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Abstract

This paper deals with an application of mathematical morphology to quanti-
tative cytology: the analysis of chromatin (nuclear texture) in lymphocytes. In
particular, we are interested in two approaches: a nucleus classification, based
on the level of chromatin density and a segmentation of the nucleus, which can
be used to study the spatial organisation of the nucleus structure. The proposed
algorithms have been tested with a selection of images from our image base.
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1 Introduction

Diagnosis on lymphoproliferative disorders (leukaemia) uses the lymphocyte mor-
phology as the principle basis for the identification of lymphoid cancer. Nuclear
chromatin distribution (also known as chromatin density), an important feature used
in nuclear sorting, can be quantified with textural analysis [1] [2]. In the present
work, we describe two applications of the mathematical morphology in order to
analyse the nuclear texture of lymphocytes.

For all the results that are presented below, we suppose that the lymphocyte,
fig. 1(a), has been correctly segmented and the nucleus is isolated, fig. 1(b). The
algorithm used in order to segment is the watershed with markers (the details con-
cerning its implementation may be found in [3]).

The second section provides a background reminder on granulometries and then,
describes the method, a morphological analysis of the chromatin density level, used
in order to classify nuclei. Section 3 presents the nucleus inner segmentation using
a morphological algorithm. Finally, the conclusions are summarised in section 4.



Figure 1: (a) A lymphocyte (stained with May-Griinwald Giemsa). (b) Isolated
nucleus.

2 Granulometries and texture classification

A selection of four nuclei of different texture (each one from a different pathology)
is shown in fig. 2. The technique used in order to classify them works with the
luminance component, and with isotropic ganulometries. The structuring element
is an octagon of size n.

2.1 Definition of granulometry

Matheron introduced the notion of granulometry and the extension to grey tone
functions was made by Serra [4]. A granulometry is the study of the size distributions
of the objects of an image. Formally, a granulometry can be defined as a decreasing
family of openings I' = (v))a>o:

VA2 0,V 2 0,770 = YWY\ = Ymax(hu)

Moreover, granulometries by closings (or anti-granulometry) can also be defined as
families of increasing closings. Performing the granulometric analysis of an image
I with I' is equivalent to mapping each opening of size n with a measure m(yx(1))
of the opened image v,(/). This measure is typically the volume in the greyscale
case. The granulometric curve, or pattern spectrum of I with respect to I', denoted
PS5y is defined as the following (normalised) mapping;:

Vi > 0, PS,py(n) = m”n(f))n;(gm—l(f))

The pattern spectrum PS5,y maps each size n to some measure of the bright image
structures with this size. By duality, the concept of pattern spectra extends to anti-
granulometry by closings, and is used to characterize the size of dark image struc-
tures. We can also use a pseudo-granulometry curve (an anti-pseudo-granulometry)
obtained by replacing the opening (closing) by erosion (dilation). Texture classifica-
tion and feature extraction by granulometries has many applications in the medical



and industrial sector [5] [6]. In the present work, the four granulometric curves have
been used, particularly, the structuring element (octagon in square grid) increases

n + 2.

Figure 2: Selection of nuclei with different chromatin texture: from the least dense
(left) to the densest (right).

2.2 Results

In fig 3 the results obtained are described. For each one of the four classes (four
pathologies), to be studied, we have taken a selection of five nuclei. The shown
curves correspond to the mean granulometries obtained for each case. It is easy to
see that the combined use of the information given by the four curves allows us the
immediate classification. On the other hand, the use of several nuclei of the same
type is justified because we are sorting cellular populations.

Figure 3: (a) The closing (negative side of the graphic) and opening (positive) curves
by octagons. (b) The dilation (negative) and erosion (positive) curves by octagons.



3 A morphological approach to the study of chromatin
organization

The image data inside the nucleus are relatively unstructured, characterised by ran-
dom patterns. But, the nuclear texture may present, in certain pathologies or clinical
phases, organised patterns (nucleolus, inclusions, etc). Below, we will present a pos-
sible approach based on the jump connection segmentation, introduced by Serra [7]
and the Salembier’s technique [8] of region growing in partition lattices, in order
to try to split the nucleus into regions having perceptual properties that can be
parameterized.

3.1 Jump connection

The jump connection of size k from the minima is defined as a connection composed
of all connected sets around each minimum, and where the value of f is less than &
above the minimum (the variation of f is < k and jumps from one zone to another),
fig. 4(a). Similarly, one can start from the maxima, or take the intersection of
both connections. Fig. 4(b) shows the result of this segmentation of range k =
5 (maxima and minima simultaneously), which is oversegmented. Note also that
before segmenting, we have simplified the image using a leveling, a filter introduced
by Meyer [9] that extends the flat zones.
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Figure 4: (a)Jump connection: Y is the connected component of f from mg of range
k. (b)Nucleus segmentation: original (left), jump connection of range 5 (center),
frontiers superimposed on original image (right).



3.2 Region merging

There are several possible alternatives to be followed in order to reduce the over-
segmentation and to obtain a more optimal result. Of course, the first approach
is to take a higher k, however, in this case, the selection of k is sensible enough,
and for high values of k the result is not satisfactory. The segmentation will be
further refined by the classical region growing algorithm, based on merging initial
regions (initial partition) according to a similarity measure between them. Efficient
implementation of the merging process uses a hierarchical queue and a Region Ad-
jacency Graph structure [8]. In our approach, the result of the jump connection is
considered as the finest partition (initial partition). For the region merging process,
each region is defined by its median (more robust that the mean) and the merging
criterion is the contrast h between neighbouring regions (note that the iteration of
the contrast operator is idempotent). Fig. 5 shows the result of the global approach
(k =5, h = 10). Starting from this final partition, each region can be characterised
(feature extraction), looking for to define a chromatin organisation descriptor.

Figure 5: Results of segmenting the nuclei.

4 Conclusions

We have presented the ability of granulometries to characterise the texture in the
context of quantitative cytology. The simplicity and the robustness of these algo-
rithms allows us their systematic use as part of a global descriptor of the lympho-
cytes. A comparative study with other techniques, such as Fourier transform and
statistical description, has shown that in order to obtain similar results, the com-
putational load is lower in our approach than using these others. Concerning the
other approach, at present, we are performing distinct studies using our image base
in order to test the choice of parameters and looking for an optimal characterisation
of the obtained regions. Note that their implementation is already efficient. In con-
clusion, we could say that the presented methods are complementary and applicable
to different study scales on cytology.
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