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Abstract

This paper deals with the roles of assumption,
mathematical models, and experimental control in
Pattern Recognition. In order to base the discussion on
actual examples, three studies are first described. The
first one presents filtering of bird singings via their
sonograms. The second and the third ones deal with
morphological operators on the unit circle, which are
successively applied to hue gradient and top-hats in
colour images, and to directional irregularities in wood
textures.

The discussion holds on the necessity to bring implicit
assumptions to light, to evaluate the consistency of the
mathematical formalism with respect to these
assumptions, and finally to control experimentally the
domain of pertinence of the proposed approach.

1. Introduction

The topics I would like to develop here were suggested
by the reading of about 400 abstracts, submitted to ICPR
2000, and of a number (fortunately smaller) of complete
papers. In addition to which I should mention the survey
of recent literature on pattern recognition.

From this inventory, one can draw some strong
impressions. First, one can notice, that beside some
intensely investigated areas (such as watermarks for
example), a number of others are hardly present if at all.

For instance, it is quite difficult to find a study
combining image and sound processing in the same
methodology. This is surprising : How authors who are
mostly neither blind nor deaf, who therefore constantly
combine the two sources of information of sight and
hearing, suddenly split up in two, as soon as they
transpose their sensorial activities into intellectual ones ?
Strange schizophrenia…

A second example, a little more complex, is that of
data distributed on the unit circle. Although they appear in
several different domains of applications such as
directions, in textures, hue, in colour imagery, or phases

in sound processing, very little theory is currently
developed in this area.

Beyond these two illustrations, I would like to
comment on another aspect of  the papers:  it is
sometimes admitted that the exposition of the goals, as
well as the paths from the goals to the methods, and from
the methods to the domains of validity, are superfluous
and not worth quoting.

However, in other papers, the methodology  rests on
strict constraints. The data bases is well delineated, the
key assumptions are clarified, and the results are verified
by means of orthodox statistical tests. Such a hiatus
confronts us with a real problem : I do not believe that the
various levels of quality of the works explain completely
so deep differences. Perhaps could we suspect the matter
itself, which sometimes lend itself  to “clean” paradigms,
and sometimes not. This points will be discussed in the
last sections of this paper.

2. Image and Sound

    In sound processing, there exists a series of questions
which are rarely tackled, because  they do not stand inside
the “good” scales for signal processing methods. They
concern phenomena that last several seconds, such as :

- urban (eg cars) or natural (eg waves) background
noises ;

- sonic style of a speaker (accent, cough, long (or
short) sentences, etc..) ;

- cry , or song of an animal .

     Now, even if we cannot identify a speaker, nor
recognise his words, but if we are able to extract the
segments of  time where a same person is speaking, we
generate a nice piece of information for content based
labelling. More generally, in this sort of questions, one
has to define what is foreground and background, and
then to separate them.



Figure 1. intensity sonogram of a robin singing
above the sea ( 20 seconds).

     Fourier transforms based on sliding windows provide
two (time x frequency) representations  a(t,ν), for  the
amplitude, and ϕ(t,ν), for the phases, of the phenomenon
under study. Should it be possible to treat them as images,
in order to obtain two pairs of images for foreground and
background respectively , and finally go back, for each of
them, to a sound wave by means of inverse Fourier
transform ?

In the state of the art, the question is correctly solved as
soon as the background is stationary for the time
dimension (but not necessarily for the frequencies). It is
not the case for the robin song that we would like to
extract from the sea background ( fig. 1).

Figure 2. intensity sonogram of the robin without the
noise of  waves ( 20 seconds).

But we observe that the robin song covers completely the
sea, so that we apply a morphological filter that extracts
the zones of fig1a above a certain threshold t and marked
by points above a second threshold t’ (fig2). This new
intensity sonogram, associated with the (unchanged )
phase sonogram, allows to restore  the song of the robin
with a totally silent background [1].

3. Operators on the Unit Circle

       In this section, two approaches for morphological
operators on the unit circle are proposed, via two
examples. Both deal with the processing of the hue in
colour imagery. The reader will find a more developed
approach of operators on the unit circle, with in particular

studies on directional textures, in recent work with A.G.
Hanbury [2].

3.1 Hue processing

The spaces designed for colour imaging are "bad"
vector spaces. To explain what is meant by "bad", we can
take the counter-example of multi-spectral data for
satellite imaging. Twelve infrared channels are easily
reduced to one or two using the appropriate statistical
method (principal component analysis, correspondence
analysis… ), and the few synthetic images thus obtained
are then treated separately.

Things are very different with colour, probably
because colour is much closer to human perception.
Whereas retina cells get only three types of spectral
responses (three "colours"), there exist more than twenty
representations of colour in electronic imaging, with two,
three, or four components, depending on the case. The
founding experiments of 1931 made by the CIE, which
enabled to establish the chromacity diagram, played an
important role in generating an abundance of colour
spaces, whose existence is often justified. The RGB of
computers, which was not well suited for Hertzian
transmission, has been replaced by YUY in TV
transmission standards in Europe, and YIQ in the United
States. However, the controls available to the TV-user, in
Europe or in the United States, are of the HLS or HSV
types,… which already makes seven different systems.

When we consider colour image processing, things get
even worse. The (RGB) triplet, which is more or less used
as a common denominator to other representations,
remains arbitrary. Consequently, colour processing based
on RGB, if aiming at being intrinsic, should commute
with the rotations of the (R,G,B) vector cone. But, among
all algorithms that process RGB colour images, how
many do satisfy this requirement ? One ? None ? (NB : in
grey scale, convolution and all morphological operators
commute with the affinities and changes of origin).

In fact, human physiology is much closer to (H,S,V) or
(H,L,S) representations than to those combining
luminance and some chrominances, such as (R,G,B),
(Y,U,V) or (Y,I,Q). This point is corroborated  by some
diseases such as colour-blindness or retina hypo-
sensitivity to saturation. Now, (H,S,V) type
representations mix heterogeneous dimensions, since an
intensity ( L or V) is grouped with the hue, defined on the
unit circle. From the point of view of image processing,
this constitutes a real challenge, which, I think, partly
explains the lack of methodological advances in the field
of colour.



3. 2 Increment based algorithms

     To overcome this drawback, we can focus on the class
of operators which bring into play a difference, such as
gradients or  top-hats. Fix an arbitrary origin a0 on the
unit circle C with centre o by, for example, choosing the
highest point, and indicate the points ai on the circle by
their curvilinear co-ordinate in the trigonometric sense
between 0 and 2π from a0 . Given two points a and a’ ,
denote by a � a’ the value of the acute angle aoa’ [3],  i.e.

a � a’     =            _ a – a’_         if         _ a – a’_ � S

a � a’ =   2S �  _ a – a’_        if         _ a – a’_  � S � � �

    It is known that in the Euclidean space Rd , to
determine the modulus of the gradient, at point x, of a
numerical differentiable function f, one considers a small
S(x,r) centred on x with radius r. Then one takes the sup
minus the inf of the increments _ f(x) – f(y) _, where y
describes the small sphere S(x,r), i.e.

    g (x , r)    =      ½ { _ f(x) – f(y) _ � y ±S(x,r)) } 
� ¼ { _ f(x) – f(y) _ �  y ±S(x,r) }       (2) .

    Finally, one determines the limit of the function g (x ,
r) as r� 0. This limit exists as the function f is
differentiable in x. In the two-dimensional digital case, it
is sufficient to apply (2), taking for S(x,r) the unit circle
centred on x (square or hexagon). This yields the classic
Beucher algorithm for the gradient. As the previous
development only involves increments, we can transpose
(2) to the circular function a by replacing all the _ a(x) –
a(y) _ by  a(x) � a(y)�  This transposition then defines the
modulus of the gradient of the circular distribution. For
example, in Zd, K(x) indicates the set of neighbours at
distance one from point x, hence

     (grad a)(x)   =      ½ { a(x) � a(y)� y ±K(x) }
� ¼ { a(x) � a(y) � y ±K(x) }  (3).

As an illustration, consider the hue component of the
Virgin portrait, fig 3, whose histogram is shown in fig. 4.

As the dominant colour in the image is red, most of the
values in the hue band are clustered at the top and bottom
end of the histogram. A classical gradient on this hue
band produces a large number of spurious high-valued
pixels, as shown in fig. 5. The gradient calculated using
rel. (3) shown in fig. 6, overcomes this problem.

Figure 3. P. Serra : the Virgin (detail), Monastery of
St Cugat, Barcelona.

 Figure 4. Hue histogram associated with fig. 3.

Figure 5. Classical gradient for the hue of fig. 3.



Figure 6.  Circular gradient for the hue of fig. 3.

         Note that if we rotate the hue band pixel values by
π, the classical gradient will be the same as the angular
gradient. The angular gradient is, however, invariant to
rotations of the pixel values.

       The above approach easily extends to any grey-tone
operator that can be written by means of increments.
Consider, for example, the notion of the ``top-hat'', in the
sense of F. Meyer, i.e. the residue between a numerical
function and an open version of it. Clearly, it only
involves increments, and hence can be transposed to
functions with values in C. We explain below the
algorithm in case of an adjunction opening J% (i.e. the
composition product of an erosion of structuring element
B by the adjunct dilation). If { Bi , i ± I }stands the family
of structuring elements which contain a given point x, we
have

J%(x)  =  sup { inf [ f (y) , y ±Bi ] , i ± I }.

For the top-hat  f(x) - J%(x) we therefore write

f(x) - J%(x)  =½ {[{ ¼[f(x) - f(y)], y ±Bi\{x}} ½ 0 ], i ± I},

which involves increments only of  function f. Therefore
it can be transposed to circular function a exactly as we
did for the gradient, which results in

a(x) - J%(x) =½{[{ ¼[a(x) � a(y)], y ±Bi\ {x}} ½ 0], i ± I}
(4).

a)

b)

Figure 7 still life: (a) luminance, and (b) hue, images.

The still life, figure 7a, will illustrate the circular top-hat
algorithm (4). As previously, we are facing with a colour
image whose hue component, fig. 7b, has a strong
contribution of the purple-to-red band, i.e. a zone around
the hue origin. This distribution can be observed on the
hue  values of the grapes, for example, in fig. 7b. A direct
top-hat  of image 7b considered as a grey tone function,
yields fig. 8a. The alternative circular top-hat of rel. (4),
when applied to the same image, turns out to provide a
completely different result (see fig. 8b). First, the latter is
invariant under hue rotation, and second it actually
extracts what is expected from a top-hat residual of size
three, i.e. the small or narrow zones where the hue is
changing.



a)

b)

Figure 8 : a- grey tone top-hat of size 3x3 of the hue
image 7b ;
b- circular top-hat of size 3x3 of the same image.

3. 2 Angular openings

Circular data may be treated in another manner, which
is more set-oriented, and where is no obligation to work
on increments only. This second approach is based on the
idea of first labelling the points of the working space
according to the local hue, then processing the obtained
sets, and finally combining the results in a isotropic way.
Denote by  A(α,ω) the set of those points x HE whose
circular value a(x) lies in  acute sector [α� α+ω] .

     A(α,ω)    ^ x :  xH ( �  a(x) H [α� α+ω] `�

Let now {Jλ , λ > 0 } be an arbitrary granulometry on
7(E). Take the union of all transforms J λ[  A(α,ω)], as
α describes the unit circle , i.e.

J �A � O� Z �  ª ^ J λ[  A(α,ω)]  ,  0 � D � �S ` ���

Such an isotropisation generates a new family of
operators {J � * � O� Z � � λ > 0 , π > ω > 0 }, which turns
out to be a two parameters granulometry. Note that the

J ’s do not depend on the choice of an origin of the
directions .

    Here a question arises.  Since algorithms (4) and (5)
rest on radically distinct assumptions, and manage
different pieces of information, it should be instructive to
control their differences in practice. We may have an idea
of  it by taking again the same still life fig. 7a.

    To perform the angular opening of rel.(5), an angle
ω = 45°  and a square structuring element with side of
length λ =3 were used.  figure 9a shows the residual of
this  opening, i.e. the corresponding binary top-hat. For
comparing this result with the (grey) circular top-hat of
fig. 8b, we must apply a threshold to the latter. By taking
all pixels of  fig. 8b whose value is > 50 we obtain figure
9b. Strangely, the two sets are  almost the same. Thus, the
circular top-hat (4) and the angular opening (5), although
they are conceptually independent, and they involve
different parameters, yield finally, for some values of
these parameters, results which are practically identical.

a) 

b)

Figure 9 : a- residuals of opening J of rel.(5), when
applied to the hue image fig.7b. The parameters are
λ = 3 and ω = 45° in fig. 8a;
b- threshold of the hues > 50 in the circular top-hat
of fig. 8b. Note the strong similarity of the results.



4. Modelling in Physics

The scientific activity that a conference such as ICPR
2000 reflects is partly a matter of physics. The various
headings under which it comes, such as Pattern
Recognition, Electronic Engineering, Signal of Image
Processing, or even Applied Mathematics, though of easy
use, must not make us forget the epistemology we depend
on is that of modelling. This means that :

1 - The objects we study, namely image and sound,
belong to the physical world. This sets us apart from pure
mathematics whose achievements do not require an
outside world. This also distinguishes us from other
points of view on the outside world : when we describe
cells becoming cancerous, we do not consider them as
zones undergoing specific chemical reactions, but as
objects undergoing specific deformations. As concerns
the medical end, the two (chemical or image) points of
view can be useful or not, but in any case they remain
distinct.

2. We reduce the object under study to certain aspects
we consider to be essential, at least for the specific
questions we have in mind. This step, inescapable, is
indeed the very hypothesis that justifies the development
of an existing mathematical model, or the creation of a
new one.

3. The model that has been selected, or elaborated, is
all the more powerful, also, as it links, via characteristic
equations, the various different pieces of information that
can be measured on experimental objects. Note here that
in a mathematical model, everything does not lend itself
to a given purpose, as observed by G. Matheron [4] : one
chooses to apply probabilistic methods rather than
deterministic ones; one chooses to represent shapes by
Euclidean closed sets. It is only the second consequences
of these choices that lend themselves to experimental
control. The characteristic function of a Boolean random
closed set may be tested; two compact granulometries
may be identified, for example.

4. The verifiable part of the model has a meaning only
if it is falsifiable, in K. Popper's sense [5], or if one can
exhibit situations where it is wrong. Conversely, we thus
delimit the field of applicability of the model, hence its
descriptive, or predictive, value.

5. Modelling in Pattern Recognition

One could argue that the epistemology of physical
sciences is not relevant here, since its object is different ;

and one could say that Pattern Recognition basically aims
at a quantitative description of visual perception, and not
at possible laws of the material world.

5. 1 Several objects for a same model

     This argument would be valid if every recognition
method only applied to a unique object of study, which is
obviously not the case. For example, a same texture
model can represent a tangle of microscopic crystals as
well as the spatial distribution of the trees in a forest.
From one application field to the other, the means chosen
to assess the models are different : in image compression
(forecast), the important criterion is visual quality ; in the
detection of pre-cancerous cells (medicine) the results are
compared with physiological analyses whereas in material
sciences they are matched with physical or chemical
properties. But in all cases the criterion appears at the
ultimate step and plays a little role in the mathematical
formulation of the model and in its logical derivations
(i.e. in the obtaining of the algorithms).

From the point of view of the mathematical model, this
means that each physical domain where it is significantly
used provides it with some meaning, some semantics. For
example, Matheron’s  axiomatic  for granulometry, which
models the notions of size and of size distribution, has
been introduced in the seventies as an abstraction of
sieving techniques (for particles), and of mercury
injections (for porous media).Thirty years later, the same
axiomatic applies in a completely different domain, since
it is currently used to model pyramids of operators in
image segmentation [6].

Conversely, the mathematical model, as soon as it is
comprehensive enough, looks at the real word with a
certain style. Mathematical morphology, wavelets or
fractals introduce in the world their own intuitions, and
tend to reduce it to the articulations of their own thought.
For the morphologist, everything will become matter for
granulometry, filtering or connection, because he can then
contemplate nice constructions of his method.

If the reader still doubts that Pattern Recognition
shares common features with Physics, because of its
methods as well as a part of its subject, here is an
example. In 1983, Y. Pomeau and myself were asked two
similar questions. They concerned stacks of near spherical
particles, whose conductivity (electric in one case,
thermic   in the other) was sought. Starting from the
assumption that the transfer only occurred at contact
points (insulating exterior medium), we elaborated a
model capable of estimating the three dimensional
number of the contact points per volume unit, from the
histogram of the distances between neighbouring circles
seen in plane sections [7]. The model was tested,



independently, and proved its validity [8]. The law we
had reached (rel (3) in [7]) is then as physical as the law
of Ohm ; simply, the resistance is no longer proportional
to the length/diameter ratio of a metallic wire, but to
another, more complex but as much geometrical "pattern".

5. 2 Several models for a same object

However, Pattern Recognition, differs more radically
from usual Physics because in our case both mathematical
models and actual situations turn out to be generally
polysemic. Two contradictory theories may equivalently
be relevant to the interpretation of a same phenomenon. In
the colour example on the still life, one of the two
approaches, but not the other, was binary and depending
on the choice of an angle range. However, they resulted in
the same filtering.

Here, a pertinent epistemology seems to be that of
W.V.O. Quine [9]. According to him, physical theories
are under-determined with respect to even all possible
observations. Therefore, prior to any test, we must
concentrate on what we wish to obtain from the theory.
There is no sophism here, since we can always confront
different theories from the angle of view of a given goal.
There is no sophism also in that some assessments are
relevant to testing and other not.

    The first example, on birds songs, illustrates quite well
these various aspects. We have chosen to pass from the
sound to the "sonogram" image (and back) to treat this
problem. When we respect the rules of sampling, the
operator for this passage is reversible : there is no actual
hypothesis at this point. The choice to formulate the
problem in terms of images is suggested by the duration
(several seconds) of the patterns to extract, but this does
not enter the Popperian logic of falsification. As to the
hypothesis, here it is : if, as air vibrations, sounds are
additive, as perceptive events, they follow other laws ;
among other things, when a structured signal is
significantly higher than a permanent (but variable)
background sound, the ear does not perceive the
background noise any more as soon as the higher signal
occurs. In other words, in the intensity sonogram, the sum
can be replaced by the supremum inside the zones
corresponding to the dominant signal. Hence, the use of
morphological filtering is justified. Second hypothesis :
we assume that when the intensities in a region  Z of the
sonogram are set to zero, that does not modify the phases
of the signal inside complement region Zc .

Here the experiments are clearly falsifiable (Popper’s
epistemology) : it suffices  to extend the same approach to
the background, by taking the difference between initial
sound and extracted bird singing to produce audible
deformations. We reach the limits of the model.

       On the other hand, by assuming that the audition was
rather that of “birds ½ sea” than “birds + sea” we have
replaced a deconvolution by a supremeum. The
alternative linear approach  can perfectly be implemented
and its results confronted with the current ones (Quine’s
epistemolgy).

6. Textures and random models

 Although the real word under-determines the possible
mathematical models, as soon as we penetrate inside a
given model, we must stay consistent with ourselves and
accept the constraints of its framework. At this level,
there appears a real danger of confusing the two
epistemologies.

 For example, when one surveys the literature on
Pattern Recognition, it soon appears that the expression
"heuristic use of " more than once serves as an alibi to
inconsistent treatments. And this is particularly true when
the adjective "heuristic" is close to the word "texture".
The text usually begin by the ritual incantation repeated
over and over from one paper to the other, and according
to which the "notion of a texture is not defined, and
nobody knows exactly what it means". Then, curiously,
the rest of the study definitely refutes these incantatory
preliminaries.

Considering a zone Z on an image as texture, is simply
choosing to model it by a periodic or stationary random
function of small range with respect to the zone Z (the
range in one direction is the distance from which two
point can be considered independent). It is absolutely
amazing that those prone to the said incantations never
notice that each time one speaks of textures, a
probabilistic approach comes immediately after…

However, a probabilistic approach has its own
constraints. Its hypotheses have to be explicit (by the
choice of a model), but also it imposes a certain way of
proceeding. It is at this point that the "heuristic" talisman
appears. If this word means that a random function may
suggest algorithms, provided that we do not have to test it,
by some strict statistics, in order to validate its use, then I
agree with the "heuristics". But this word can also mean
"just doing anything under cover of the talisman".

We will illustrate this point with the uses of the
stationary Boolean  functions. This very simple texture
model is obtained by taking various realisations of a
compact random function, implanting them in Poisson
points, and taking the  supremum. Boolean sets were
invented by G. Matheron [10] [11], their extension to
numerical functions is mainly due to J. Serra [12,founder



text] [13, tutorial]. They allow to model and simulate a
huge variety of textures  such as the crystals of fig.10a.

     
a) b)

Figure 10 Two “boolean” textures, the first (ferrite
crystals, a)) in the statistical sense, the second (red
blood cells, b)) in the heuristic one.

 From a heuristic point of view, we owe boolean
functions, one of the most performing algorithms for
counting. Suppose for example that we want to count the
red blood cells of figure 10b. If n stands for the number of
red blood cells, Z for the area of the field, v' for the
average grey-volume of a cell and q(t) for the area
proportion of the white cells at threshold t, then we have

n = (Z/v')Õq(t) dt                           ( 6 )

if the space distribution is Boolean. Then, we just have to
put the background t0 at zero, to extract a few isolated
cells (in order to estimate v') and to compute rel (6). Here,
by placing the background level at t0 = 90,  we find n =
197 and with t0 = 100, n = 189. A manual count yields n =
211. Algorithm (6) is robust and precise enough for a
correct medical use. Now clearly, all statistical tests
should reject fig. 10b as a Boolean realisation, because of
its lack of overlapping.

    Imagine now that, instead of integrating over the grey
tones, in rel (6), we integrate over the bit planes of the
digital image. Obviously, the result become disastrous
(indeed, it results in n = 42). Now, it is not difficult to find
in recent literature on Pattern Recognition, that after
having assumed a Boolean function for the texture under
study, the authors study it via its bin-planes, by arguing
that their approach is heuristic.

    Another variant of such "heuristics" sometimes appears
in computing chord length distribution of a binary texture.
The said texture is  first supposed to realise, say,  a

Boolean set. Then, as soon as they have exhibited the
“heuristic” talisman, the authors consider themselves to
be free enough to replace the usual scanning by a Hilbert
one (i.e. a digital peano curve). Why not, since they are
"heuristicians" ? Unfortunately, the only interest of the
Boolean chord distributions is to estimate, via correlation,
some parameters of the models, and irregular scanning
patterns (typically Hilbert ones) are purposefully
constructed to destroy all possible space correlation…
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