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Abstract

The digital three dimensional objects are usually generated on cubic
grids, or in case of anisotropy, on rectangular parallelepiped ones (e.g.
stack of sections, confocal microscopy, N.M.R., etc.). In the following it
is assumed that, after possible pre-treatment, the data are cubic. Then
three digital spheres may be chosen, namely cubes, cube-octahedra or
rhombododecahedra. They do not share the same advantages.The cube
seems to be more natural. However, the cube-octahedron grid exhibits
unit edges of a unique length. Moreover, the size of the elementary ball
being smaller (13 pixels, versus 27 for the cube), the computations which
involve a range of the successive sizes (i.e. distance function, skeleton, ul-
timate erosion) are treated more finely. Concerning anisotropies now, the
best approach is that based on the rhombododecahedron. First, because
this polyhedron is obtained by Minkowski addition of the four diagonals
of the cube, which can be considered individually (e.g. chord distribu-
tion); second, because its twelve faces are identical. Finally, since th
rhombododecahedra partition the space, digital change in resolution can
be performed. These comparative properties are illustrated on an exam-
ple of isolated objects (biological cells) and another of texture(expended
polymer), by means of an implementation on standard microcomputer.

1 Introduction

In image processing, 3-D treatments appeared during the 80’s for both anal-
ysis and synthesis purposes. In the present paper, we concentrate on analysis
of images, or more precisely, of stacks of binary images. These piles of sections
are nowadays currently produced macroscopically (e.g. NMR), or at microscop-
ical scales (e.g. confocal microscopes). They produce experimental data on
3-D rasters which tend to be cubic. Downstream, these computerized data are



binarized by some techniques we will not consider here. These binary data con-
stitute, by definition, sets in Z3, as well as estimations of sets of R3. How to
access them? How to extend to the 3-D space the usual 2-D notions of sizes,
directions, distances, connectivity, homotopy, etc. 7 This is what we would like
to develop hereafter. What follows is basically a tutorial; however the space
graph approach for homotopy and decomposition of cube-octahedra are new
results (as far as I know). A survey of literature shows that in 3D morphology,
the two places that have been producing the most substantial series of results,
and for a long time, are the pattern recognition section, at Delft University of
Technology (see in particular P.W. Verbeek [1][2], J.C. Mullikin [3], Jonker [4])
and the Centre de Morphologie Mathématique, at the Ecole des Mines de Paris
(see in particular Serra [5], Meyer [6] [7], Gratin [§], Gesbert et al. [9]).

2 Three dimensional grids

By grid, we do not only mean a regular distribution of points in the the 3-
D space, but also a definition of the elementary edges, faces, and polyhedra
associated with these points. The three crystallographic grids we find below
derive from the cube, and are constructed as follows

i/ cubic grid, which is generated by translations of a unit cube made of 8
vertices ;

ii/ the centred cubic grid (cc grid) where the centres of the cubes are added
to the vertices of the previous grid ;

ili/ the face-centred cubic grid (fcc grid) where the centres of the faces are
added to the vertices of the cubic grid.

A comprehensive comparison of these grids can be found in F. Meyer’s study

[6].
2.1 Interplane distances

In the last two grids, the vertices generate square grids in the horizontal planes,
and in vertical projection the vertices of plane No n occupy the centres of the
squares in plane No n—1. We shall say that these horizontal plane are staggered.
If o stands for the spacing between voxels in the horizontal planes, then the
interplane vertical spacing is equal to /2 in the cc case, and to a\/i/2 in the
fec one.

2.2 First neighbors

Every vertex has
e 6 first neighbors in the cubic case
e 8 first neighbors in the cc case

e 12 first neighbors in the fcc case



Geometrically speaking, when point x is located at the centre of the 3x3 x 3
cube, its projections

e on the faces of the cube provide the cubic neighbors
e on the vertices the cc-neighbors

e and on the edges the fcec-neighbors

Fig. (1) illustrates this point. One can see, also, that the first neighbors
generate the smallest isotropic centred polyhedron of the grid, i.e. a 7-voxel
tetrahedron (cubic case) a 9-voxel cube (cc-grid) a 13-voxel cube-octahedron
(fce grid). Denote them by the generic symbol B, and the nt? iteration of B by
By, ie.

B,=B®B .. &B n times ,

with By = Identity. From the implication n > p = B, > B, n,p non
negative integers, from the equality B, B, = By1p, and from the symmetry of
B we draw (proposition 2.4 in Serra [10]) that the 3-D raster of points turns
out to be a metric space (in three different ways, according to the grid), where
the smallest isotropic centred polyhedron is the unit ball.

3 Elementary edges, faces, and polyhedra

In order to complete the definition of the grids, we will introduce now elemen-
tary edges, faces and polyhedra. Edges are necessary to define paths, hence
connectivity. Faces and polyhedra are required to introduce notions such as
Euler-Poincare number for example, or more generally, to introduce the graph
approach.

3.1 Cubic grid

As elementary edges, the best candidates are obviously the closest neighbors (in
the Euclidean sense), i.e. those of fig. (1). However, they are not so numerous,
in the cubic and in the cc case, in particular, which leads to poor connections.
For example, in the cubic grid, the extremities of the various diagonals are not
connected, we meet here a circumstance similar to that which led to the 8 and
4-connectivities in the 2-D grid. For the same reason, the authors who focused
on the cubic grid, such as A. Rosenfeld [11], [12] or K.S. Fu [13], at the beginning
of the 80’s, introduced the 26- and the 6-connectivity on the cubic grid. When
the foreground X is 26-connected, then the background X°¢ is 6-connected and
vice-versa. In other words, a voxel z € X admits, as edge partners, all those
voxels y € X that pertain to the cube C' : 3 x 3 x 3 centred at . Coming back to
fig. (1b), we now have to take into account not only the centres of the cube faces,
but also the 12 middle points of its edges, and its 8 vertices. Such an extension



of the connectivity for X is possible only when the connectivity on X¢ remains
restricted to the six closest neighbors. If not, we should run the risk of over
crossings of diagonals of 1’s and of 0's, so the faces should be undefined.This
dissymmetrical connectivity brings into play a second digital metric, where cube
3 x 3 x 3 is the unit ball. In particular, the boundary of set X°€ is

0X° =X\X° oC
whereas the boundary of set X is defined via the unit tetrahedra T':
X =X\Xol

We draw from this last equation that §X © 7T = 0, and from the previous
one that 6X°¢© C = (). The boundary of X is thinner, but it may comprise
zones of a thickness 2, and of course lines or fine tubes.

Note also that, unlike tetrahedron 7", cube C' admits a Steiner decomposition
into three orthogonal segments of three voxels length each. Consequently, the
dilation X @ nC' is obtained as the product of three linear dilations of size 2n
in the three directions of the grid.

3.2 ccgrid

The cc grid call very similar comments, but now with staggered horizontal
planes. The low number of the first neighbors (i.e. 8) of each voxel suggests to
add the second neighbors, in number of six (see fig.1). This results in the unit
rhombododecahedron R shown in fig. (2), which exhibits 15 vertices (including
the centre), 12 rhomb faces, identical up to a rotation, and 24 edges whose
common length is the first neighbor distance.

Just as previously, with the cubic grid, the adjunction of 2nd neighbors
complicate the situation, for they cannot be added simultaneously to the 1's
and 0's. This results in a 14-connectivity for the grains versus a 8-connectivity
for the pores. By comparison with the cubic case, the connectivity contrast
between foreground and background is reduced, but it remains.

Again, as previously, a new metric is provided, namely that of the rhom-
bododecahedron. In this metric, the isotropic dilations can be decomposed into
segment dilations, since R admits a Steiner decomposition into the four diago-
nals of the cube (2,2,2), i.e.

=(Lo)e(® )o(s M)e(4 %) o

where -1, 0, 1 indicate the level of the plane, and where the origin is always
assigned to the point of plane 0 [10].

3.3 fcc grid

With the fec grid, things become simpler [6][8]. We still are in a grid where the
odd horizontal planes have been shifted by (a/2,a/2,0) from the cubic spacing,



but now each voxel © admits 14 nearest neighbors, at a distance a\/i/ 2. They
form the unit cube-octahedron D, of figure (2), centred at point x. Geometrically
speaking, such a high number of first neighbors means that the shape of D is
a better approximation of the Euclidean sphere, than those of the cube C and
the rhombododecahedron R.

As far as connections are concerned, it becomes cumbersome to resort to
2nd neighbors. Therefore there no longer is a risk of diagonal overcrossing. The
existence of an edge no longer depends on the phase under study but exclusively
on the intersection between grid and sets: two neighbors 1's define an edge in
set X, two neighbors 0's an edge in set X°¢.

Finally X and X°¢ are treated by the same balls D,,, but the latter cannot
be decomposed into Minkowski sum of segments, unlike C' and R.

3.4 Conclusion

As a conclusion, three reasons argue in favor of the fcc grid, namely

1/ the shape of the cube-octahedron D provides a better approximation of
the unit Euclidean sphere, than C' or R (isotropic dilations, skeletons, distance
functions, etc. will seem more ”Euclidean”) ;

2/ D is more condensed: 13 points on 3 consecutive planes (1)) are more
economic than 15 points on 5 planes (R), or 27 on 3 planes. D leads to thinner
boundaries, to finer ultimate erosions, etc. and requires less logical tests in its
implementation.

3/ In the fcc grid, the connectivity is based on the first neighbors only,
which allows a common approach for grains and for pores (in cubic grid, when
one decides to attribute a priori more than four possible neighbors to the 1's
than to the 0’s, a rather severe assumption is made, which holds, paradoxically,
on the convexity of the pores. Most often, both grains and pores exhibit concave
and convex portions, and the 26/6-connectivity assumption is just irrelevant).

Facing these advantages, the weakness of the fcc grid is the staggered orga-
nization of its successive horizontal planes. However, is it really a drawback ?
This is the question we will examine now.

4 Directions

In this section, we analyse how the directions, hence the shapes, are modified
when embedding the digital 3-D grids into the Euclidean space. First of all a
brief (and last) reminder on our three polyhedra is provided.

4.1 Equidistributed directions in R? and in Z3

In R?, we can subdivide the unit disc in as many equal arcs as we want. In
R3, unfortunately, such nice simplicity vanishes: given an arbitrary integer
n, one cannot find in general n equidistributed directions on the unit sphere,
i.e. one cannot partition this sphere into n solid angles which would derive



from one another by rotations (a question related to the famous five Platonian
polyhedra). Indeed, the 3-D space may be partitioned only into 2, 4, 6, 8, 12 and
20 equal solid angles. The first two partitions are too poor and the last one hardly
reachable by small digital polyhedra. The partitions into 6, 8 and 12 angles are
those seen from the centre of a cube, an octahedron and a rhombododecahedron
respectively, whose faces are windows.

A second and less known result is the following. The axes of these 6, 8 and
12 solid angles coincide with the vectors from a voxel to its 6, 8 and 12 first
neighbors in the cubic, cc and fcc grids respectively

These results directly extend to digital grids. For example, in the cubic grid,
there are three sets of equi-angular directions, namely

i/ the three basic directions of the grid;

ii/ the four directions involved in eq. 1, which are also the edges directions
of the rhombododecahedron ;

iii/ the six following directions

(00 ) (s ) () e

which correspond to the edge directions of the cube-octahedron.

Note that the dilation of the first three unit vectors (i) generate the unit cube
(2 x 2 x 2), that of the four ones (ii) produces the rhombododecahedron (cf. eq.
1), and that of the six vectors of (eq. 2) the tetrakaidecahedron (but not the
cube-octahedron...). In addition, each of these three Steiner polyhedra generates
by translation a partition of the 3-D space R? or Z3. The tetrakaidecahedron
(fig. 2), a sort of Steiner version of the cube-octahedron, is unfortunately too
thick for digital purposes (voxels distributed over five successive planes for the
unit size).

As for the cube-octahedron itself, if it cannot be obtained by dilating seg-
ments, it admits, however, a decomposition into the Minkowski sum of two
tetrahedra. For example

0 1

,—1 0
L-1 0 1,-1 :(_01 _01>ea(f1 751> (3)
0 1,-1 0

4.2 Digital fcc grids, virtual staggering

How to produce a stack of staggered square grids, or, equivalently, how to pro-
duce a digital unit cube-octahedron? An easy way is to favor the diagonal
horizontal directions, as in (Eq. 3). The staggering structure is created auto-
matically, since each of the two diagonal subgrid appears, alternatively, in the
successive horizontal planes. The negative counterpart is that half of the voxels
only are taken into account. For example, the dilation of (Eq. 3) produces nei-
ther the central points at levels +1 and -1, nor the middle points of the sides
at level zero. We may always add these points, in order to complete the basic
cube-octahedron, but then



i/ We increase the elementary size from 13 up to 19 voxels, hence we become
less accurate in delineating boundaries, ultimate erosions, skeletons, etc.

ii/ We lose the advantage of a unique type of edges, which governs homotopy
and connectedness properties.

iii/ We do not know what to do with the amount of information carried by
the non used voxels.

An alternative solution should consist in interpolating one horizontal grid
every two planes. This would add a computational step, but above all, it seems
”fiddled”: how to weight the four horizontal neighbors, versus the two vertical
ones 7 How to display the resulting grid ? etc. Therefore, we propose neither to
move nor to remove or even modify, any voxel of the cubic initial data, and to
consider each even plane, as il is, as being staggered. According as the central
plane is odd or even, we then obtain one of the two elementary polyhedra of fig.

3.

1 1 .1 .
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L .1 11
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11 . 1 11 .11 b/
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Fig. 3 : Decomposition of the unit cube-octahedraon in a cubic raster, in
order to simulate the staggered structure (a: odd central plane, b: even central
plane).

Such a virtual staggering is similar to that used in Z?, when one generates a
hexagonal grid from a square raster. In both cases, the irregularity of the unit
polyhedron (resp. polygon) is self-compensated by iteration. In other words, the
mappings which bring into play sequences of successive sizes, such as distance
functions, medial axes, granulometries, sequential alternated filters, etc. are
treated by means of actual digital cube-octahedra (resp. hexagons), (see fig.5).

5 Space graphs and measurements

From now on, we consider sets of points in Z?, that model the voxels associated
with physical objects of the three dimensional space. Sets are given capital
letters (X, A, B...), and points small letters.

One find a rather important literature on digital surface description, and
calculus, for 3-D sets [2][6][9][11][14][15]. If one has in mind to bridge the gap
between digital and continuous spaces, i.e. to provide a Euclidean meaning with
digital measurements, the techniques based on digital boundary measurement
(i.e. volume difference between dilate and object, or object and eroded set) are
not acceptable, and one must deal with stereology [6][9][15][16]. Below we follow



this approach (note that [2] turns out to be an improvement of the classical stere-
ological method). Moreover we are not exclusively interested in surface area,
but more generally in digital estimators of ”good” Euclidean measurements.

5.1 Reminder on the genus of a surface

The theory of Euclidean surfaces is classical, and dates back to the beginning
of the 20th century (R. Poincaré¢). The comment below derives from [17], more
information can be found in general documents such as Encyclopedia Britannica.

In R™, a closed orientable surface is topologically equivalent to a sphere
with an even number 2p of holes (made by removing discs) which have been
connected in pairs by p handles (shaped like the surface of half of a doughnut).
A closed non orientable surface is topologically equivalent to a sphere which has
had a certain number ¢ of discs replaced by cross-caps. The numbers p and ¢
are said to be the genus of the surface not being closed means that some discs
have been removed and the hole left open. A torus is a sphere with one handle;
a Mobius strip is a sphere with one cross-cap and one "hole” ; a Klein bottle is a
sphere with two cross-caps; a cylinder is a sphere with two "holes”. In general,
the Euler-Poincaré number of a surface is equal to 2 — 2p — ¢ — r, where p is
the number of handles, ¢ is the number of cross-caps (zero for an orientable
surface), and r is the number of holes (or boundary curves). The Euler Poincaré
number of the union of disjoint surfaces is the sum of each of them.

5.2 Euler-Poincaré number and space graphs

Here, a convenient set model is the class of all finite unions of compact convex
sets. This class, called “the convex ring of R™” allows to elaborate a theory
about measurements (Hadwiger theorem below), and on the other hand lends
to digitization (space graphs below). In this framework, a deep property of
Euler-Poincaré number is stated by the following theorem [18].

Theorem 1 (Hadwiger): the only functional defined on the convex ring in R™,
of degree zero, invariant under displacements, C-additive and constant for the
compacl convex sels, is the Fuler- Poincaré number v.

This topological number v allows to bridge the gap between Fuclidean and
digital spaces, since it can be equivalently defined in both modes when we
interpret it in terms of graphs. In two dimensions, v is classically expressed
via planar graphs. In R3, a space graph is

i/ aset X of points ;

ii/ a collection F of edges, i.e. of lines homotopic to the segment [0,1]. Both
extremities of each edge belong to X, and two edges may possibly meet at their
extremities only ;

iii/ a collection FE of faces, i.e. of surfaces homotopic to the closed unit disc.
The contours of the faces are exclusively edges, and two faces may possibly
intersect along edges only ;



iv) a collections of blocks P, i.e. the connected components of the space that
remain when all points, edges and faces of a space graph have been removed.

The space graph is the turning point between Euclidean and digital spaces,
for the questions investigated here. Defined in R3, it may also be reinterpreted
in Z3, and the derived relations (e.g. Eq. 4) are meaningful in both spaces.

One proves by induction [5, p. 229], that when set X is finite, or at least
locally finite, the Fuler-Poincaré constant v (Y) set Y = X U F U F' formed by
the points, the edges and the faces of X is equal to ( ):

v (Y) = N (vertices) + N (faces) — N (edges) — N (blocks) (4)

Seen from a digital point of view, the problem consists now in associating
space graphs with the set of points in Z3. Then, clearly, embedding such graphs
in R? allows a digital interpretation of their Euler-Poincaré numbers.

Various examples of such ”polyhedrizations” are described in literature. The
probably oldest one [19] deals with cubic grid and provides an algorithm for
v (Y) from (Eq 4). According to the choice of connectivities other cubic graph
are possible [12][13]. The literature about the rhombododecahedric graphs is un-
doubtedly more reduced [5][9]. An excellent study on the topological properties
of the cubic grid, due to G. Bertrand, will be found in [20]. The last reference
also gives a solution to Eq. 4 for the graphs on cc grid. We focus here on the
most interesting case, namely the space graphs over fcc grid.

In the fcc case, the graph edges associated with a set X are the pairs of
neighboring points of X, the faces are the elementary triangles generated by
three (two by two) neighbors, and the blocks are the resulting tetrahedra and
octahedra. Unlike the triangles, the elementary squares do not constitute faces
in the graph structure, and, for this reason, the elementary pyramids are no
longer blocks. Finally, all these definitions are also valid, by duality, to X°¢, i.e.
to the set of 0’s

When applied to a cfc graph X, relation (Eq. 4) reduces to the six configu-
rations drawn in fig. 4.

Note that unlike the number of particles, number v is a local measurement :
one needs only small neighborhoods around best points to estimate it statisti-
cally.

5.3 Minkowski measures

FEuler-Poincaré number, that we have just introduced in the three-dimensional
cases, is indeed defined by induction in any R*. In particular :

- for k = 0, the space is reduced to one point and vo (X) = 1 iff X is this
point ;

- for k=1, v1 (X) equals the number of segments of X ;

- for k=2, v3 (X) equals the number of particles of X minus their holes.

Consider now a 3-D Fuclidean set X, and a subspace S(z,w) of location
x and orientation w. Take the cross section X N S (z,w) and integrate its v/-
constant over the displacements, i.e. in z and in w. According to Hadwiger’s



theorem, we then obtain the only functionals to be invariant under displace-
ments, c-additive, homogeneous of degree n— k, and continuous for the compact
convex sets, namely (up to a multiplicative constant) :

volume v(X) = [pavo(XN{z}) dx (5)
surfacearea  Ls(X) = g Jidw [ v [XNA(z,w)] dx (6)
meancaliper d(X) = tdw [, do [T [X N1 (z,w)] dz (7)

At first glance, the notation seems heavy ; in fact, it is extremely meaningful.
In (Eq. 6) for example, w indicates a direction on the unit sphere, and A (z,w)
a test line of direction w passing through point z. The first sum integrates over
a plane I1,, orthogonal as w, as the foot x of A (x,w) spans II,,. The second
integral, in dw is nothing but a rotation averaging (similar comment for Eq 7).
The meaning of these relations is clearly stereological. For example, the surface
area, a 3-D concept, turns out to reduce to a sum of number of intercepts, i.e.
a typically 1-D notion.

When set X admits at each point of its surface a mean curvature C' and a
total curvature C’, then mean caliper and Euler-Poincaré number take another
geometric interpretation, since

2md(X) :/ Cds and  4rrz(X) :/ C' ds
5X 5X

The three relations (Eq. 5) to (Eq. 7) attribute a Fuclidean meaning to digital
data (we meet again the turning point aspect of space graphs). By discretization,
(Eq. 5) becomes

v * (X) = (Number of voxels of X) X vg

where vg = a® (cubic grid) or a®/* (fcc grid) or a®/? (cc grid).
Similarly, (Eq. 6) is written

8" (X) = (average number of intercepts) x 2a%V2

where the averaging is taken over the six directions of (FEq. 2), in the cubic grid.
Since estimate s* (X) concerns the Euclidean surface s(X), it differs from the
facets areas of the digital set X. For example, here, a facet of a zero thickness
counts twice.

5.4 Other measurements

Being stereological is not an exclusive property of Minkowski functionals. Here
are two instructive counter examples.

Roughness: Assume that ¢ X admits curvatures everywhere, and let F(I) be
the combined chord distribution of X and X°. Then, near the origin we have

[21]
F(l) = % [—C’ + 3/5)( Cst}

10



In particular, when X is a physical relief, the term C' vanishes, and the slope
of the intercepts density near the origin is proportional to the average of the
square mean curvature C2. It was taken advantage of this descriptor to study
road surfaces from profiles.

3-D contacts: Consider a random packing of spheres of radius R, and a
cross section through it. The spheres becomes discs, and the distribution of the
shortest distances between discs follows a law

F(l) ~1.438 n,(IR)"?

where 7, is the number of contacts between spheres per unit volume [22]. This
law, which governs some modes of thermic and electric permeabilities, has been
experimentally verified J-P. Jernot.

Both above measurements are invariant under displacement, homogeneous,
continuous on convex sets, but, unlike Minkowski functional, do fulfill the c-
additivity condition

§(XUX)+p (X NX) = o (X) +p (X')

which is not essential here.

6 Increasing operations and their residues

As soon as spheres and lines (in a set of directions) are digitally defined, it
becomes easy to implement isotropic and linear dilations and erosions, hence
openings, closings, granulometries, and all usual morphological filters.
Similarly, the residuals associated with distance function, i.e. skeletons (in
the sense of ”erosions\openings”), conditional bisectors, and ultimate erosions
derive directly.
Examples of fig. 5 illustrate this point.

7 Thinnings, thickenings, and homotopy

After the measurements, the second use of the space graphs concerns thinnings
and thickenings, and more particularly, those operators that preserve homotopy.

Given two erosions £; and 2 : P(F) — (F), one defines the hit-or-miss
transformation as [5]:

X — e (X)Neg (X9 XcCckE

Then, set X is thinned by (1, £2) when its hit-or-miss transform is sub-
tracted, and it is thickened when added. If 8 and 7 stand for thinning and
thickening operators respectively, we have

0(X)=XnN[ey (X)Nep (XO)°
7(X) = X Uler (X) Nea (X9)]

11



Unlike erosion and dilation, thinning and thickening may satisfy constraints
for homotopy preservation. In two dimensions comprehensive studies have been
performed on this subject by C. Arcelli and G. Sanniti di Baja, in Naples, for
the square grid [see among others 23], and by J. Serra for the hexagonal one
[5]. In three dimensions, for the cubic grid the most important achievements
are due to the Delft school, namely S. Lobregt et al. [24], and more recently P.
Jonker [4]. One may mention also some pioneer work by T. Yf and K.S. Fu [13].
Concerning fcc grid, the results are considerably more limited, however some
attempts by P. Bhanu Prasad and P. Jernot [25], and by J.H. Kimberly and K.
Preston [26] may be indicated. A general comment on all these 3D analyses, is
that each of them proposes a unique algorithm, whose genesis is never explicited
and whose justification is provided by one or two examples.

Now, in 3D, just as in 2D, the homotopy of a bounded set X, may be
represented as a tree. Starting from the background, one first considers all the
connected components 6X; of X that are adjacent to the background. They
form the first level of the tree. With each of them is associated a genus. Some
6X; enclose inside areas. If Y; is the inside of a 6X;, ¥; may contain in turn
boundaries of X, say dY; ;; each of them admits a certain genus, etc. The
collection of the 0Y; ; form the branches of the tree that derives from Y;; ... and
SO on.

Two sets are homotopic when their homotopy trees are identical, and a
mapping X — ¥ (X) is homotopic when for all X, ¢ (X) is homotopic to X.

From now on, we limit ourselves to the neighborhood mappings. They are not
the only ones able to preserve homotopy, but the simplest ones in the translation
invariant approach. In such a case, each pixel is compared with a neighborhood,
which is always the same modulo a translation, and the pixel is kept or removed
according to the configuration of the neighborhood. We find again the thinning
operator.

Such thinning will be homotopic when by changing 1 — 0 we do not locally
modify the genus of the boundaries. Since it holds on boundary, such a condition
is symmetrical for X and X¢; i.e. the change must not open a hole, neither
create a new particle ; must not generate a donut of grains or of pores, neither
suppress a grain or a pore, etc. On the fcc grid, the neighborhood of size one
around a voxel x admits all the edges involved in the unit cube-octahedron
D(zx) centred at point . But since the squares are not faces, this neighborhood
exhibits six pyramidal hollows, as shown in fig. 6a.

On the unit cube-octahedral sphere d D(x) (i.e. D(z) minus its centre z), the
only admissible configurations of 1’s and O’s are those which result in a simply
connected component of 1’s, say T} and also of O’s, say Ty. One easily verifies
that the other ones may change homotopy.

A convenient way to group and classify the admissible configurations consists
in taking for 71(z) one point, these two connected point, and three, etc. of
6D(x), considering the neighbors of 71(x) on §D(z) as a no man’s land, and
taking for Ty(xz) the remaining voxels of D(x). This technique is right if the
obtained 7§ is simply connected (which is always true), and if the neighbors of
To on 6D coincide with those of T} (which is not always true, so we have to

12



exclude some neighborhoods).

We finally obtain five candidate configurations, up to rotations and comple-
ment, where 7T} is successively

- 1 point = H;

- 2 extremities of one edge = K,

- 3 consecutive summits of a hexagonal section = Ly

- 3 summits of a triangular face = M, (fig. 7)

- 4 summits of an elementary square = N; (fig. 7)

Moreover, the above conditions are necessary, but not sufficient. If the four
summits of a square on D(z) are 0’s, then by changing the centre z of D(z)
from 1 to O one generates a hole in the pores. Therefore in all cases where such
a square may arise one must replace the hollow by the octahedron which fills it,
i.e. add some of the supplementary point that change fig. 6a into fig. 6b.

Such a completion is not necessary for the first and last above cases (in-
volving H; and Np), but needed for the three other ones. After having com-
pleted correctly the structuring elements, one obtains five pores H = (Hy, Hp),
K = (Ky,Ko), L= (L1, Lo), M = (M, M) and N = (N1, Ng). Just as in 2D,
one can list the geometrical meaning of the corresponding thinnings.

H: for a simply connected particle, thins it down to one point, and thick-
ens it up to its convex hull; it acts independently on disjoint particles, but in
thinning only.

K and L : thin the sets down to lines; I but not K is symmetrical under
complementation.

M and N : thin the sets down to sheets ; both are symmetrical for the
complement.

Their geometrical interpretations are true up to some pathological configu-
rations (just as in 2D, see [5] p. 396 for ex.), which fortunately rarely occur. The
above interpretations are drawn from the consideration of the invariant blocs,
faces and edges in each thinning.

It would be long and tedious to develop all the structuring elements involved
in each operator. More briefly, we indicate in fig. (7), the two configurations M

and IV, in a perspective display. For the former, some external 1’s and O’s have
to be added.

8 References

References

[1] P.W. Verbeek, H.A. Vrooman and L.J. van Vliet, "Low level image pro-
cessing by max-min filters”, Signal Process., vol. 15, pp. 249-258, 1988.

[2] J.C. Mullikin and P.W. Verbeek, ”Surface area estimation of digitized
planes”, Bioimaging, vol. 1, pp. 6-16, 1993.

[3] J.C. Mullikin, Discrete and Continuous Methods for Three Dimensional
Image Analysis, Delft: Univ. Press, 1993.

13



P.P. Jonker, ”Parallel processing in computer vision and collision free path
planning of autonomous systems”, in 26th ISATA, 1993.

J. Serra, Image Analysis and Mathematical Morphology, London: Acad.
Press, 1982.

F. Meyer, ”Mathematical Morphology: from two dimensions to three di-
mensions”, J. of Micr., vol. 165, pp. 5-29, 1992,

C. Gratin and F. Meyer, ” Mathematical Morphology in three dimensions”,
Acta Stereol. vol. 11, pp. 551-558, 1991.

C. Gratin, De la représentation des images en traitement morphologique
d’images lridimensionnelles, PhD thesis, Ecole des Mines de Paris, 1993.

S. Gesbert, C.V. Howard, D. Jeulin and F. Meyer, " The use of basic mor-
phological operations for 3D biological image analysis”, Trans. Roy. Mi-
crosc. Soc., vol. 1, pp. 293-296, 1990.

J. Serra, ”Mathematical Morphology for Boolean lattices”, in Image Anal-
ysis and Mathematical Morphology, vol. 2, J. Serra (ed.), London: Acad.
Press, 1988.

D.G. Morgenhaler and A. Rosenfeld, ”Surfaces in three-dimensional digital
images”, Information and Control, vol. 51, pp. 227-247, 1981.

T. Kong and A. Rosenfeld, ”Digital topology: Introduction and survey”,
Comp. Vis. Image Proc., vol. 48, pp. 357-393, 1984.

Y.F. Tsao and K.S. Fu, ”A parallel thinning algorithm for 3-D pictures”,
Comp. Graph. Image Proc., vol. 17, pp. 315-331, 1981.

J. Mukkerjee and B.N. Chatterji, ”Segmentation of three-dimensional sur-
faces”, Pattern Rec. Letters, vol. 11, pp. 215-223, 1990.

V.C. Howard and K. Sandau, "Measuring the surface area of a cell by the
method of the spatial grid with a CSLM”, J. of Micr., vol. 165, pp. 183-188,
1992.

P. Bhanu Prasad, J.P. Jernot, M. Coster, J.L.. Chermant, ”Analyse mor-
phologique tridimensionnelle des matériaux condensés”, in Proc. PIXIM,
1988, pp. 31-42.

James and James, Mathemalics Dictionary, Van Nostrand, 1982.

H. Hadwiger, Vorsesungen tber Inhalt, Oberfliche und Isoperimetrie,
Springer, 1957.

J. Serra, ”Introduction a la Morphologie Mathématique”, Cahiers du CMM,
Ecole des Mines de Paris, 1969.

14



[20]

[21]

[22]

[23]

G. Bertrand, ”Simple points, topological numbers and geodesic neighbor-
hoods in cubic grids”, Patlern Rec. Letters, vol. 15, pp. 1003-1012, 1994.

J. Serra, ”Descriptors of flatness and roughness”, J. of Micr., vol. 134, pp.
227-243, 1984.

Y. Pomeau and J. Serra, ”Contacts in random packings of spheres”, J. of
Micr., vol. 138, pp. 179-187, 1985.

C. Arcelli and G. Saniti di Baja, ”Width-independent fast thinning algo-
rithms”, IEEE Trans. Paltern Anal. Machine Intell., vol. 7, pp. 463-474,
1985.

S. Lobregt, P.W. Verbeek and F.A. Groen, ” Three dimensional skeletoniza-
tion: Principle and algorithm”, IEEE Trans. Pattern Anal. Machine Intell.,
vol. 1, pp. 75-77, 1980.

P. Bhanu Prasad and J.P. Jernot, " Three dimensional homotopic thinning
of digitized sets”, Acta Stereol., vol. 9, pp. 235-241, 1990.

J.H. Kimberly and K. Preston, ” Three dimensional skeletonization on elon-
gated solids”, CVGIP, vol. 27, pp. 78-91, 1984.

15



