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The paper proposes a class of Random Functions which turns out to model
the multidimensional scenes (microscopy, macroscopy, video sequences, etc.)
in a particularly adequate way. In the triplet (2, 0, P) that defines a random
function, the o-algebra o, here, is that introduced by G. Matheron in his theory
of the upper (or lower) semi-continuous functions from a topological space E
into R. On the other hand, the set € of the mathematical objects is the class
L, of the equicontinuous functions of a given modulus, ¢ say, that map I,
supposed to be metric, into R or (ﬁ)n For a comprehensive member of metrics
on R, class L, is a compact subset of the u.s.c. functions £ — R, on which the
topology reduces to that of the pointwise convergence. In addition, class L is
closed under the usual dilations, erosions and morphological filters, as well as
for convolutions g such that [ |g(dz)| = 1. Examples of the soundness of the
model are given.

1 Introduction and reminders

1.1 Introduction

In what follows, the purpose is to construct a class of random functions that
correctly model the functions involved in the visual world. These functions, am-
biguously called ”images”, may be scalar or multivalued (e.g. grey or color im-
ages), may concern projections or sections (e.g. SEM versus optical microscopy),
may involve motion or not, etc.

Such images are always processed by means of filtering, supremum and in-
fimum operations, rescaling, convolution, edge correction, sum and difference,
and so on. Therefore, when a mathematical status is proposed to model them,
it has to fit sufficiently with all the mappings. For example, is the model closed



under supremum, under convolution? Are the most common mappings contin-
uous for the topology of the model? Is the difference of two random functions
a random function? etc.

After having reminded and criticized the classical random model used in
Mathematical Morphology, namely that of the upper semi-continuous functions,
we will remind the basic concepts of ¢-continuity. The second part will then be
devoted to the algebraic properties of p-continuity, and the third part to the
topological ones. Finally, the stochastic version of such classes (part four) will
become self-evident.

1.2 Reminder on the upper-semi-continuous random func-
tions

In 1969, G. Matheron extended his random sets theory to the upper semi-
continuous functions from an L.C.D space E into R by considering them, via
their subgraphs, as closed sets in & R. In this approach, the familly C of those
sets C' € F (E ® E) that satisfy the two conditions

i/CDE

ii/ Vo € E\Vt € R, (x,t) € C = {2} ® [~o0,t] C C

is identified with the class F of the w.s.c. functions E — R, and it is proved
to be a compact family in F (E (}Oﬁ) The topology on F' is obtained as the
restriction to C of the topology on F(E ®R). Consequently, the open sets in F
are generated by the parts of F' whose elements f satisfy the two conditions:

X7 (G)=sup{f(z),r€G}>b and inf{X;(G),GDK}<a (1)

as G spans the open sets of E, and K its compact sets (a,b € K). This results
in the following criterion of convergence [theorem 3.2.1 in [4]]

Proposition 1 A sequence f, converges towards f in F if and only if it satisfies
the two following conditions: 1/ for all x € E, there exists a sequence X, — &
in E such that the sequence fn(z,) — f(z) inR. 2/ If a sequence x,, converges
towards = in E, then the sequence fn, (Tn,) satisfies imf,, (tn,) < f(z).

The next step consists in equipping F' with the o-algebra generated by its
topology, i.e. by the events Yf (G) introduced in rel.(1). Finally a random u.s.c.
function f is defined by providing the measurable space ( F, o) with a probability
P. The compactness of set F' ensures that there actually exist probabilities on
.

Just as a random variable is characterized by its distribution function, a ran-
dom function f € (F, o, P) is completely determined by the joint probabilities

Pr {sup {f (.%') T € Bl} <M y oo Sup{f (.%') T € Bn} < >\n} (2)



for every finite sequence Bj...B,, of compact sets in E and of real values Ai...\,.
Formula (2) expresses a general theorem on random sets due to G. Choquet [1]
and G. Matheron [5], which is interpreted here for random functions [8].

Discussion

Prior to the u.s.c. model we have just sketched, random functions used to
be described by means of their spatial laws, an approach that could not enable
to construct models exhibiting discontinuities (vertical cliffs,...) or to calculate
notions such as an average number of maxima. The u.s.c. random functions
have opened the way to such possibilities. The reader will find a substantial
panel of models and of applications in various works performed at the Centre
de Morphologie Mathématique [see in particular the studies in this field due to
D. Jeulin (3], J. Serra [10], F. Préteux and M. Schmitt [7]].

These functions always involve some dissymmetry between foreground and
background (typically: suprema of compact cylinders, or pulses of different
heights located at Poisson points). Moreover in image analysis, it is rarely
the raw image which is to be modelled, but rather some filtered version, or
a residual, i.e. the difference between initial image and filtered one. Since the
upper, or lower, semi-continuous mappings from F' into itself are measurable,
the Minkowski additions § (f) = f @ K w.r. to a compact set K, which are
continuous, and the Minkowski subtractions ¢ (f) = f © K, which are upper
semi-continuous, define random functions, as well as their products.

However, the limits of such an extension are rapidly reached. Class F' is not
closed under difference, and does not allow to model the residuals. Also, in
lattice F, the infinum A f; is identical to numerical inf, whereas the supremum
\/ fi is the topological closure of the numerical sup. This is the reason why
Minkowski addition, but not subtraction, is continuous. Now one cannot design
an experiment able to bring to the fore such a distinction. In practice, one passes
from a dilation to an erosion of function f by replacing it by — f, or by m—f, and
negation is continuous. Is a continuity that no experiment will never distinguish
from semi-continuity a worthwhile property of the model? Finally, F' is not a
vector space, and this is a pity, for numerous techniques in image analysis are
of barycentric type (e.g. convolution). But is it possible to construct a function
lattice, sufficiently regular and which should accept some linear operations?

These three critics holds on space F', as a deterministic structure and not
on the o-algebra. Therefore in the following, we will attempt to overcome them
by modifying F (in fact it will be a restriction), without breaking into the
probabilization method.
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Figure 1: a) Original image (left) b) its modulus of continuity (right)

1.3 Reminder on ¢-continuity

A presentation of p-continuity may be found in [2]. We remind here some of its
major features. With any numerical function f from a metric space £ into R
one can always associate a second function, say ¢, from R, into R, as follows:

¢(h) = sup{|f (z) = f(y)| 2,y € E,d(z,y) < h}. ®3)

Equation (3) is absolutely general, and results in an increasing positive func-

tion. Now, if in addition f is supposed to be uniformly continuous, then, equiv-
alently, we have

Limh_,o (p(h) = 0
i.e. ¢ is continuous near the origin. In this case, ¢ is called modulus of conti-
nuity and describes, in some sense, the degree of regularity of the function f
under study. This approach can be compared with the use of the variogram,
or the covariance, in the order two analysis. But, unlike the variogram, which
provides the quadratic mean of the variation between two points, here we take
into account the mazimum absolute difference. For example, by adding to f a
point impulse of maximum intensity, we do not change the variogram (in the Eu-
clidean case) whereas the modulus is transformed into its horizontal asymptote,
and becomes a Heaviside function.
This said, in practice modulus ¢ turns out to be a meaningful descriptor.
One can see from Fig. la and 1b how the range of ¢ reflects the sizes of the
features in f, and its asymptote their dynamics.

Also, it is noticeable that Eq. (3) applies to both continuous or discrete
spaces. Actually, it will allow to bridge the gap between the two cases. There-
fore, E will denote an arbitrary metric space of distance d (R™,Z™, their cond.
versions, etc.)



The modulus of continuity turns out to be a tool for classifying the functions,
and for grouping them into families that exhibit nice common properties. Here,
the notion of equicontinuity w.r. to modulus ¢, or more briefly, of p-continuity,
is used as a starting point.

Definition 1 A function f : E — R is @-continuous when, given a modulus of
continuity ¢ we have for all x 1y € E,

If(z) = f(y)] < pld(z,y)]

Similarly, the family of all functions f : E — R which satisfy the above inequal-
ity, for a given modulus ¢, is called p-continuous, and denoted by L.

Hence, the members of the p-continuous classes are uniformly continuous
functions, and

801 S SOQ = L<P1 g L{p2'

In particular, the constant functions are the only elements common to all
p-continuous classes.

2 Lattices of equi-continuous functions

Given a lattice L, a subset L’ C L is said to be a sub-lattice of L when L' is
closed under the supremum and the infinum of L, and admits the same two
extrema as L. Then all concepts or mappings defined for L, and which involve
uniquely sup and inf, have a meaning over L’. We will see now that such a nice
property is satisfied by the equi-continuous families.

Theorem 2 For every modulus of continuity ¢, the class L, of the p-continuous

= —E
mappings from E into R is a sublattice of R

Proof. Let {f;,i € I} be a family in L, ; put f =\ f;. If f(x) = 400 for some
x € E, then f = +o00, hence is ¢-continuous. If, f(z) < 400, then f(y), which
is bounded by

pld(z,y)] + f(x)

is finite, and we can write, for all z,y € E :

fly) = f@) <pld(z,y)]  andaswell f(z)—f(y) <¢ld(z,y)].

A similar result may also be obtained for A f;, which achieves the proof. Q.E.D.



Comments

1/ Theorem 2 is a classical one [see for ex. a proof in [2] for the Lipschitz
case]. However, the property it states owes more to the compacity of R than to
its complete ordering, and this point is less known. As a counter example, take
0 <a<b<1andthelattice L = {z:2€R,—co<z<a or b<z<l1}.
Consider the family of Lipschitz functions f; : |—00,a] — Ldefined by f; (z) =
x —¢g; withg; | 0. For x =a and y = a — o, (a > 0), we have d(z,y) = « but

\/fi(w) :b7Vfi (y) =a—ax hence ‘\/fi (@‘\/fi (:U)‘ =b—ata>ad

2/ The theorem refers to a double status of R which is compact (for the
order topology) and also equipped with the Euclidean distance. Since according
to the situation to be described several distances may be chosen, it should be
wise to distinguish explicitely between the topology and an additional distance.

2.1 CCO-lattices and robustness

These comments suggest to resort to the notion of compact with closed order
lattices (in short CCO-lattices), introduced by G. Matheron [6]. Given a lattice
T, provide it with a topology that

i/ makes T' compact

it/ closes the ordering of T, i.e. if two families x; and y; i € I are filtered by
a same base of filters B and satisfy x; < vy;, x; —z,y; —yinT, thenz <y.

Such a lattice T is said to be CCO. Independently of its topology, introduce
an ecart dr on T, such that ; — =z in T implies dr (z; ,2) — 0. This ecart
will be said to be robust for T, when for all pair {a;} and {b;}, ¢ € I of elements
of T, the two inequalities

d{v a;, \/bl} S sup {d(ai,bi)}
d{/\ a;, /\bz} S sup {d(ai,bi)}

are true [11]. The two notions of compacity with closed ordering and of robust-
ness yield a generalization of the above theorem 2.

Lemma 3 Let {T;,i € I} be a family of lattices, each T; being robust for the
ecart d;. Then the product T of the T; is a lattice robust for the ecart d(x,y) =

sup {di(zi, y;),i € I} [12].

This result may be interpreted in terms of multi-valued lattice, as well as
function lattices. In the first case, the family I labels several colors, for example,
whereas in the second one I turns out to be a space E, all the [1; are identical
toa Ty and T = (Tp)”. In the latter case, z and y are functions from E into



Ty and the ecart on T is that of the uniform convergence topology. Finally, by
combining the two interpretations we see that the proposition still applies to
multivalued functions.

Theorem 4 Let T be a lattice provided with a robust ecart dr , and E be a
metric space. Then the family L, of the p-continuous functions f : E — T
is a sub-lattice of TF | and is robust for the ecart of the uniform convergence
topology associated with dr.

[proof given in [12]].
This generalization of theorem 2 can be completed by the following criterion,
which provides a comprehensive class of robust ecarts [12]:

Proposition 5 Let T be a totally ordered CCO-lattice, and dp be an ecart on
T such that x; — x in T implies dr(x; — x) — 0. If

a<z<y<b in T =dr(z,y)<dr(a,b)
then T is robust for the ecart dr.

Proposition 5 assures the robustness of a comprehensive class of ecarts in the
case of the totally ordering, and the above lemma 3, extends such a robustness
to the multivalued cases.

2.2 Dilations on R and structuring functions

In any lattice, the two basic families of operations are those which preserve
either the sup, or the inf. The former are called ”dilations”, the latter ”erosions”.

. . . —=E .
Consider for example the dilations that act on the lattice R of the numerical
functions from E into R. L is sup-generated by the pulse functions vy, x €
E,teR:

uzt(y) =t when y=2z and wu,;,=—oo0 otherwise.

Indeed, every function f € RF admits a decomposition
f=\{usy » 2€E , t<f(2)}.

Let § : RF — RF be a dilation on RF. The transforms & (u. ) of the pulses are
in turn sup-generators in the space image § (RE ) since

0f =\/{0(usn) , 2€E , t<f(x)} feRF



It is more convenient, here, to introduce the structuring functions g,. , by
taking the reciprocal of the §(u, )’s, namely

Gyt (2) =8(uzt (y))  y,2€E

In the following, we shall focus on the dilations whose structuring functions
commute with translation on R, i.e. such that

gzt = gz,0 +1 (Wlth 9 = gz,(])

In such cases, the general expression reduces, and gives, at point y € E:

6) @) =V i) +f(z) . zeE} (4)

All the dilations encountered in practice are particular cases of the last
representation (4).

2.3 Dilations on L,

We now focus on the sub lattice L, of the p-continuous functions on R, and
we wonder about the image 6(Ly) of L, under a dilation of the type Eq. (4).
Pertinent results are obtained when the variation of the g,’s over space E is
provided with a certain regularity, that we will formalize when space E is metric.

Proposition 6 Let G be a family of numerical functions over a metric space

E

7

i/ which admit a common finite upper bound
it/ whose cross sections

Xi(9) =1{y:9(y) >t} geg

are compact, for allt € R\ {—oo}.
If g, stands for the dilate of g by a circular cylinder of radius p and height
kp, i.e.
9o (2) =sup{g(y), vy € Bp(2)} + kp

Then the quantity
Mg, g)=inf{p:9<g, , ¢ <g} 99€G
18 a Hausdorff type distance on G.

[easy proof].

Consider now a structuring family {g,, « € E}, which is supposed to sat-
isfy the two conditions of proposition 6, and whose variation over E is governed
by a modulus of continuity ¢’, i.e.

Wgergy) < ' [d(z,y)] z,yeE (5)

we may state:



Theorem 7 Let E be a metric space, and 9 : ﬁE — KE be a dilation on the

—E
lattice R, whose structuring functions {g.,z € E} admit a modulus of conti-
nuity ' (i.e. satisfy 5). Then 6 maps the sub-lattice L, of the yp-continuous
functions in the sub-lattice L(,qr)op of the (@ + k) o ¢'-continuous functions.

Proof. Let f € L,. Put h(gz,gy) = h. At point y, we have:

(0f) (y) = sup {f(2) + gy(2),2 € E}.

But gy(2) <sup{gz(u),u € By(2)} + kh (Hausdorff distance) and f(z) <
f(u) + ¢(d(z,u)). Hence, we have

GHW) < sup{f(u) +go(u) +o(d(zw) : =€ Bu(u)ucE}+ kh
< sup{f(u) + go(u),+u € B} + o (h) + kh = (5F)(x) + (h) + kh

and the similar inequality, by interverting = and y. Finally:

6£) () = 0F)(@)] < p(h) + E(h) < (¢ + k) o ¢ (d(=,y))

Q.E.D.

Particular cases:

1. Suppose E to be affine and take for g, the translate by vector z of
the structuring function ¢ associated with the origin. Then h(gs ,gy) = d(z,y)
and (¢ + k) o ¢’ = ¢. The dilations that are translation invariant preserve all
equicontinuous lattices L.

2. Take for g, a flat structuring function, of compact support K, i.e.

9z (y) = 0 when y € K,
gz (y) = —oo when not

Then the expression 4 of a dilation reduces to

6) ) =\ 1{f(2),z € Ky} (6)

where the geometrical role of the (variable) structuring elements { K,y € E}
appears clearly. The dilations of the type 6, which are said to be flat, exhibit a
number of remarkable features. Among others:

i/ They map into itself each quasi sub-lattice of -continuous functions:
f: E — [a,b], with a,b € R,a < b. In digital terms, this means that the
transform of an image with n grey levels comprises at most n grey levels: there
is no overflow.

ii/ They commute with the anamorphoses on R (e.g. the dilate of the log
of an image equals the log of the dilate). Again, such a property is important



in practice, since it makes the space operations independent of the grey tone
calibrations.

For a flat dilation ¢ of structuring elements { K,z € E}, with

where h is the set-oriented Hausdorff distance, the theorem proves that any ¢-
continuous function is transformed into a ¢ o ¢’-continuous one. In particular,
when ¢’ < Identity, 6 maps every L., into itself. This case occurs for example
when F is affine and K, = Ky + z,2 € F (translation invariance), or also when
K, ={Ko+ z} N Z where Z is a rectangular window.

Theorem 7, which has been stated for dilations admits by duality a similar
version for erosions, and of course extends to any inf of dilations which have
the same modulus ¢’. Another instructive feature concerns the structuring func-
tions, for which no continuity is required. For example, the two conditions of
proposition 6 may be satisfied by upper semi continuous functions.

3 Topologies on the L, lattices

In G. Matheron’s theory of the compact lattices [6], the continuity for \/ and
/\ operators is pointed out as one of the major goals to achieve. It is a matter
of ensuring the continuity of the mapping ' — \/ F (or F — A\ F) from F (T)
into T when T is a topological lattice. Here F' stands for a closed family of
elements of T and \/ F' (resp A\ F) for their supremum (resp their infimum).
In the usual CCO lattices, when the mapping F — \/ F' is continuous, then
F — A\ Fisus.c. only (e.g. closed sets of R", u.s.c. functions from R™ into R).
The double continuity is thus an exceptionally strong property. Therefore the
following criterion (No 6.1. in [6]) turns out to be a corner stone for the whole
theory:

Proposition 8 (From Matheron) An algebraic lattice T admits a necessarily
unique CCO topology such that \/ and /\ are continuous if and only if for all
and all y in T, withy Kz, one can find two elements x' and y' which satisfy
the three conditions

T M, ; y EM* 5 M UM, =T
where My ={z:2€T, z<y} and M* {z:z€T, z>2'}

Remarkably, proposition 8 does not demand any topological prerequisite. It
will not allow us to derive the \/ and A continuities for the L, lattices when

10



T =R, and next T = (ﬁ)n, n a finite positive integer.

Theorem 9 Let E be a metric space, ¢ be a modulus of continuity and L, the
lattice of the p-continuous functions from E into R. Then the unique topology
that makes L, CCO, with continuous \/ and /\ is the topology of the pointwise
convergence.

Proof. Consider two distinct functions f and g of L. There exists at least one
point z € E and a real member a with (for example) the strict inequalities

gz < a < f(x)

Introduce the two following elements fq and gg of L:

foy) =a—wld(z,y)]  go(y) =a+epld(z,y)] VyckE (7)

Function f does not belong to the lower bounds of gg , since f(z) > a, i.e.
f EM?9. Similarly, we have g £Mj,. Moreover, any function s € L, is either
< go (when s(z) < a) or > fo (when s(z) > a), so we can write M9 UMy, = L.
Therefore proposition 8 applies, and lattice L, is CCO with continuous \/ and
N\ for a certain topology. One can find out this topology by means of a general
characterization [6], but in the present case, it suffices to observe that L is a
compact sub-lattice of the upper semi continuous functions, sub-lattice on which
both topologies of Matheron and of the pointwise convergence coincide. Now,
the \/ is continuous for the first one, hence also in the pointwise sense. Simi-
lartly, L, is a compact sublattice of the lower semi continuous function, hence
)\ is continuous in the pointwise sense, which achieves the proof. Q.E.D.

This result generalizes to ¢-continuous functions E — R a theorem already
established by G. Matheron [theorem 6.5 in [6]]. The extension may be pursued
further. First, space R may be replaced by any compact segment S C R. Clearly,
the p-continuous functions from E into S form a compact quasi sub-lattice of
L, ("quasi” because the extreme elements are not preserved). The proof may
be reproduced integrally for them. Also, Z may be substituted for R and any
subset of Z for S. Second, the theorem extends to product lattices.

Corollary 10 Theorem 9 remains true when E_z’s replaced by any product T =
II{T;, je€J} of closed subsets T; of R or of Z.

Proof. As previously, consider two distinct functions f and g of T, i.e. f =
{fj, jeJ}andg=1{g;, je€J}. There exists at least one label v € J such
that f, # g,, with f, () > g, (), strictly, for a point 2 € E. Lattice T, enters
the framework of theorem 9, which determines two distinct functions f,, and g,

11



from equations 7. Let then fy be the function £ — T whose label v is equal to
fvo, and whose all other components f;, j € J, j # v coincide with the inf in
the corresponding lattice T};. Similarly, define gg to be the function equal to gy,
for j = v and equal to the sup in T} for all j ~v. The criterion of proposition
8 is still satisfied for fy and gg, which results in the corollary. Q.E.D.

The consequences of theorem 9, and of its corollary, on dilation, and more
generally on increasing mappings are considerable. For the sake of pedagogy, we
will treat the ”flat” case only, which the most used in applications.

Proposition 11 Let E be a metric space (distance d), K : E — K(E)\D be a
structuring element such that

hK(z), K(y)] < ¢ [d(z,y)]

(h, Hausdorff distance) for some modulus ', and let § : E — R be the dilation
of structuring element K. Then, for each modulus ¢, the mapping 6 : Ly— Loy
18 continuous.

Proof. Given an arbitrary point € E, consider a family f, in L, with f, — f
for the pointwise convergence. We draw from theorem 9 that

V{fe @),y € En(2)} = \/{f(v),y € K(2)}.

Since point x is arbitrary in E the pointwise convergence of §( f,,) results, hence
the continuity of 4. Q.E.D.

Corollary 12 The class generated by finite sup, inf and composition product of
dilations and erosions whose structuring elements admit a modulus of continuity
is composed of continuous increasing operators. When all the moduli of the
structuring elements are anti-extensive, then these increasing operators each
map L, into itself.

[Easy proof].

Despite the assumption of finiteness (which could be overcome by supple-
mentary hypotheses of compactness for the K’s), this corollary ensures the
continuity for a comprehensive number of operators in Mathematical Morphol-
ogy, and among others for the morphological filters (openings, closings, their
products and the alternating sequential filters). It shows, a contrario, that
semi-continuity arises from rapid variations of the structuring elements, but not
from the substitution \/ — A.

We conclude this section by brief comments about linear operators on the
L. Concerning convolution, one easy prove the following

12



Proposition 13 Let g(dh) be a measure such that [, |g(dh)| < 1. Then the
convolution by g maps each L, into itself and is continuous.

Consequently, all the half residuals of the operations (i.e. the difference
between a function and its transform) described by corollary 12 map each L,
into itself and are continuous (e.g. the top hat mappings). An approach with
variable kernels g(dh) could be developed in a way similar to what we did for
dilations. It should lead to similar results.

4 Random ¢-continuous functions

4.1 Definition

We are now in a position to provide a random status to the ¢-continuous classes,
which will conclude this paper. Given a modulus of continuity ¢, the lattice
L, is compact as a closed subset of the (compact) set F' of the upper semi-
continuous functions from E into R.The events (1) that generate the o-algebra
o on I admit a similar meaning in L, and the compactness of L, ensures that
there do exist probabilities on the o-algebra of the measurable space (L, 0).
Moreover, we draw from proposition 11 that the dilations (and the erosions)
involved in theorem 7, as well as their finite sup, inf, and compositions preserve
w-continuous random functions, with possible changes of moduli .

The random functions which will be obtained from (L, o) will result in
relatively regular realizations. For example, a Lipschitz Boolean function will
accept sharp valleys, but without strict verticalities.

How does the ¢-continuity affect the characteristic functional Eq.(5)? To
answer this question, we need to establish first the following lemma :

Lemma 14 : A function f : E — R, E a metric space, is @— continuous if and
only if for all x € E;t € R and h > 0, we have

fz) <t and  y € Bypy = fly)<t+h (8)
where function 6 designates the largest inverse of modulus p, i.e.
0 (h) =sup{d: ¢(d) < h} h,de Ry
and where By, (x) is the closed ball centered at x and of radius 6 (h) .

Proof. Suppose f to be ¢-continuous, and f(z) < ¢ for some z € E and
some ¢t € R. Fix the value h. If point y € By (2), then d(x,y) = 0 (h) ie.
¢[d(z,y)] < h. Since f is ¢-continuous, we have

fl) < f@)+eldy)] <t+h

13



Conversely, suppose that implication (8) is true for all z € E;t € Rand h > 0. If
there is no pair (z,t) such that f (z) < ¢, then f = 400, hence is ¢-continuous.
If not, f (x) admits finite upper bounds ¢ and rel.(8) implies, for any point y at
distance 6 (h) from x apart, that

f@) <htt = f@<ht N{ti>F@)=htf(2)

and finally |f (y) — f ()] < h = ¢[d(z,y)] .Now point y may, in turn, play
the role of starting point for an arbitrary point z, since f (y) < oo, and this
achieves the proof.

In more geometrical terms, the lemma says that when a point (z,t) is strictly
above the subgraph of the p—continuous function f, in the product space E xR,
then the whole cone of summit (z,t), of generator ¢ (d) and oriented upwards,
is strictly above the subgraph of f.

In terms of Random Sets, the property depicted by Lemma 14 has a meaning
of a condition : when we know that compact set K misses the subgraph of f,
then all the sections of the cone generated from K, miss it too. This result can
be stated as follows :

Proposition 15 Let f be a random w.s.c. function from a metric space E
into R. Function f is almost surely p— continuous if and only if there exists a
function ¢ : Ry — Ry continuous at the origin, and such that we have for all
KeK,teRand h>0:

Pr{sup {f(z),z € dgpn) (K)} <t+h/sup{f(z),ze K} <t}=1 (9
where 6 (h) =sup{d: ¢ (d) < h}.

Proof.  Observe that implication (8) extends to compact sets K, since the
dilate of set dg(x) (K) of set K by the closed ball By is the union of the balls
By(n) (), as x spans K. Hence we have

sup{f(z),z € K} <t = sup{f (x),z € dgny (K)} <t+h (10)

Therefore the event of the left member of Eq. (9) is almost sure, which yields
Eq. (9). Conversely, the datum of Eq. (9) means almost surely implication
(10), hence the a.s. ¢-continuity of f. W

The random functions which will be obtained from (L, o) will result in

relatively regular realizations. For example, a Lipschitz Boolean function will
accept sharp valleys, but without strict verticalities.
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Figure 2: a) Sampling zones derived from the inverse modulus r ; b) Sampled
image obtained from pattern a).

4.2 Application to sampling

In image processing, the sampling problems are often set in terms of subsam-
pling. We will treat here the following one:

Starting from the datum of a whole image f, what is the minimal number of
values of f to be kept in order to estimate it everywhere with a given accuracy,
and where must we implant the sampling points?

Consider f as a realization of a p-continuous random function, and introduce
a local version of the modulus ¢ by associating, with each point z, the maximum
variation of f over the closed ball B,(r) of radius r and centered at point a:

¢o(r) = E [max{(0nf — f) (z) ; (f — enf) ()}] (11)

where 9, and ¢}, are the dilation and the erosion by ball Bj,.

Second, consider the larger inverse r,, (¢) of @, (r). The value 7, (¢) is the
size of the maximum ball centered at x such that the variation, in the sense of
Eq.(11) is < ¢. Set accuracy ¢ to a fixed value, ¢q say; hence r, (¢o) = r(z)
becomes a numerical function of z only. The sampling protocol is then achieved
by a downstream approach which allocate a sample density inverse to function
.

For a numerical illustration, start from a digital image of 2¢ x 2! pixels (Fig.
2), with i = 8. The largest possible grid G(i) has a spacing 2¢ = 256, and four
points at the four corners of the image. The gray scale ranges over 256 levels,
and the accuracy g is fixed to be equal to 10 levels. The cross section

X(i) ={z:r(z) <2}
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of r, corresponds to the flatest zones of the image under study. So they are
sampled with the largest grid, i.e. reduced to the set

Y (i) = X(i) N G(i)

The points of Y (7) admit a certain zone of influence k(¢), such that the di-
late dy(;) [Y'(4)] indicates the portion of the space "known” from sampling Y (i).
Iterate, by putting

X(i—1)
Y(i—1)

Je k@ <27\ e O
X@E-1)NGG— :
Function k(i) is calculated to be < 2 and to make contiguous the zones of
influence, as i varies. For square grids, for example, one can take:

k() + k(i —1) =2" — 1.

These conditions lead to a pixel reduction by four in the example of fig. 2.
In terms of data compression, such a result is acceptable, but not outstanding.
However, by extending the samples in their respective zones of influence, one
generates the new image f*shown in Fig.2b, so that for all treatments 1 designed
by corollary 12 (anti-extensive case), we still have

E [max|(f) (2) — (%) (@)]] < ¢o

which is not a trivial result.
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