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Abstract

The space K’ (E) of the non empty compact sets of a metric space E is
itself metric for the so called Hausdorff distance. It is shown in this paper
that Hausdorff metric admits at least two different geodesic, with provide
interpolators between pairs of sets of ' (E). When E is affine, the space
quotient of K' (E)under translation admits in turns reduced geodesics,
that generate better set interpolators. Finally, by introducing a Hausdorff
distance by erosion, one can provide a symmetric form to interpolators,
but are no longer geodesics.

1 Introduction

This paper belongs to a series of three texts (ref. [1][2][3]) by S. Beucher, F.
Meyer, and J. Serra respectively, originally in French and written in 1994. They
have resulted in a patent [4], consequently we could not publish them for a cer-
tain time. The paper by Meyer was the subject of a communication in ISMM’96
in Atlanta [5], and the one by Beucher is presented in ISMM’98 [6]. These
three related works, which develop three facets of a same idea, transcribe in a
written form a number of fruitful discussions at the CMM. This paper is more
upstream than the two other ones, and, unlike [5], uses the term ”geodesic” in
its mathematical sense, i.e. ”segment in a metric space”.

Before getting to the heart of the matter, we will remind briefly the classical
Hausdorff distance, and introduce a variant of it (by erosions).

Let E be a metric space, of distance d, and let K’ be the class of the non
empty compact sets of E. Put

d(z,Y)=inf{d(z,y),y €Y} r€E;Y ek

and introduce the mapping K’ x K’ — R

p(X.Y) = max { sup d(e. )+ supd(y. )} 1)



Mapping p turns out to be a distance, called ”Hausdorff distance”, which
holds on K’ and no longer on E. Rel. (1) can be equivalently written by means
of the dilations by the balls of space E. If Bj (z) stands for the compact ball of
centre = and of radius A, the dilation of X € K’ by A has an expression

IA(X)=U{Bx(z),z2€ X} =U{y: Br(y) N X £0}. (2)
Then, rel.(1) takes the following form, for all X, Y € K’ :
p(X.Y) = inf {A: X C oy (V)5 ¥ C by (X))} (3)

This last expression, more geometrical than rel. (1) shows in particular
a semi-sensitivity to noise: a small lacuna in set X; or Y; slightly changes p,
whereas an isolated point far away from X and added to it modifies p drastically.
Hausdorft distance satisfies a few algebraic properties, associated (of course)
with union and dilation. Moreover it extends easily to grey tone and colour
functions by means of their subgraphs [7][8]. Therefore all derived geodesics and
interpolators apply also to functions (see S. Beucher’s paper [6] in the present
issue).

Consider now the subclass A of X' (E), of the regular compact sets, i.e.

X ek’ and X=X.
Then the non negative number
c(X,Y)=inf{A:ex(X)CY ; ex(Y)CX}

where €, is the erosion adjoint to dilation d, is a distance on A x A. Indeed,
if 0 (X,Y) =0, then

o]

YO Uax(X)= X = YDXDX XYed

A>0

and similarly X D Y, hence they are equal (the other axioms are proved as for
distance p). We shall call o the Hausdorff distance by erosions.

2 First Hausdorff geodesic

If it exists, a geodesic between X and Y, for the Hausdorff distance by dilations,
will be a shortest segment from X to Y in space K, i.e. afamily {Z,,0 < a <1}
of non empty compact sets that interpolate X and Y. For a = 0 we should obtain
Zo=X,fora=1,Z, =Y, and as « increases, Z, should progressively leave
X and go to Y.

But does such a geodesic exist 7 In many metric spaces, there are no geodesics,
in some other ones, several ones, or even an infinity. What about our current
case ? To answer the question, we need a small lemma.



Lemma 1 Given S and X inK', if 6, (S) 2 X forap >0, thend, (6,(X)NS) 2
X

Proof. By hypothesis, every point z € X belongs to 6, (S5), i.e. there exists
a point s € S such that « € 0, (s) or, equivalently, such that s € 6, (), hence
s € U{d, (z),z € X}NS. Therefore every point « € X is covered by the p-dilate
of an element of §, (X) N S. Q.E.D.

The lemma allows to construct a first class of geodesics, as follows:

Theorem 1 First geodesics: let E be a metric space of distance d, of compact
balls 5, and whose K' (E) denote the class of the non empty compacts sets. Then
every pair X, Y in K' (E) from p apart, (for Hausdorff distance by dilations)
admits the following geodesic:

{Za = 5ap (X)n 6(1704)‘0 Y) , a€]0,1] } (4)

Proof : Fix o and put S = §(1_q4), (Y). Since dq, [5(1_a)p] = §p, we draw

from rel. (3) that 04, (S) =6, (Y) D X. By applying lemma 1 we have
5ap (Zy) = 5ap (6ap (X) N 6(1_a)p (Y)) o X
On the other hand, the definition of Z, implies 64, (X) 2 Z,, hence
p(X,Za) < ap

One proves similarly that p (Y, Z,) < (1 — «) p. By combining these two results
with the triangular inequality, we finally obtain

p>p(X,Za)+p(Y,Z0) > p(X,Y) =p

which achieves the proof. Q.E.D.

Discussion: What is the practical value of algorithm (4) 7 When we apply it
to two disjoint sets X and Y, it often swells the intermediate Z,’s. Typically,
the midway set between the two fine and horizontal segments of the z-axis is
a thick and vertical lens, which inflates more and more as the segments depart
from one another.

At least, this first geodesic will have highlighted where the problems do lie.
Indeed, the discussion suggests we focus

i/ on other possible geodesics, with finer interpolators,

ii/ on an approach which should treat separately the differences between the
relative positions of X and Y, and their differences in shape.

iii/ on an approach which should not be restricted to extensive dilations,
which always ”swell” | for example by involving dilations and erosions in a sym-
metrical manner.

The problems are set, it remains to examine how they can be solved.



3 Second Hausdorff geodesic

3.1 Convex case

The geodesic Z, of rel. (4) does not involve dilations of X and Y by each other,
but of both of them by the §,’s. However, if we focus on the sub-class ' C K’
of those elements of K’ that are convex, we can easily exhibit another geodesic,
based on cross dilations. In the following, X stands for the transform of set X
under the similitude of ratio a.

Proposition 1 Let X and Y be two non empty compact convex sets in R™, at
Hausdorff distance p from each other. Then the interpolator

ZL=(1-a)X ®ay (5)

is at distance ap from X and (1 — a) p from Y, i.e. the family {Z!, , o € [0,1]}
is a geodesic in space C'.

Proof : For every set X € K’ and for any a € [0, 1] we have
l-)XhaX2DX , (6)

the equality being obtained iff X is convex [9]. Therefore, for all X,Y € K’ of
distance p apart, we can write

ZidapB=(1-a)Xda(Y®pB) D (1-a) X baX D X. (7)

where B is the closed unit ball centered at the origin.
If, in addition, sets X and Y are convex, we have also

XPapB=(1-a) X Da(XDHpB) D (1-—a)X haY D Z,. (8)
Hence, p (Z!,X) < ap, and similarly p (Z/,,Y) < (1 — a)p. thus we have
P(Zo, X)+p(Zs,Y) < p=p(X,Y)

as well as the inverse inequality (triangular inequality for distances), which
achieves the proof. Q.E.D.

In general, the second geodesic {Z/,, « € [0,1]} does not reduce to the first
one, since rel. (8), and its homolog version for Y, imply, when compared with
rel. (4) that

Zo (X,Y) D Z,(X,Y) acl0,1] , X, Ye( (9)

For example, in the case of the two above segments, interpolator Z(/J’5 is itself
a segment of same length as X and Y, and placed between them. We are far
away from the thick lens Zg 5 !

Another very positive feature lies in the fact that Z, ; commutes under trans-
lation on X or on Y. Indeed, the translate of X by vector A is nothing but



the dilate X @ {h} of X by {h} (i.e. h considered as an element of P (R™)).
Therefore, the equality

Zo(X®{h},Y)=1-a) (XD {r) ®aY =Z, (X,Y)® (1—a){h} (10)

shows that in Z,, the effect of the shapes of X and Y (which determines Z,, up
to a translation) is separated from the effect of their relative positions (which
induce only translations on Z,).

Geodesics {Z;} admits an extension to the whole space K’, given by the

following theorem

Theorem 2 Second geodesics: every pair X,Y in K'(E) from p apart for Haus-
dorff distance for dilations admits the following geodesic

{Z, =60p(X) N1, V)N(1-a) X ®aY , a€l0,1]}
Proof : We will prove first that
reX = 5ap (l‘) n 5(1,a)p(Y) n Z; 20

Given = € X, there exists a y € §, (Y) such that z € §, (Y), i.e. that U (p) =
Sap () N0(1—a)p(Y) # (). Therefore, one can find a value 0 < py < p with U (pg)
reduced to one point, s say. Point s belongs to U (p,) and to the vector zy of
unit @ . More precisely, we have

— —

s =7 +apbd =y — (1 —a)pbu

hence’s = (1 — ) @ + a7y, ie. s € Z), and finally 5 € dap (%) N 6(1_a),(Y) N
Z!, C Z,. Since x € 84, (s),then 0,,(Z,) covers point z, hence d,,(Z,) 2 X.
The brother inclusion a,(X) 2 Z, derives from the definition of Z,,, which

achieves the proof. Q.E.D.

Fig. 1 shows an example of such a geodesic. The parasite swelling effect is
partly mastered. However independence under translation is lost (it was true
only for convex sets) and the implementations of the Z/, require dilations of two
arbitrary sets by each other. Perhaps could we try and follow a new lead ?

4 Reduced Hausdorff distances

Since the shape of the geodesic {Z,} depends on the respective locations of
sets X and Y, we could try and place them in the "most favourable” locations,
by shifting and rotating Y (for example). The idea of studying the variation of
p(X,Y) as a function of the translates of Y was recently applied to template
matching problems [9]. Here we will develop it to exhibit new metrics, and,
from them, new geodesics. We restrict the displacements to translations (the
rotations admit the same theoretical approach, but their implementation is less
easy).



Figure 1:

In the following, E stands for a compact (but possibly large) region in R
or Z™, equipped with a unit ball B. Denote by X, (resp. X3) the translate of
set X (resp. Y') by vector a (resp. b), and put

p1 (X,Y) = inf {p(Xa, X3) , a,b € E} (11)

Introduce the quotient space K1 of K’ for the equivalence under translation,
ie. X = X, ,a € E. Operator p; maps K1 x Ky into R, since it does not
change as X and Y are translated, and it is a symmetrical function of its two
arguments. Clearly, given X, Y € K’, the mapping (a,b) — p (X,,Ys) from
E x E into Ry is continuous, therefore the compacity of E implies that there
exists a pair (a,b) € E x E with

p1(X,Y) = p(Xa, Yb) (12)

In particular, if p; (X,Y) = 0 then X, = Y, , i.e. X =Y and, of course,
X =Y implies p; (X,Y) =0.

Finally, operator p, satisfies the triangular inequality. To prove it, consider
the quantity p; (X,2) +p (Z,Y), X,Y,Z € K . Since p; is translation invari-
ant, we can always replace Z by its translate Zy centred at the origin. If X,
and X, denote the locations that minimize p(X, Zg) and p(Y, Zg) respectively,
we can write

P1 (Xv Z) + Py (Zv Y) = p(Xa’ZU) + p(Z(]aYE) > p(Xa»Xb) > P1 (Xv Y)

Hence, p; is a distance. Moreover, its metrics admits geodesics of the first
type. To show it, take a pair (X,Y}) that minimizes p. Given an a € [0, 1],
consider the first type interpolator Z, between X and Y3 (rel. (4)). Z, turns
out to be in optimal position not only w.r. to p, but also w.r. to metric py, i.e.
p(X,Z,) = p1 (X, Zy). Indeed, we have

p=p(X,)Y)=p(X. V) <p(X,Za) +p(Za, Ys)



but p;(X,Z.) <ap andalso p;(Za,Ys) <(1—a)p, hence
P <p1 (X, Za) +p1 (Za,V3) Sap+(1—a)p=p.

The equality results, which shows that Z, is in optimal position for metric
p1- In conclusion, we can state

Theorem 3 Let Ky denote the quotient space, under translation, of K'(R™) or
K'(Z™). Then, the mapping K1 x Ki — Ry by rel. (11) defines a distance.
Given X and Y in K’ there exists at least one geodesic in the sense of py, which
coincides with the geodesic {Z,} in the sense of p, whose extremities are one of
the pairs, (Xq, Xp) say, that minimizes p (X,Y).

From the reduction p — p;, it is always possible to go back easily. Having
fixed set X and determined a translation b of Y such that p (X,Y3) = p1(X,Y)
it suffices then to take interpolator

Zy(a) = (X ®apB) N (Y, ® (1 —a) pB)]

)

—ab

which generates in K’ a segment from X to Y, as spans [0,1]. The proposed
approach is valid in R™ as well as in Z™. In the latter case, the balls are digital
polyhedra. An exact computation of the optimal vector b might be time consum-
ing. In practice, one may content oneself with vector b*, of which each coordinate
b¥,i € [1,n] minimizes the 1-D Hausdorfl distance between the projections of
X; of X and Y; of Y on the corresponding axis No . If ; and x; (resp. y; and
y; ) stand for the extreme points of X; (resp. Y;), component b; is

br = [(x +x;) - (yz- +y;)} /2

5 Interpolations for nested sets

This section is closer to the two related works [5] and [6], and establishes a
common basis. Nice developments based on distance function have also been
proposed by J.R. Casas [11] and also by P. Moreau and Ch. Ronse [12]. From
now on, we particularize the pair (X,Y’) under study, to be ordered, by taking
X C Y. This dissymmetry suggests to play with both Hausdorff distances p (for
dilations from X) and o (for erosions from Y).

A point m at a distance < X from X and > Afrom Y° belongs to set
(X ® AB) N (Y © AB), hence to set

M=U{X®XB)n(Y©AB), A>0}. (13)

Conversely, every point m € M belongs to one of the terms of the union,
so there exists a A > 0 with d(m,X) < X and d(m,Y*) > A. In this sense
interpolator M is midway between X and Y, and we shall call it the median of
X and Y. It is easy to notice that the boundary of M is nothing but the skeleton
by zone of influence, or skiz, between X and Y°. This implies the immediate
following consequences:



Proposition 2 The median set M(X,Y) is compact and comprised between X
and Y . Its boundary is the locus of those points of R™ which are equidistant from
X and Y°, and these distances are smaller or equal to

p=inf{A: x>0, XPABDOY OB} (14)
the equality being reached for at least one point of OM.

(Direct consequence of the SKIZ properties).Here is now an instructive prop-
erty which shows how both Hausdorff distances are involved in the median
M(X,Y).

Theorem 4 Given X,Y € K'(R™), the median element M(X,Y) is at Haus-
dorff dilation distance p from X and X e uB, and at Hausdorff erosion distance
w fromY andY o uB, where p is defined by rel. (14).

Proof : Let p be the Hausdorff distance by dilation between sets M and X.
We draw from prop. 6 that X C M C X @ puB hence p < p. Now for all
p strictly smaller than p, the set X ¢ puB cannot contain the non empty set
(X ® uB) N (Y © uB), which is a subset of the boundary 9 (X @ uB) (prop. 6
again). Hence pu = p.

Consider now the Hausdorff distance by dilation p’ between the closing X e
uB and M. We have X e uB @ uB = X ® uB O M, and also M ©® uB 2
X ®uB =X e uB®uB, hence p’ < p. Just as previously if p’ is strictly smaller
than u, then X e uB @ p'B = X & p’ B cannot contain set M, hence p’ = p.

The corresponding results for Hausdorff distance by erosions derive by du-
ality. Q.E.D.

Note that in all these results, the distances between sets X and Y (by dilation
or by erosion) do not intervene. Indeed they are not associated with p, but rather
with the sum of the successive median sets between X and Y. For example, if
Mj is the median between M and Y, of parameter p, Ms the median between
M;j and Y, etc., then p+ > p; = p, where p is the Hausdorfl dilation distance
between X and Y (similar result for the erosions by going from Y to X). This
allows a series of progressive interpolations from X to Y [6], which are distinct
from those, [5][10], which are obtained by replacing M by

)

Mo = U{(X®arB)N(Y O (1-a)AB), ac[01]} .

6 Conclusion

There are various ways to define interpolators between two sets X and Y of a
metric space E. If X and Y are supposed to be compact and non empty, Haus-
dorff distance provides one possible approach, because, as it has been proved
in this paper, this distance admits geodesics, i.e. series of "best” interpolators
going from X to Y.In fact, several geodesics co-exist, which are not equivalent.
Therefore, some additional constraints allow more specific, hence better, inter-
polators. It is in particular the case wheni) X, Y are convex ;ii) E is equipped



with a translation, and interpolations are introduced up to a translation ;iii)
when W C Y. Up to now, the last case has been the most studied [1] [2] [11].
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