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Abstract

The notion of a connection is a non metric generalisation of connec-
tivity proposed by Serra. Its axiomatics lies on the idea that the union of
connected components that intersect is still connected.

Such an approach allows a precise definition of image (or sequence)
segmentation. It yields also powerful filters (levelings), and provides more
classical ones with new properties (openings)

After an overview of set connection, its application to segmentation is
developped, and illustrated by examples. The last sections are devoted to
connected filters.
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1 The connectivity concepts

1.1 Classical connectivity and image analysis

In mathematics, the concept of connectivity is formalized in the framework of
topological spaces and is introduced in two different ways. First, a set is said to
be connected when one cannot partition it into two non empty closed (or open)
sets. This definition makes precise the intuitive idea that [0, 1] U[2, 3] consists of
two pieces, while [0, 1] consists of only one. But this first approach, extremely
general, does not derive any advantage from the possible regularity of some
spaces, such as the Euclidean ones. In such cases, the notion of arcwise connec-
tivity turns out to be more convenient. According to it, a set A is connected
when, for every a,b € A, there exists a continuous mapping ¢ from [0, 1] into A
such that ¥(0) = a and (1) = b. Arcwise connectivity is more restrictive than
the general one ; however, in R?, any open set which is connected in the general
sense is also arcwise connected.

A basic result governs the meaning of connectivity ; namely, the union of
connected sets whose intersection is not empty is still connected :

{4; connected} and {NA; # O} = {UA; connected} (1)



In discrete geometry, the digital connectivities transpose the arcwise cor-
responding notion of the Euclidean case, by introducing some elementary arcs
between neighboring pixels. This results in the classical 4- and 8-square connec-
tivities, as well as the hexagonal one, or the cuboctahedric one in 3-D space.
Is such a metric approach to connectivity adapted to image analysis 7 We can
argue that

a/ a suitable approach should apply to sets as as to functions;

b/ in discrete motion analysis, the trajectories of fast moving objects often
appear as dotted tubes, and arcwise connections are unable to handle such
situations;

¢/ more deeply, one can wonder what is actually needed in image processing.
As a matter of fact, when we examine the requirements for connectivity, we
observe that the basic operation they involve consists, given a set A and a point
x € A, in extracting the particle of A at point . For such a goal, an arcwise
approach is obviously sufficent. But is it necessary?

1.2 The notion of a connection

These criticisms led J. Serra and G. Matheron to propose a new approach, in
1988 [15][7] where they take not rel.(1) as a consequence, but as a starting point.
However, their definition is rather general and stated as follows.

Definition 1 Connection: Let E be an arbitrary space. We call connected class
or connection C any family in P(E) such that

(i) 9 C and for allz € E, {z} €C

(i) for each family {C;} in C, N C; # @ implies UC; € C.

As we can see, the topological background has been deliberately thrown out.
The classical notions (e.g. connectivity based on digital or Euclidean arcs) are
indeed particular cases, but the emphasis is put on another aspect, that answers
the above criticism ¢/ in the following manner ([15], Ch. 2) :

Theorem 1 The datum of a connection C on P(E) is equivalent to the family
{V:,2 € E} of openings such that

(i) for oll x € E, we have v,(x) = {z}

(iv) for all AC E, z,y € E, v,(A) and v,(A) are equal or disjoint

(v) for all ACE, and all x € E, we have x ¢ A= ~,(A) = 0.

An alternative (and equivalent) axiomatics has been proposed by Ch. Ronse
[12]; it contains, as a particular case, another one by R.M. Haralick and L.G.
Shapiro [4]; however, both approaches are still set-oriented. The extension
from sets to the general framework of complete lattices and in particular to
numerical functions is due to J. Serra [16]. Historically speaking, the number of
applications or of theoretical developments which was suggested (and permitted)
by this theorem is considerable: It has opened a new way to an object-oriented
approach for segmentation, compression and understanding of still and moving
images (see a bibliogrphy in [17]).



When it is defined as follows, the notion of a partition turns out to be closely
related to that of a connection

Definition 2 Partition: Let E be an arbitrary set. A partition D of E is a
mapping x — D(zx) from E into P(E) such that
(i) for allz € E : x € D(x)
(1) for all z,y € E : D(x) = D(y) or Dy(z) N D,(y) =0
D(z) is called the class of the partition of origin x.

the first condition tells that classes D (z) occupy the whole space E, the
second one that two distinct classes have no common point.The next proposition
shows that any connection connexion partitions all sets A, even when A is space
F itself.

Proposition 2 The openings {7, } of connection C partition any set A C E
into the smallest possible number of components belonging to class C, and this
decomposition is increasing in that if A C B, then any connected component of
A is included in a connected component of B.

1.3 Connections on P(E)

Several instructive examples of connections on P(E) can be found in [5], in [12]
and in [16]. Here we just recall a few of them, which are of interest for the
present study.

i/ All arcwise connectivities on digital spaces are connections in the sense
of definition 1;

it/ In [15] ch.2, we start from a first connection C and consider an extensive
dilation § : P(E) — P(E) that preserves C (i.e. 6 (C) C C). Then the inverse
image C' = 6~ (C) of C under § defines a new connection on P(E), which is
richer. The C -components of 6§ (4), A € P(E), are exactly the images ¢ (Y7)
of the C'-components of A. If -, stands for the connected opening associated
with connection C and v, for that associated with C’, we have

vy (A)=7,0(A)NA  when z€A4 ; v,(A)=0 whennot (2)

(similar technique applies also when § stands for a closing, but without the
statement on the connected components, and without Eq.2 [17])

In practice, the openings v, characterize the clusters of objects from a given
distance d apart. Fig.1 illustrates this point by ”reconnecting” dotted lines
trajectories. But a contrario, such an approach can also provide a means to
extract the objects which are isolated.They will be defined by the fact that for
them v, (A) =, (A), an equality which yields easy implementation [17].

i1i/ Consider a fized partition D and a point € E. The operation that
associates

Y, (A)=D(@x)NA when z€Ad ; ~v,(A) =0 whennot
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Figure 1: a) Sequence of images, b) space-time display of the ball, under a
dilatation based connection, the three grey clusters are seen as three particles
(they correspond to slow motions).

with any A C Eis clearly an opening. Moreover, as z varies, the v, (4) and
Yy (A) are identical or disjoint since they correspond to partition classes. Propo-
sition 2 shows then that class

C={7,(4),z€ E,Ac P(E)}

is a connection. Note that class C breaks the usual particles and regroups those
which belong to a same class D (). When F is equipped with a previous con-
nection C’, such as the usual arcwise one, the the elements of C A\ C’ are the
connected components, in the sense of C’ of the intersections AN D ().

2 Connection and Segmentation

In image processing, an image or a sequence is said to be segmented when
the area where it is defined has been partitioned into homogeneous zones in
accordance with a given criterion. For instance, if this image is represented by
a digital function f : E — R where E is a set equipped with a connection, f
is segmented into flat and connected zones when a partition D of E is created,
such that for any = € F, the class D(z) is the largest connected component of
E including point z and on which function f is constant and equal to f(z).

All criteria do not lend themselves to such nice partitionings. Suppose, for
instance, that we wish to partition E into various zones, connected or not, where
function f is Lipschitz with parameter k& equals 1. Three disjoint zones A, B,
and C' may very well be found, such that the criterion is satisfied on AU B and
on AUC, but not on BUC. In this case, there is no largest zone containing the
points of A and where the criterion be satisfied. The criterion does not yield a
segmentation.

In other words, the partitions refered to with a segmentation concept are
maximal ones, i.e. they lead to largest classes. Besides, we can always construct



a smaller partition, namely the one that reduces space P(F) on all its singletons
{z}.

These remarks make us give a more formal expression, therefore more precise,
to the two concepts of criterion and segmentation.

Definition 3 Criterion: Let f € F be a function from a set E into a complete
lattice T. A criterion o : F @ P(E) — [0,1] is a binary function, that decreases
on P(E), with o[f({z})] = 1 for any = € E. Denoting by f(A) the set {f(x),z €
A}, we have:

o[f(A)] =1 (criterion satisfied on A)

o[f(A)] =0 (criterion refuted on A)

The condition o[f({z})] = 1 guarantees that whatever criterion is consid-
ered, there is always at least one way to partition F into zones (the singletons)
that satisfy it. Often, there is much more than one, and even in the case of
the image segmentation, there is a larger partition. The decreasing condition
simply means that if the criterion is satisfied on A, it is a fortiori satisfied on
any B C A.

For instance, the criterion which is satisfied if A is reduced to one point or
if

l’GA, toSf(fL’)Stl
with ¢ and ¢; fixed, defines the threshold criterion.
Likewise, when space E is metric with distance d, the implication

yields the k-Lipschitz criterion.

Definition 4 Segmentation: Given a function f and a criterion o, let {D;}
be the non empty family of the partitions of E into homogeneous zones of f
according to o. Criterion o is said to segment the functions when, for any
function f € F, family {D;} is closed under supremum. Then the supremum
partition Y D; defines the segmentation of f according to o.

This maximal partition is missing in the above k-Lipschitz criterion.

2.1 Connective criteria

What are the conditions that a criterion ¢ must satisfy to be a segmentation
tool? The need for maximal partitions orients us towards a connection based
approach, via the concept of a connective criterion.

Definition 5 A criterion o : F @ P(E) — [0,1] is connective when, for any
family {A;} into P(E) , we have

NA; # 0 et Aolf(A)] =1 = o[f(UA)] =1 (3)



In other words, when a connective criterion o is satisfied by a function f on
a family {4;} of regions of the space, and if all these regions have one common
point, then it is also satisfied on the union UA;.In addition, we have

Proposition 3 The infimum of any family {o;,j € J} of connective criteria
is itself a connective criterion.

Indeed, the connective criteria have the structure of a complete lattice. The
following theorem, which ridges the gap between connection and segmentation
is the corner stone of the theory (see the proof in [18])

Theorem 4 Let F be the family of functions f : E — T, where T is a complete
lattice. A criterion o segments the functions f € F if and only if it is connective.

Remark that, although space E was not a priori equipped with any connec-
tion at the beginning, the connective criterion supplies one to it. Now, if F
is already equipped with some connection C’, the intersection C N C’, which is
a connection, generates the maximal partition whose classes satisfy both con-
straints. For instance, the criterion "function f is constant on A" leads to the
partition of E by threshold of f. If, in addition, we demand that each class
A be C’-connected, then we find the segmentation of f into flat and connected
zones, as previously described.

Remark also that the theorem does not impose any condition to lattice T
In the applications below T is totally ordered, but this is not an obligation, and
the theorem applies to multi-spectral images or to any other type of lattice as
well.

3 Examples of Segmentations by Connections

The five segmentations by connections that we now describe differ in various
respects: smooth connection involves Euclidean dilations, quasi-flat zones con-
nection requires geodesic ones, and watershed is no longer based on increasing
operators. Note also that neither the Lipschitz connection nor the jump one
involve paths.

3.1 Smooth connection

Space E is now a metric one, of distance d, and lattice T is the extended line.
A function f is a local Lipschitz on set A when, for all x,y € A we have

d(z,y) <a=|f(z) - f(y)| < kd(z,y) (4)

The connective criterion (4) induces the so-called Lipschitz connection of range
a and slope k. In the Euclidian case, this relation (4) means that on the classes
of the segmentation f is equals to both is erosion and its dilation by the ”pencil”
H(k,a) (cylinder, covered with a cone) of slope k and radius a

reAs flz)=(fOH)(x)=(f o H) ) (5)



Figure 2: a) rock electronical micrography; b) and ¢) smooth connections with
parameters 7 and 6 of image a)

This last relation provides also a digital algorithm to perform the segmentation.
Remark that the expression of the criterion on A requires to know f on the
dilate of A by the ball of radius a (and non only on A itself). As the range a
decreases, with a fixed slope k, the maximal partitions D, x(f) increase. This
suggests to focus on partition supremum Dy, = Y{ D, x, , a > 0}. It results in the
so-called smooth connection, which still corresponds to a connective criterion.
In each class A of Dy, function f is w-continuous along all paths included in
o

the interior A of A. Therefore, the digital smooth connection has a unit size.
To implement it, it suffices to erode functions f and —f by the cone H(k,a)
whose base is the unit square or hexagon, and whose height is &, the origin
being placed at the top, and then to take the intersection of the two sets where
f equals its erosion and its dilation respectively.

The smooth connection turns out to be a good segmentation tool to separate
the smooth zones from the more granular ones with a similar grey level, as it of-
ten appears in electronical microscopy [17]. Figure 2 depicts two segmentations
of a concrete micrography, carried out thanks to smooth connections.

3.2 Quasi- flat zones

Instead of demanding that f be w-continuous along all paths included in A,
we can also only require the w-continuity for at least one path. This more
comprehensive new criterion is still connective, and leads to the connection
according to the ” quasi-flat” zones, due to F. Meyer [10]. This time, the digital
implementation involves geodesic reconstructions.

3.3 Watershed lines

Finally, let us mention one of the the oldest pathwise connection, namely the
watershed coontours. The criterion ”all A points are flooded from the same min-
imum” being connective, the watersheds partition the definition area E into arcs
connected catchement bassins, plus into a set of point connected components.



Figure 3: (a) original micrograph of alumina, (b) jump connection from the
maxima , with h=15, (c) derived SKIZ.

The latter form the watershed contours.

3.4 Jump connection

The previous connection is noticeably improved when the variations origins are
set on the minima or maxima of function f. Suppose that a connection C has
been defined on E. Fix the range k, and let m be a minimum of function f.
Consider the connected component A(m) that contains the abcissa of minimum
m, and such that

Alm)={z:2€ E, 0< f(z)—m <k}

Let Dy, the partition composed of A(m) plus point classes on E\A(m).Take
the supremum Dy, of all partitions Dy,,, associated with all minima of function
/. Then iterate the process on the set E\ U A(m), i.e. extract the zones above
each minimum m such that k < f(z) —m < 2k ; iterate again withe 2k <
f(z) = m < 3k, etc... The segmentation according to this criterion, obviously
connective, leads to the jump connection. The alternative process, from the
maxima, is built by duality, and both may be combined in a symmetrical way,
where the ascent stops when it crosses a descent, and where the zones strad-
dling an ascent and a descent are equally sub-divided [16] [17]. The example
presented in Fig.3 illustrates the use of such a transformation. Fig.3a depicts
the optical micrograph of a polished section of alumina grains. The partition
of the space under jump connection is depicted in Fig.3b, whereas Fig.3c shows
the superposition of the skeleton by influence zones of the set Fig.3b on the
original image.

In practice the jump connection turns out to be one of the best techniques
to segment images, thanks to the quality of the segmentations it creates (few

point zones, visually significant classes), and to its fast computation. Note
that as the slope k varies geometrically (k = 1,2,4,..) the partitions that
segment f increase. Also the plot of the areas of the non-point classes versus
range k is very informative. Fig.4 illustrates this point.A connection may be



Figure 4: a) Initial image : gas burner; b) jump of range 12 : 783 zones; c¢)
jump of range 24 : 63 zones.

Figure 5: a) electron micrograph of a rock ; b) jump connection of range 12 ; ¢)
intersection of jump connection (range 12) and smooth connection (range 6).

used to strengthen another one. Thus, the smooth connections of Fig.2 are
improved when the infimum is considered with a jump connection with the
suitable parameter, as depicted in Fig.5.

4 Set Connected Filters

The way the connective algorithms work, by region clustering, suggests to use
connections for filtering images, i.e. for simplifying them, removing some ppos-
sible noise, etc, while preserving the visual quality of the contours. We shall
reach this goal by building connected morphological filters, and in particular
openings and closings by reconstruction, and then levelings.

For now on F is an arbitrary set, and P(F) is supposed to be equipped with
connection C. For every set A € P(E), the two families of the connected com-
ponents of A (the "grains”) and of A¢ (the "pores”) partition space E. Then,
an operation ¢ : P(E) — P(E) is said to be connected when the partition asso-
ciated with ¥(A) is coarser that that of A [13]. Clearly, taking the complement
of a set, or removing some grains, or filling pores generate connected operators.
The major class of mappings we have in view is that of the (connected or not)
morphological filters. Let us briefly recall it



- A mapping v is said to be a morphological filter on P(E) when
it is increasing and idempotent:
ABCE, ACB=y(A) Cy(B) increasingness
Y(W(A)) = (A) idempotence

- In particular, a filter that is extensive (resp. anti-extensive) is
called a closing (resp. an opening) :

~ an opening : ~v = afilter and 7(A)

A, ACE
¢ a closing : ¢ =afilter and p(4) D A

ACE

U 1N

)

4.1 Set opening by reconstruction and some derivatives

A comprehensive class of connected filters derives from the classical opening by
reconstruction. Its definition appears in [15], ch.7.8. Significant studies which use
this notion may be found in literature, such as [13] (connected operators),[2](stable
operators), [5](grain operators).

An opening by reconstruction is obtained by starting from an increasing
binary criterion 7 (e.g. ”the area of A is > 10”), to which one associates the
trivial opening

77 (A) = A when A satisfies the criterion
v (A) =0 when not

The corresponding opening by reconstruction + is then generated by applying
the criterion to all grains of A, independently of one another, and by taking the
union of the results :

v(A) =U{yv,(4), ze€FE}

The closing by reconstruction ¢ (for the same criterion) is the dual of ~ for
the complement, i.e. if C stands for the complement operator, then

o =L

For example, in R?, if we take for criterion 7, ” have an area > 107, then
~(A) is given by the union of grains of A whose areas are > 10, and ¢(A) is the
union of A and all its pores whose areas are < 10. Similarly, if criterion 7 is
expressed by 7hit a fixed marker M” | then 7(A) is the union of the grains that
hit A, wheras ¢(A) is composed of A and of all pores that miss M .

4.2 Set Levelings

Levelings have been introduced by F. Meyer, in [10], as gray tone connected
operators on digital spaces, for the usual digital arcwise connections based on
neighbor pixels in square or hexagonal grids. In [9], G. Matheron proposes a
generalization to an arbitrary space (hence, without a priori connection). Here,
connection arrives as a final result, and is generated by an extensive dilation.



Now in both cases, levelings turn out to be flat operators, i.e. that treat each
grey level independently of the others. This circumstance suggests to try and
generalize F. Meyer’s approach by focusing on set levelings, but re-interpreted
in the framework of an arbitrary connection C. J. Serra entered this way of
thinking [17], which allowed him to obtain theorem 11

The central notion of adjacency [17], which governs the structure of the
levelings below, is defined as follows

Definition 6 Let C be a connection on P(E), and let X, Y € C. Sets X and Y
are said to be adjacent when X UY is connected, whereas X and Y are disjoint.

Two sets A and M of P (F) are said to be adjacent when they are disjoints,
and when one can find one connected component in A a,d another in M whose
union is connected. When two sets interset each other or are adjacent, we say
that they touch each other, which is denoted by A || M (” A touches M”).

Consider then the opening by reconstruction obtained by all grains of A
that touch a given marker M

Tu(A) =U{7,(4), z € E, 7, (A) [| M}

The dual closing ,,(A) is the complement of the unions of those pores of A
that touch M. In the following, it is the closing ¢,,;c(A) wich is used, i.e. the
union of A and of its pores that miss M. We have the following theorem [17]

Theorem 5 Given a marker M C E the two operations v,; and ¢ . commute.
If we call leveling their product A\ps, we have

A=7p PNe = PNeVar -

Several properties derive from this key result. Firstly, the leveling A is a
morphological filter (increasing and idempotent) on P (E). Moreover its excep-
tional robustness is expressed by the relationship

A,BQE, )\M(A)OAQ/\]w(B) g>\]\4(A)UA = /\M(A) :AM(B)

Small perturbations do not modify the "stong" filter Aj;.

Make now variable the parameter M, and consider the two operands map-
ping (A, M) — A (A, M) from P(E) xP(E) into P(E). The leveling A turns
out to be an increasing and self-dual operation, i. e.

A (A, M) =[N (A, M)|°

Finally, one can make fixed the set A under study, and leave variable marker
M and denote by A4 the resulting mapping from P(E) into itself . IThe relevant
formalism to go further is that of the activity ordering for sets (and no longer
for set mappings)[9]. As a matter of fact, any fixed set A generates an ordering
denoted by =<4, from the two relationships



Figure 6: a) Fifre player, b) (resp.c) leveling having for marker the extrema of
dynamics >50 (resp. >80).

MiNADMNA
M, M; CE & My 24 M
My N A C My N A€

With respect to this activity ordering, le levelings A 4 forme a granulometrical
semi-group of openings [17], i.e.

My =4 Mz = May) (Mz) = M) (M1) = Xa (Ma)

This last granulometric type pyramid is specially usefull in practice, for it
allows to grade the activity effects of markers: it means that we can directly
implement a highly active marker, or, equivalently, reach it by intermediary
steps. An example is given in fig.6.

5 Extension to Functions

The extension to numerical functions of the previous set results is straightfor-
ward, and has been succesfully used in number of studies such as [6][14][19][11]
Denote by T a totally ordered lattice such that [0,1] ; [0,00] ; R or Zo, and by
TF lthe lattice of all numerical functions f : £ — T. An increasing operator
U on TF is said to be flat if there exists an increasing set operator ¢ such that

X[W(f),t] =v[X(f,1)] (6)
where X (f,¢) stands for the thresholding of function f at level ¢, i.e. :
X(ft)y={z:z €k, f[flz)=t} (7)

In the discrete cases of digital imagery, relation (6) is sufficient to charac-
terize the function operator ¥ associated with an increasing set operator . In
other words, as soon as a set operation 1 is increasing, it suffices to replace, in



Figure 7: a) initial image plus Poisson noise; b) convolution of a) by a disc of
radius 5; ¢) leveling of a) by marker b) (the noise is removed, but the contours
are those of the initial image).

its algorithm, the set oriented U and N by sup and inf respectively to obtain the
gray yone version. The rule applies for set levelings, since they are increasing.
Their numerical versions still satisfy the three basic properties cstated above,
namely proposition 3, the self duality, and the granulometric semi-group.

In practice, the role of the marker is crucial. In fig.5, the marker is obtained
by replacing f by zero out of the maxima and minima of f with a dynamics
> k, and by leaving f unchanged on these extrema. The maxima of f with a
dynamics > k are obtained from the opening by reconstruction 7,..(f) of f by
marker f — k, where k is a positive constant. Then these maxima are located at
those points = where f(z) — ¥, (f)(z) = k ( the similar minima are obtained
by duality). The corresponding levelings are shown in fig.5a and 5b, for markers
g30 and ggo, of dynamics 50 and 80 respectively (over 256 gray levels).

These two markers are self-dual by construction, and satisfy the condition of
activity increasingness of theorem 16. Their progressive leveling action appears
clearly when confronting fig.5a and 5b. Notice the relatively correct preservation
of some fine details such as buttons, eyes, eyebrows, fingers, etc.. These details
are preserved because of their high dynamics.

In figure 6, the leveling is used for noise reduction, from a marker obtained
by Gaussian moving average of size 5, namely fig.6b, of the initial noisy image
fig.6a. It results in fig.6c where the noise reduction of fig.6b is preserved, but
where the initial sharpness of the edges is recovered.
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