Colour Image Analysis in 3D-polar Coordinates
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Abstract. The use of 3D-polar coordinate representations of the RGB
colour space is widespread, although many of these representations, such
as HLS and HSV, have deficiencies which render them unsuitable for
quantitative image analysis. Three prerequisites for 3D-polar coordinate
colour spaces which do not suffer from these deficiencies are suggested,
and the results of the derivation of three colour spaces based on these pre-
requisites are presented. An application which takes advantage of their
good properties for the construction of colour image histograms is also
discussed.

1 Introduction

Representations of the RGB colour space in terms of 3D-polar coordinates (hue,
saturation and brightness) are often used. Even though this corresponds to a
simple coordinate transform from rectangular to 3D-polar (cylindrical) coordi-
nate systems, the literature abounds with many different ways of performing
this transformation (the HLS, HSV, HSI, etc. colour spaces). Many of these sys-
tems were developed with computer graphics applications in mind [1], and have
a number of shortcomings when used for quantitative image analysis.

In this paper, we discuss the deficiencies of commonly used systems (sec-
tion 2), and suggest three prerequisites for 3D-polar coordinate systems to be
useful for quantitative image analysis (section 3). In section 4, we present three
3D-polar coordinate representations which were derived based on these prereq-
uisites. Finally, an application is discussed (section 5).

2 Deficiencies of the commonly used 3D-polar spaces

To represent colours in an RGB coordinate system in terms of hue, saturation
and brightness, one begins by placing a new axis, called the achromatic azis,
into the RGB space between the pure black and pure white points [2]. The
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(a) Conic HSV (b) Cylindrical HSV|(c) Bi-conic HLS (d) Cylindrical HLS

Fig. 1. Slices through the conic and cylindrical versions of the HSV and HLS colour
spaces. The brightness increases from bottom to top, and the saturation increases from
the centre (achromatic axis) outwards. Colours to the right of the central achromatic
axis have hues of 0°, and colours to the left have hues of 180°.

choice of a function describing the brightness then gives rise to a set of iso-
brightness surfaces, with each surface containing all the points having a specific
brightness. These surfaces are then projected onto a plane perpendicular to the
achromatic axis and intersecting it at the origin, called the chromatic plane,
where they form hexagons. The hue and saturation or chroma coordinates are
determined within this plane. The hue corresponds to an angular coordinate
around the achromatic axis, traditionally measured with respect to pure red,
and the saturation or chroma to the distance from the achromatic axis.

Two commonly used 3D-polar coordinate colour systems are HSV and HLS.
The HSV system is usually described as being in the shape of a hexcone, and
the HLS system in the shape of a double-hexcone, as shown in figures 1a and
1c. However, the commonly used conversion formulae, having been developed to
simplify numerical colour selection, produce spaces which have been artificially
expanded into cylindrical form (figures 1b and 1d).

These cylindrically shaped 3D-polar coordinate spaces are not suitable for
quantitative image analysis for the reasons presented here. By definition, sat-
uration has a low value for black, white or grey pixels, and a higher value for
more colourful pixels. However, the commonly used formulae for the HSV and
HLS spaces can assign a maximum saturation value to an achromatic pixel. For
example, if one calculates the HSV saturation of the RGB coordinates (0.01, 0, 0)
max(R,G,B)—min(R,G,B)

max(R,G,B)
tion of 1, even though the colour is visually indistinguishable from pure black.

It is often said that these spaces separate chrominance (hue and saturation)
and brightness information. However, the normalisation included to convert the
conically-shaped spaces into cylindrically-shaped spaces introduces an interde-
pendence between these coordinates. For example, if one converts the RGB coor-
dinates ¢ = (0.5, 0.5, 0) into HLS coordinates with the commonly used conversion
formula, one obtains (H, L, S) = (60°,0.25,1). If Ac = (0.25,0.25,0.25) is then
added to the initial RGB vector c, a modification corresponding uniquely to a
change in the brightness, the HLS coordinates become (60°,0.5,0.5). In other
words, the saturation value has been diminished because of an increase in the
brightness value, implying that these values are certainly not independent.

using the commonly used Susy = , one obtains a satura-



3 Prerequisites for a useful 3D-polar representation

We suggest three prerequisites whose adoption leads to the development of 3D-
polar coordinate colour spaces which do not suffer from the shortcomings listed
in the previous section, and hence are suitable for quantitative image analysis.
We model the RGB space by a Euclidean vector space over R®, allowing us to
make use of its projections, orthogonality, etc., but we equip it successively with
different norms. The axes of this space are labelled R, G and B, and the space
of valid coordinates is limited to 0 < R<1,0<G<land 0< B<1.

The vector space notion associates a point ¢ = (R, G, B) to the vector o¢.
This point can be written in terms of vectors parallel to the R, G and B axes,
or o¢ = of + 0§ + ob. Equivalently, it can be written as ¢ = ¢4 + 0¢,, where
cq and c, are the projections of ¢ onto respectively the achromatic axis and
the chromatic plane. We say that ¢4 and c, are independent if the parameters
associated with ¢, (saturation, hue) do not affect those associated with c4. This
is equivalently stated in the following prerequisite:

First prerequisite: Two distinct colours which have the same projection onto
the chromatic plane, have the same chromatic parameters.

Use of a vector space also allows us to make use of norms and the associated
triangular inequality, which says that the norm of the mean vector between ¢ and
¢’ cannot be larger than the average of the norms of ¢ and of ¢’. For example,
two projections onto the chromatic plane which are far from the achromatic
axis, but opposite each other, represent colours which are highly saturated. The
vector mean of these two colours is, however, achromatic. It therefore makes
sense that its norm should not be larger than the norms of the original colours,
and hence that the triangular inequality should be satisfied. This leads to the
following prerequisite:

Second prerequisite: The intensity parameters associated with colour vector
c (brightness) and with its projection ¢, (saturation) must be norms.

For example, the HLS brightness and saturation parameters are not norms,
which leads to some of the undesirable properties discussed in the previous sec-
tion. Finally, motivated by practical experience, we suggest:

Third prerequisite: Every system for the representation of colour images must
be reversible with respect to the RGB standard.

The colour spaces which satisfy the prerequisites presented have the following
main advantages over the commonly used 3D-polar coordinate spaces:

— Achromatic or near-achromatic colours always have a low saturation value.

— The saturation and brightness coordinates are independent, as there is no
normalisation of the saturation by the brightness.

— Comparisons between saturation values are meaningful, also due to the sat-
uration normalisation having being removed.



4 Three 3D-polar coordinate colour representations

We present the conversion formulae which result when one limits oneself to
using only the Lo or L; norms. The full derivations of these formulae are in
[3]. Lastly, we demonstrate the use of the semi-norm max —min as a measure
of saturation. When describing the length of the vector c,, we make use of two
terms, saturation and chroma. We define chroma as the norm of c,, as done by
Carron [4] (who uses the Ly norm). It assumes its maximum value at the six
corners of the hexagon projected onto the chromatic plane. For the saturation,
the hexagon projected onto the chromatic plane is slightly deformed into a circle
by a normalisation factor, so that the saturation assumes its maximum value
for all points with projections on the edges of the hexagon. Poor choice of this
normalisation factor has led to some of the less than useful saturation definitions
currently in use.

4.1 L2 norm

The conversion equations from the RGB system for the L, norm are easy to
determine. We call the brightness, chroma and hue determined using this norm
Ms, Cy and Hy respectively. The M, and Cz norms are scaled to the range [0, 1].
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It is possible to convert the chroma measurement Cs into a saturation measure-
ment Sy by dividing ||c,|| by the distance from the origin to the edge of the
hexagon for a given hue H, that is, the maximum value that can be taken by
the norm of a projected vector ||c,|| with hue H [3]. The hue is calculated as
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where r;, is the projection of the vector representing pure red onto the chromatic
plane, and r, - ¢, indicates the scalar product of the two vectors.

The advantages of using the Ly norm are that the Euclidean distance is used
and that an accurate value for the hue can be determined, which can also be
used in the other representations. The biggest disadvantage is that the inverse
transformation back to RGB coordinates is not simple.

4.2 L; norm

As the values of R, G and B are positive, the L; norm brightness (M) is simply
the arithmetic mean of these three components, which can also be written in



terms of the maximum, median and minimum component of the RGB vector,
notated as max, mid and min. The chroma C} is also written in terms of these
three values. If one requires an accurate hue value, then the Ly norm value H»
should be used. An approximate value Hy, requiring no trigonometric function
evaluations can be derived [3]. The full conversion from RGB coordinates is:

M, = % (max +mid + min) (4)
C, = 3 (max —M,) if max + min > 2mid 5)
' 2 (M — min) if max + min < 2mid
1  max+ min —2mid
H =k [)\ (c) + 3~ 20, (6)

where A (c) gives the RGB cube sector number (an integer from 0 to 5) in which
the vector c lies [2].

Note that, given variables R,G, B > 0, every quantity aR + G + vB, with
weights a, 3,y > 0 is still an L; norm on the achromatic axis. This is advan-
tageous as it permits the use of psycho-visual luminance functions. A further
advantage is that the system is easy to invert. However, one should beware of
an inbuilt quantisation pitfall. When R, G and B are integer-valued, then C4
is always a multiple of 1/2. The rounding of a floating point value of C to the
nearest integer therefore behaves extremely erratically, as the 0.5’s are sometimes
rounded up and sometimes down.

4.3 max — min semi-norm

The semi-norm Sy = max — min (this fact is proved in [3]) obviously satisfies
the first prerequisite as its value does not change when one shifts an arbitrary
RGB vector parallel to the achromatic axis by adding the same amount to each
component. In particular, a vector ¢ in the RGB space and its projection ¢,
have the same value for Sy.

Because of this independence to changes in brightness, it is impossible to
build a 3D-polar colour representation based only on this semi-norm. However,
it is ideally suited to describing saturation, and we can take advantage of the
independence of the achromatic and chromatic components to choose either the
Ly or Ly norm on the achromatic axis. It can be shown the Sy corresponds exactly
to the saturation measure derived for the Lo representation, and it can be derived
from the HLS and HSV spaces by removing the saturation normalisation factors
[3]. Finally, for the hue, we can use the trigonometric expression (equation 3),
replacing it by the approximation (equation 6) if calculation speed is important.
We have named this representation the improved HLS (THLS) space. MATLAB
code implementing this conversion is available on the author’s home page.

4.4 Comparison of the saturation and chroma formulations

We compare the distributions of three of the saturation and chroma formulations
discussed: the Sy = max — min saturation expression, the Lo norm chroma C5
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Fig. 2. The saturation and chroma histograms.

(equation 2), and the L; norm chroma C; (equation 5). We begin with a 256 x
256 x 256 RGB cube with a point at each set of integer-valued coordinates, and
look at the 256-level histograms resulting from calculating the saturation and
chroma, for each of these points. For the max — min and L, norms, the Sy and Cs
values of each point are calculated (as floating point values for the latter, which
are then rounded to the nearest integer). To avoid the quantisation problems
outlined previously, the values of C; were first multiplied by 2 to get a series
of integers between 0 and 512, and then adjacent pairs of histogram bins were
combined to produce a 256 bin histogram. The histograms are shown in figure 2.

The max — min saturation distribution is regular and symmetric around the
central histogram bin because of the normalisation coefficient which deforms the
hexagonally shaped sub-region of the chromatic plane into a circle. Conversely,
the Lo chroma has a rather irregular distribution due to the discrete space in
which it is calculated. It decreases rapidly as one approaches higher chroma
values as it is calculated in hexagonally shaped sub-regions of the chromatic
plane. The L; norm chroma approximates the Lo chroma well (if the quantisation
effects are taken into account), and its histogram is more regular.

5 Application

A number of applications which take advantage of the good properties of the
proposed colour representation have already been suggested, including colour
morphology [3] and luminance/saturation histograms [6]. Here we present an
application of circular statistics to the calculation of colour image histograms.
As the hue is an angular value, circular statistics [7] should be used to cal-
culate its mean direction. We take advantage of the correlation between colour-



fulness and saturation value in the suggested colour representation to apply a
weighting to the circular mean so that achromatic colours have less influence on
the result [5]. The circular mean of a set of angular data is defined as the di-
rection of the resultant vector of the sum of unit vectors in the given directions,
and the saturation-weighting is thus easily included by replacing the unit vec-
tors by vectors with lengths proportional to the saturation. One can thus easily
determine the saturation-weighted hue mean of a whole image. We next propose
that this mean (and its associated variance) be calculated separately for pixels
belonging to each luminance level of a colour image, leading to the construction
of a colour histogram analogous to the greyscale one.

Given a colour image in the THLS space, the luminance values are first quan-
tised into N + 1 levels labeled by £ = {0,1,2,..., N}. Then, for each value of
¢, the following circular statistics descriptors are calculated, where Hgy is the
saturation-weighted hue mean for luminance level £, and R, is the associated
mean length. The latter is essentially the inverse of the circular variance, and
assumes values in the range [0,1]. A value approaching one indicates that the
hue values are more closely grouped. Ag; and Bg; are intermediate values.

Agy = Z Sy cos Hy0r ¢, Bsg = ZSw sin H,0r, ¢ (7

.o — Bse\ + _ VAL + B

Hg, = arctan <A54> , Rne S o (8)
where H,, L, and S, are the hue, luminance and saturation at position z in the
image, and the sums are over all the pixels in the image. The symbol dr._¢ is the
Kronecker delta which limits the calculation to luminance level 4.

We therefore have two histograms of colour information, the mean hue and
its associated mean length as a function of luminance. These could conceivably
be used directly in image matching and database retrieval applications. For
visualisation purposes, these two histograms can very simply be combined into
a single histogram, in which the height of the bar at luminance ¢ corresponds
to the mean length R,,, and its colour is given by the fully saturated colour
corresponding to the mean hue Hg,. As the mean hue associated with a very
low mean length value does not give much information, we set the colours of
the bars with a mean length below a threshold (here 0.05) to the greylevel
corresponding to the associated luminance value.

Figure 3c shows the colour histogram of figure 3a, with figure 3b showing its
luminance. A luminance quantisation parameter of N = 100 was used. One sees
clearly from the histogram that the dominant colour for the low luminance parts
(the vegetation) is green, the very uniform (i.e. with high mean length) blues
associated with the water, and the reds of the highly luminous roofs.

6 Conclusion

We have pointed out the deficiencies of commonly used 3D-polar coordinate
colour representations (specifically HLS and HSV, but also applicable to many



Fig. 3. (a) Colour image (from the University of Washington content-based image
retrieval database), and its (b) Luminance. (¢) Colour histogram of image (a).

others) rendering them unsuitable for quantitative image analysis. We then list
three prerequisites for such colour representations to have useful properties, and
summarise three sets of conversion equations between the RGB space and 3D-
polar coordinate spaces based on these prerequisites. The good properties of
the suggested representations give rise to many applications in image analysis,
of which we have described one: the construction of a colour image histogram
based on circular statistics. Further work is being undertaken to continue the
development of these applications.
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