors may combine data that are physically heterogeneous.
For example, in geographic information systems (G.I.S.), each pixel is sometimes assigned
a slope and a population density. These two quantities, although connected, are physically

Figure 17: a) and b) two polarized views of the Lipka sandstone thin section.
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non comparable, and their mean, hence a linear descriptor, is just a physical nonsense. Such
an heterogeneity becomes more complicated again when some of the quantities vary over
the unit circle (as the colours obtained by various polarization angles), and when the colour
information has been coded by palettes. It will be the case here, but our approach, though
designed for this current case, applies to any type of heterogeneous multivariate data. The
underlying idea is the following. By segmenting separately each of the n variables, we obtain
n partitions, which are data of the same type, and without the initial heterogeneity. The
goal then consists in combining these partitions for producing a synthetic one. One possible
solution is developed below: a numerical function is generated by adding indicator functions
associated with each partition, then this numerical function is segmented.

7.1 Polarized thin sections

Polarized light is a useful tool for examination of rock thin sections. It assigns a specific hue
to each rock component and allows distinguishing and separating the grains according to the
crystalline orientations [21]. But it is generally used in a qualitative way.

In this section we purpose to use a partition based approach for reaching the same goal,
but in a quantitative manner. In other words, starting from a sequence of polarized images of
a same microscopic field, we propose to determine automatically the contours of the grains.

J. Serra and M.Mlynarczuk have treated four rocks of different microscopic appearance,
in order to base the proposed method on a significant spectrum of rock structures [29]. They
are two sandstones from Tumlin and Lipka, one quartzite from Wisniéwka and one dolomite
from Redziny. From each selected rock a thin section was prepared. Then a chosen field was
observed in a polarized microscopy, in such a way that the polarization prism was turned 15
times by 12 degrees. The obtained sequence (15 images of 8 bits depth and of size 352 X.
268), was digitized by means of a CCD camera. The colour of each image has been coded on
256 levels by using a specific palette for each image. Fig.17 gives an outline of the obtained
images. By observing the images, one can notice that:

- for the same thin section, the variations of colours between the images observed in
different polarizations are considerable;

- for a same grain, and under a given polarization, the hue remains more or less
uniform;

- the crystals are placed side by side, without any visible border;

- finally, we can notice that the images are of poor quality.

7.2 Proposed approach

A palette is a look-up table, i.e. a mapping [0, 255]x [0, 255]x [0, 255] — [0, 255]. Therefore,
the 256 output values do not constitute a perceptual grey-tone axis. In a same image the
luminance associated with the level 120, say, may be higher or lower than that of level 140.
Moreover, if at point x, two different images of a same sequence have the same numerical
value, this does not mean that the two images have the same colour or the same luminescence
at point x, because the palette changes from one image to another. But, fortunately, in each

27



Figure 18: a) artificial grey tone image which is associated with the palette of Fig. 17a; b)
flat zones filtering of image a), namely image fi.

Figure 19: a) Black and white image m; obtained by partition erosion ; b) Sum of all m;
images of the sequence, resulting in a probability map.

image, the majority of points of the same crystals admit the same numerical values. This
happens in most cases, but not always, because the crystals are not absolutely pure.

Classically, a processing of multidimensional data begins by reducing the number of di-
mensions by means of linear multivariate analysis techniques, such as principal component
analysis or the Karunen-Loéve transformation. When there are no more than one or two
major variables, different filters and segmentations conclude the processing. Here linearity is
inadvisable and we have to invent another approach [29].

Our procedure turns out to be the exact opposite of multivariate analysis. If we want an
approach to be valid for dimensionally heterogeneous data, it is recommended not to try and
mix them in a first stage, which should be more or less linear. On the contrary, we must:

i) first associate a partition of the space with each individual image. A partition D
of a space F is a segmentation of E into classes D(x) that do not overlap, and that cover
the whole space E. For this stage, we will have to erode partitions, in order to enhance
boundaries, by applying the following result
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Proposition 1 Given an arbitrary set E, every set erosion ¢* : P(E) — P(E) for which
e*(0) = 0 induces, on the lattice D of the partitions of E, a unique erosion € defined by:
(eD)(x) =e*[D(x)] when x € *[D(x)]
(eD)(x) = {x} when not .

ii) and on the second stage only, group the obtained partitions into a synthetic one. To
do this, one considers them as different realizations of a random partition, and one estimates
the probability for each pixel to be at a given distance d from the border of its class. In this
probability map, the closer to the border a pixel is, the higher is its numerical value. Finally,
the watershed of this probability map provides the wanted segmentation.

7.3 An example

We will illustrate the algorithm by means of the Lipka sandstone sequence.

Figure 20: a) Watershed of the probability map Fig. 19 b), in superimposition with one of the
polarized views. Same procedure, and same parameters applied to a quartzite from Wisniowka.

First stage: Filter each image of the sequence by flat structuring elements. The optimal
filter is the smaller that eliminates the various defects, since the defects are always smaller
than the grains. The solution adopted here consists an alternating sequential filter by recon-
struction of size two [26]. We call f; the images after filtering, where ¢ indicates the label
of the image in its sequence (Fig.18b). The obtained flat zones are then eroded by applying
Proposition 1 for an hexagonal erosion of size two. In such a process, each class of the parti-
tion, i.e. each flat zone, is narrowed independently of the others, and the rest of the space is
occupied by classes reduced to points. In Fig.19a, the non point classes are given value zero,
and the others value one. Let m; denote the obtained image.

Second stage The border probability map is estimated by the estimate m = 255 —
15(>m;). Fig.19b depicts the image m associated with Lipka sequence. The final detec-
tion of the contours is provided by watersheding image m. Since we are interested in large
regions without internal details, we take as a marker, for watershed, the set of the maxima of
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function m, after an opening of size 3. On Fig.20a the final watershed lines are superimposed
on one of the polarized images of the initial sequence. Fig.20b depicts the result of the same
algorithm, with the same parameters, for Wisniéwka quartzite sequence.
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