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Chapter 1

3-D Structures and
Operations

1.1 Introduction

In image processing, 3-D treatments appeared during the 80’s for both anal-
ysis and synthesis purposes. In the present paper, we concentrate on analysis
of images, or more precisely, of stacks of binary images. These piles of sec-
tions are nowadays currently produced macroscopically (e.g. NMR), or at
microscopical scales (e.g. confocal microscopes). They produce experimental
data on 3-D rasters which tend to be cubic. Downstream, these computer-
ized data are binarized by some techniques we will not consider here. These
binary data constitute, by definition, sets in Z2, as well as estimations of sets
of R%. How to access them ? How to extend to the 3-D space the usual 2-D
notions of sizes, directions, distances, connectivity, homotopy, etc.? This
is what we would like to develop hereafter. What follows is basically a tu-
torial ; however the space graph approach for homotopy and decomposition
of cube-octahedra are new results (as far as I know). A survey of litera-
ture shows that in 3D morphology, the two places that have been producing
the most substantial series of results, and for a long time, are the pattern
recognition section, at Delft University of Technology (see in particular P.W.
Verbeek [35], J.C. Mullikin [22], Jonker [17]) and the Centre de Morphologie
Mathématique, at the Ecole des Mines de Paris (see in particular Serra [26],
Meyer [21] [12], Gratin [13], Gesbert et al.[11]).
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1.2 Three dimensional grids

By grid, we do not only mean a regular distribution of points in the the 3-D
space, but also a definition of the elementary edges, faces, and polyhedra
associated with these points. The three crystallographic grids we find below
derive from the cube, and are constructed as follows

i/ cubic grid, which is generated by translations of a unit cube made of
8 vertices ;

ii/ the centred cubic grid (cc grid) where the centres of the cubes are
added to the vertices of the previous grid ;

iii/ the face-centred cubic grid (fcc grid) where the centres of the faces
are added to the vertices of the cubic grid.

A comprehensive comparison of these grids can be found in F. Meyer’s

study [21].

1.2.1 Interplane distances

In the last two grids, the vertices generate square grids in the horizontal
planes, and in vertical projection the vertices of plane No n occupy the cen-
tres of the squares in plane No n— 1. We shall say that these horizontal plane
are staggered. If a stands for the spacing between voxels in the horizontal
planes, then the interplane vertical spacing is equal to a/2 in the cc case,
and to ay/2/2 in the fcc one.

1.2.2 First neighbors

Every vertex has
e 6 first neighbors in the cubic case
e 8 first neighbors in the cc case

e 12 first neighbors in the fcc case

Geometrically speaking, when point z is located at the centre of the
3 X 3 X 3 cube, its projections

e on the faces of the cube provide the cubic neighbors
e on the vertices the cc-neighbors

e and on the edges the fcc-neighbors



CHAPTER 1. 3-D STRUCTURES AND OPERATIONS 5

Figure 1.1: The three 3-D grids that derive from the cubic symmetry.

Fig. (1.1) illustrates this point. One can see, also, that the first neighbors
generate the smallest isotropic centred polyhedron of the grid, i.e. a 7-voxel
tetrahedron (cubic case) a 9-voxel cube (cc-grid) a 13-voxel cube-octahedron
(fce grid). Denote them by the generic symbol B, and the nt" iteration of B
by B,, i.e.

B,=B®B .. &B n times ,

with Bg = Identity. From the implication n > p = B, > B, n,p non
negative integers, from the equality B, B, = B,4;, and from the symmetry
of B we draw (proposition 2.4 in Serra [29]) that the 3-D raster of points
turns out to be a metric space (in three different ways, according to the
grid), where the smallest isotropic centred polyhedron is the unit ball.

1.3 Elementary edges, faces, and polyhedra

In order to complete the definition of the grids, we will introduce now el-
ementary edges, faces and polyhedra. Edges are necessary to define paths,
hence connectivity. Faces and polyhedra are required to introduce notions
such as FEuler-Poincare number for example, or more generally, to introduce
the graph approach.

1.3.1 Cubic grid

As elementary edges, the best candidates are obviously the closest neighbors
(in the Euclidean sense), i.e. those of fig. (1.1). However, they are not so
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numerous, in the cubic and in the cc case, in particular, which leads to poor
connections. For example, in the cubic grid, the extremities of the various
diagonals are not connected, we meet here a circumstance similar to that
which led to the 8 and 4-connectivities in the 2-D grid. For the same reason,
the authors who focused on the cubic grid, such as A. Rosenfeld [19], at the
beginning of the 80’s, introduced the 26- and the 6-connectivity on the cubic
grid. When the foreground X is 26-connected, then the background X°¢ is
6-connected and vice-versa. In other words, a voxel = € X admits, as edge
partners, all those voxels ¢y € X that pertain to the cube C' : 3x 3 X 3 centred
at x. Coming back to fig.(1.1b), we now have to take into account not only
the centres of the cube faces, but also the 12 middle points of its edges, and
its 8 vertices. Such an extension of the connectivity for X is possible only
when the connectivity on X° remains restricted to the six closest neighbors.
If not, we should run the risk of over crossings of diagonals of 1’s and of /s,
so the faces should be undefined.This dissymmetrical connectivity brings
into play a second digital metric, where cube 3 X 3 x 3 is the unit ball. In
particular, the boundary of set X° is

X =X \X°oC
whereas the boundary of set X is defined via the unit tetrahedra 1':
6X =X\XocC

We draw from this last equation that X ©7 = (), and from the previous
one that 6X°© C = (). The boundary of X is thinner, but it may comprise
zones of a thickness 2, and of course lines or fine tubes.

Note also that, unlike tetrahedron 7°, cube C' admits a Steiner decom-
position into three orthogonal segments of three voxels length each. Con-
sequently, the dilation X ¢ nC' is obtained as the product of three linear
dilations of size 2n in the three directions of the grid.

1.3.2 cc grid

The cc grid call very similar comments, but now with staggered horizontal
planes. The low number of the first neighbors (i.e. 8) of each voxel suggests
to add the second neighbors, in number of six (see fig.1.1). This results in the
unit rthombododecahedron R shown in fig.(1.2), which exhibits 15 vertices
(including the centre), 12 rhomb faces, identical up to a rotation, and 24
edges whose common length is the first neighbor distance.
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Just as previously, with the cubic grid, the adjunction of 2nd neigh-
bors complicate the situation, for they cannot be added simultaneously to
the 1’s and 0’s. This results in a 14-connectivity for the grains versus a
8-connectivity for the pores. By comparison with the cubic case, the con-
nectivity contrast between foreground and background is reduced, but it
remains.

Again, as previously, a new metric is provided, namely that of the rhom-
bododecahedron. In this metric, the isotropic dilations can be decomposed
into segment dilations, since R admits a Steiner decomposition into the four
diagonals of the cube (2,2,2), i.e.

e )e(ti)e(e el )

where -1, 0, 1 indicate the level of the plane, and where the origin is always
assigned to the point of plane 0 [10].

1.3.3 fcc grid

With the fec grid, things become simpler [6][8]. We still are in a grid where
the odd horizontal planes have been shifted by (a/2,a/2,0) from the cubic
spacing, but now each voxel x admits 14 nearest neighbors, at a distance
a\/i/ 2. They form the unit cube-octahedron D, of figure (1.2), centred at
point x. Geometrically speaking, such a high number of first neighbors means
that the shape of D is a better approximation of the Euclidean sphere, than
those of the cube €' and the rhombododecahedron R.

As far as connections are concerned, it becomes cumbersome to resort to
2nd neighbors. Therefore there no longer is a risk of diagonal overcrossing.
The existence of an edge no longer depends on the phase under study but
exclusively on the intersection between grid and sets: two neighbors 1’s
define an edge in set X, two neighbors 0's an edge in set X°.

Finally X and X are treated by the same balls D,,, but the latter cannot
be decomposed into Minkowski sum of segments, unlike C' and R.

1.3.4 Comparison of the grids

As a conclusion, three reasons argue in favor of the fcc grid, namely

1/ the shape of the cube-octahedron D provides a better approximation
of the unit Euclidean sphere, than C' or R (isotropic dilations, skeletons,
distance functions, etc. will seem more ”FEuclidean”) ;
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Figure 1.2: a): The rhombo-dodecahedron; b): The cube-octhedron; ¢) The
tetrakai-decahedron.

2/ D is more condensed: 13 points on 3 consecutive planes (D) are
more economic than 15 points on 5 planes (R), or 27 on 3 planes. D leads to
thinner boundaries, to finer ultimate erosions, etc. and requires less logical
tests in its implementation.

3/ In the fcc grid, the connectivity is based on the first neighbors only,
which allows a common approach for grains and for pores (in cubic grid,
when one decides to attribute a priori more than four possible neighbors to
the 1’s than to the ('s, a rather severe assumption is made, which holds,
paradoxically, on the convexity of the pores. Most often, both grains and
pores exhibit concave and convex portions, and the 26/6-connectivity as-
sumption is just irrelevant).

Facing these advantages, the weakness of the fcc grid is the staggered
organization of its successive horizontal planes. However, is it really a draw-
back ? This is the question we will examine now.

1.4 Directions

In this section, we analyse how the directions, hence the shapes, are modified
when embedding the digital 3-D grids into the Euclidean space. First of all
a brief (and last) reminder on our three polyhedra is provided.
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1.4.1 Equidistributed directions in R* and in Z3

In R?, we can subdivide the unit disc in as many equal arcs as we want. In R3,
unfortunately, such nice simplicity vanishes: given an arbitrary integer n,
one cannot find in general n equidistributed directions on the unit sphere, i.e.
one cannot partition this sphere into n solid angles which would derive from
one another by rotations (a question related to the famous five Platonian
polyhedra). Indeed, the 3-D space may be partitioned only into 2, 4, 6, 8,
12 and 20 equal solid angles. The first two partitions are too poor and the
last one hardly reachable by small digital polyhedra. The partitions into 6,
8 and 12 angles are those seen from the centre of a cube, an octahedron and
a rhombododecahedron respectively, whose faces are windows.

A second and less known result is the following. The axes of these 6, 8
and 12 solid angles coincide with the vectors from a voxel to its 6, 8 and 12
first neighbors in the cubic, cc and fcc grids respectively

These results directly extend to digital grids. For example, in the cubic
grid, there are three sets of equi-angular directions, namely

i/ the three basic directions of the grid;

ii/ the four directions involved in eq. 1, which are also the edges directions
of the rhombododecahedron ;

iii/ the six following directions

() a2 )
.o . 1 . -1 . 0 . .0<1'2)
which correspond to the edge directions of the cube-octahedron.

Note that the dilation of the first three unit vectors (i) generate the unit
cube (2 x2x2), that of the four ones (ii) produces the rhombododecahedron
(cf. Eq. 1.1), and that of the six vectors of (Eq. 1.2) the tetrakaidecahe-
dron (but not the cube-octahedron...). In addition, each of these three
Steiner polyhedra generates by translation a partition of the 3-D space R?
or Z3. The tetrakaidecahedron (fig. 1.2 ), a sort of Steiner version of the
cube-octahedron, is unfortunately too thick for digital purposes (voxels dis-
tributed over five successive planes for the unit size).

As for the cube-octahedron itself, if it cannot be obtained by dilating
segments, it admits, however, a decomposition into the Minkowski sum of
two tetrahedra. For example

0 1,-1 0

1,-1 0 1,-1:(_01 _01>ea<f1 JBl> (1.3)
0 1,-1 0
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1.4.2 Digital fcc grids, virtual staggering

How to produce a stack of staggered square grids, or, equivalently, how to
produce a digital unit cube-octahedron ? An easy way is to favor the diago-
nal horizontal directions, as in Eq. 1.3. The staggering structure is created
automatically, since each of the two diagonal subgrid appears, alternatively,
in the successive horizontal planes. The negative counterpart is that half of
the voxels only are taken into account. For example, the dilation of Eq.
1.3 produces neither the central points at levels +1 and -1, nor the middle
points of the sides at level zero. We may always add these points, in order
to complete the basic cube-octahedron, but then

i/ We increase the elementary size from 13 up to 19 voxels, hence we
become less accurate in delineating boundaries, ultimate erosions, skeletons,
ete.

ii/ We lose the advantage of a unique type of edges, which governs ho-
motopy and connectedness properties.

iili/ We do not know what to do with the amount of information carried
by the non used voxels.

An alternative solution should consist in interpolating one horizontal
grid every two planes. This would add a computational step, but above all,
it seems "fiddled”: how to weight the four horizontal neighbors, versus the
two vertical ones? How to display the resulting grid 7 etc. Therefore, we
propose neither to move nor to remove or even modify, any voxel of the cubic
initial data, and to consider each even plane, as it is, as being staggered.
According as the central plane is odd or even, we then obtain one of the two
elementary polyhedra of fig. 1.3.

Such a virtual staggering is similar to that used in Z2, when one generates
a hexagonal grid from a square raster. In both cases, the irregularity of
the unit polyhedron (resp. polygon) is self-compensated by iteration. In
other words, the mappings which bring into play sequences of successive
sizes, such as distance functions, medial axes, granulometries, sequential
alternated filters, etc. are treated by means of actual digital cube-octahedra
(resp. hexagons), (see fig. 1.5).

1.5 Space graphs and measurements

From now on, we consider sets of points in Z2, that model the voxels asso-
ciated with physical objects of the three dimensional space. Sets are given
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11. R
. 7 , e 11. . ) _— 111 _
upper and lower planes central plane 1 al

pror e A
.11
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Figure 1.3: Decomposition of the unit cube-octahedron on the cubic grid
in order to simulate the staggered structure (a: odd central plane, b: even
central plane).

capital letters (X, A, B...), and points small letters.

One find a rather important literature on digital surface description,
and calculus, for 3-D sets [19][23][22]. If one has in mind to bridge the
gap between digital and continuous spaces, i.e. to provide a Fuclidean
meaning with digital measurements, the techniques based on digital bound-
ary measurement (i.e. volume difference between dilate and object, or ob-
ject and eroded set) are not sufficient, and one must deal with stereology
[4][11][15][21]. Below we follow this approach. Moreover we are not exclu-
sively interested in surface area, but more generally in digital estimators of
”good” Fuclidean measurements.

1.5.1 Reminder on the genus of a surface

The theory of Euclidean surfaces is classical, and dates back to the beginning
of the 20th century (R. Poincaré). The comment below derives from [16],
more information can be found in general documents such as Encyclopedia
Britannica.

In R™, a closed orientable surface is topologically equivalent to a sphere
with an even number 2p of holes (made by removing discs) which have
been connected in pairs by p handles (shaped like the surface of half of a
doughnut). A closed non orientable surface is topologically equivalent to a
sphere which has had a certain number ¢ of discs replaced by cross-caps. The
numbers p and g are said to be the genus of the surface not being closed
means that some discs have been removed and the hole left open. A torus is
a sphere with one handle; a Mobius strip is a sphere with one cross-cap and
one "hole” ; a Klein bottle is a sphere with two cross-caps; a cylinder is a
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sphere with two ”holes”. In general, the Euler-Poincaré number of a surface
is equal to 2 — 2p — q¢ — r, where p is the number of handles, ¢ is the number
of cross-caps (zero for an orientable surface), and r is the number of holes
(or boundary curves). The Euler Poincaré number of the union of disjoint
surfaces is the sum of each of them.

1.5.2 Euler-Poincaré number and space graphs

Historically, the FEuler-Poincaré constant (in brief:EPC) appeared in two
slightly different domains of mathematics. Firstly, there was Euler’s reason-
ing about the relations between the polyhedrons vertices, edges and faces,
which was formalized in terms of planar graphs by Cauchy. This way of
thinking leads to counting algorithms, which are based on the elementary
edges, squares and triangles (in the hexagonal grid). It extends to various
cubic, cube-octahedron and rhombo-dodecahedron of R?, without any par-
ticular theoretical difficulty, but with a growing heaviness of the elementary
operations to be carried out.

The second way, Poincaré’s, and Hadwiger’s later on, links the successive
definitions of EPC thanks to an induction holding on the dimensions of the
space [14]. When transposed to a digital grid, this approach is limited to
cubic (or to parallelepipedic) grids, but, in return, leads to a much simpler
and faster expression than the graphs one. Thus, for a bounded digital set
A, we have :

In 7!, v (A) = N (vertices) — N (edges) = N () — N (—)
In Z2, for the square grid :
v (A) = N (vertices) — N (edges) + N (faces)
=N(e)=N(=)-N()+N(0O)

Still in Z2, if we agree on calling N (A) the sum of the constants vy of
the horizontal sections of A, we can see that

va (A) =71 (4) -7 (Ao ),

where AQ | stands for the Minkowski substraction of A by the unit vertical
segment.
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vild)= N(*) -N(—) - N(7/) + N(=)

N+~ + Nl - ‘H’@J

Figure 1.4: Euler-Poincaré Constant in R?

In Z3, this is the same, and Euler’s number v3 (A) defined as
vz (A) = N (vertices) — N (edges) + N (faces)- N (blocks)
is expressed by the same increment as before, for
s (4) =75 (4) 75 (40| (1.1)

when T3 (A) is the sum of Euler bidimensional numbers of the horizontal
sections of A, and where © stands for he Minkowski substraction of A by
the unit vertical segment (equation (1.4) can easily be extended to R™ by
recurrence). Constant vs is independent of the choice of the ”vertical” di-
rection.

From an experimental point of view, the equation (1.4) is very conve-
nient, for in image processing systems, Euler bidimensional constants are
generally rapid to get and the unit linear erosion between two consecutive
planes is a simple operation too. It is this equation (1.4) that has been
implemented in the shinbone example below.

Finally, remember that the EPC of a simply connected object (i.e. home-
omorphic to a cube) equals 1, that of a torus (typically, a donut) equals 0,
and that of spherical crown (such as a football) equals 2. Moreover, the
constant v is C-additive, which means that

v(A)+v(A)=v(AUuA)+0v(ANA),

an equation that allows one to reduce complex figures to the most simple
ones. Thus, the ECPC of lampshade pierced by 1000 pin holes equals -1000.

The topological number v allows to bridge the gap between Fuclidean
and digital spaces, since it can be equivalently defined in both modes when
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we interpret it in terms of graphs. Here, a convenient set model is the class
of all finite unions of compact convex sets. This class, called ”the convex ring
of R™” allows to elaborate a theory about measurements (Hadwiger theorem
below), and on the other hand lends itself to digitization. In this framework,
a deep property of Euler-Poincaré number is stated by the following theorem

[14].

Theorem 1.1 (Hadwiger): the only functional defined on the convex ring in
R"™, of degree zero, invariant under displacements, C-additive and constant
for the compact convex sets, is the FKuler-Poincaré number v.

Note that unlike the number of particles, number v is a local measure-
ment: one needs only small neighborhoods around best points to estimate
it statistically.

1.5.3 Minkowski measures

Fuler-Poincaré number, that we have just introduced in the three-
dimensional cases, is indeed defined by induction in any R*. In particular:

- for k = 0, the space is reduced to one point and v (X) = 1 iff X is this
point ;

- for k =1, 11 (X) equals the number of segments of X ;

- for k = 2, 19 (X) equals the number of particles of X minus their holes.

Consider now a 3-D Fuclidean set X, and a subspace S(z,w) of location
x and orientation w. Take the cross section X NS (z,w) and integrate its vg-
constant over the displacements, i.e. in x and in w. According to Hadwiger’s
theorem, we then obtain the only functionals to be invariant under

displacements, c-additive, homogeneous of degree n — k, and continuous
for the compact convex sets, namely (up to a multiplicative constant) :

volume v(X) = /R3 v (X N{x}) dx (1.5)

surface area ls(X) = L/ dw/ 1 [ X NA(z,w)] dx
4 dm 4w W (16)

1 oo
mean caliper  d(X) = 4—dw/ dw/ v [X NI (x,w)] dx
™ 4 —00 (17)
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At first glance, the notation seems heavy ; in fact, it is extremely mean-
ingful. In Eq.(1.6) for example, w indicates a direction on the unit sphere,
and A (x,w) a test line of direction w passing through point x. The first sum
integrates over a plane Il,,, orthogonal as w, as the foot = of A (z,w) spans
I1,,. The second integral, in dw is nothing but a rotation averaging (similar
comment for Eq (1.7)). The meaning of these relations is clearly stereologi-
cal. For example, the surface area, a 3-D concept, turns out to reduce to a
sum of number of intercepts, i.e. a typically 1-D notion.

When set X admits at each point of its surface a mean curvature C' and
a total curvature ', then mean caliper and Euler-Poincaré number take
another geometric interpretation, since

2nd(X) :/ C ds and  4mg(X) :/ C' ds
5X 5X

The three relations Eq.(1.5) to Eq.(1.7) attribute a Euclidean meaning
to digital data (we meet again the turning point aspect of space graphs). By
discretization, Eq.(1.5) becomes

v*(X) = (Number of voxels of X) X v

where vg = a® (cubic grid) or a®* (fcc grid) or a®/? (cc grid).
Similarly, Fq.(1.6) is written

s* (X) = (average number of intercepts) x 2a2v/2

where the averaging is taken over the six directions of Eq.(1.2), in the cubic
grid. Since estimate s* (X) concerns the Euclidean surface s(X), it differs
from the facets areas of the digital set X. For example, here, a facet of a
zero thickness counts twice.

1.5.4 Other measurements

Being stereological is not an exclusive property of Minkowski functionals.
Here are two instructive counter examples.

Roughness: Assume that §X admits curvatures everywhere, and let F'(1)
be the combined chord distribution of X and X°¢. Then, near the origin we

have [27] ,
F(l) = i—6 [—C’ +3 /5 . Cst]
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Figure 1.5: expanded polystyrene (foam); b) Cube-octahedral dilation of
size b of a); ¢) Cube-octahedral closing of size 12 of a).

In particular, when X is a physical relief, the term C’ vanishes, and the
slope of the intercepts density near the origin is proportional to the average
of the square mean curvature C2. It was taken advantage of this descriptor
to study road surfaces from profiles.

3-D contacts: Consider a random packing of spheres of radius R, and a
cross section through it. The spheres becomes discs, and the distribution of
the shortest distances between discs follows a law

F(l) ~ 1438 n.(IR)'/?

where n, is the number of contacts between spheres per unit volume [25].
This law, which governs some modes of thermic and electric permeabilities,
has been experimentally verified [4].

Both above measurements are invariant under displacement, homoge-
neous, continuous on convex sets, but, unlike Minkowski functional, do not
fulfill the c-additivity condition

p(XUX)4+p(XNX) = p(X)+p(X),

which is not essential here.

1.5.5 Morphological mappings

As soon as spheres and lines (in a set of directions) are digitally defined, it
becomes easy to implement linear and isotropic dilations and erosions.
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Starting, for example, from the voxels of a cubic grid, one easily builds
linear structuring elements with equidistributed directions : it suffices to
take their common origin at the centre of a cube and the extremities at the
middles of the faces (6 directions), or on the vertices (8 directions), or at
the middles of the edges (12 directions).

Apart from linear structuring elements, the most commonly used are the
spherical ones. This implies the datum of a metric. Between the cubic one,
which is coarse and anisotropic, and the digital simulation of the Euclidean
distance, which is the most elegant solution, but whose implementation is
relatively complex, we choose here the cube-octahedric metric, for the rea-
sons which have been discussed above (the readers interested by the digital
approximations of the Euclidean distance may consult P.E. Danielsson [9],
who proposes a sequential algorithm, P. Soille [32], who gives an implemen-
tation using queues of voxels, or Ch. Gratin and F. Meyer [12], who use
hierarchical queues, see also [6] and [24]).

All usual isotropic 3-D dilations, erosions and filters derive from suprema
and infima taken over the unit cube octahedron (as described in fig.(1.3),
and from their iterations. The example presented in fig.(1.5) illustrates this
point, by showing cube-octahedral dilation and closing of foam plastic. Two
other views of initial polystyrene (a) are shown in fig.(1.6).

The 3-D reconstructions, binary and numerical ones, are carried out
in the same way, and their uses are the same as in two dimensions, i.e.
individual analysis, holes filling, connected granulometries, etc ... (for binary
images), and extrema extraction, filtering by dynamics, swamping (for grey
tone images). One of the major problems we meet here is the display of the
objects under study, and we shall devote the next chapter to approach this
goal by means of geodesic dilations, by using the intermediary steps involved
in opening by reconstruction.

1.5.6 Watersheds and segmentation

The concept of a watershed is the same as in two dimensions, although its
level by level implementation is fastiduous and often replaced by algorithms
based on hierarchical queues [12][13]....

The most popular of these 3-D watersheds is that of the opposite —dist,
of the distance functions of a set X, which allows to segment the set X under
study into its major units. We will illustrate this segmenting technique by
taking again the foam plastic example. This foam is obtained by expanding
polystyrene, which produces polyhedral pores. If the expansion is too weak,
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Figure 1.6: Series of cross sections and perspective view of foam plastic.

it does not yield elasticity, if it is too strong, the final product breaks up. The
morphologist is therefore asked to describe the degree of ” polyhedrization”
of the foam, or more precisely of its complement. Now, the information
contained in each individual 2-D section is obviously insufficient (see fig.
...), so that the pseudo cells must be individualized by a 3-D approach. The
three steps of the process are then the following :

i/ computation of the 3-D distance function —dist, of the foam pores X;

ii/ reconstruction closing of —dist, by dynamics, in order to remove the
non significant minima;

iii/ 3-D watershed Y of the filtered function.

The watershed surface Y delineates the separations between foam pores,
that now appear as metallic grains in a solid volume (fig.1.7). A perspective
view of the initial set is provided by fig.1.6, where the polyhedra turn out
to be just sketched.We see how much the watershed reveals the underlying
structure. The power of such a processing is more manifest again on cross
sections.

How could it be possible to elaborate the segmentation shown in fig.1.7,
from the small doted segments of fig.1.6, without an incursion in the 3-D
space 7

1.5.7 Skeletons

The usefulness of skeletons and thinning operators, unlike that of whater-
sheds, seems rather problematic. Firstly, though the definition of a skeleton
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Figure 1.7: Series of cross sections and perspective view of the foam, after
segmentation of the porous medium by watersheding

remains valid in three dimensions (i.e. locus of the centres of the maximal
balls included in the set), the reality to which it refers is less simple, and
comprises both medial lines and medial veils. Secondly, the pertinence of
homotopy, as a topological descriptor ( ~ path equivalence) is unconfirmed.
For example, there are two classes of equivalent paths in a disc with an
internal hole, but one class only in a ball with a lacuna, such as a spherical
CrOWT.

Here, new classes of equivalence, holding on veils homeomorphic to the
unit square, should be introduced, in addition to the path equivalence of
usual homotopy. But even in the framework of the classical homotopy,
another trouble arises, due to a combinatorial explosion : the 64 possible
neighbourhoods of the unit hexagon, in the 2-D grid, become 4 096 for
the cube-octahedron, and 226 = 67 108 864 for the unit digital cube! If
3-D homotopy appeals to some readers, they can consult the comprehensive
survey of P.P. Jonker and A.M. Vossepoel [18] for the cubic case, or that of
P. Bhanu Prasad and J.P. Jernot[5] for the cube-octahedral one.

Personally, we prefer to conclude this section, and the chapter, by show-
ing an example of skeletonization. It is due to S. Bouchet [7], who uses,
and improves, and algorithm initially proposed by Ch. Gratin [13]. Observ-
ing that the skeleton of a 3-D set is nothing but the crest surface of its
quench function (in the sense of sect. 9-2), Ch. Gratin considers a drop of
rain falling on the 3-D graph of the quench function at point = € R®. The
drop goes down to the lowest neighbour of z, y say. In the overall process,
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Figure 1.8: 2-D section of a mousse bone and of its 3-D skeleton.

the only voxels that do not receive water from upstream are those of the
crest surface. Such an algorithm, easy to implement, results in acceptable
skeletons, i.e. with relatively few barbs, but is has no particular reason to
preverse homotopy.

The perspective view of fig.(1.9, a) is the binary image of mouse bone,
obtained by microtomography. This specimen is made of 512 x 512 x 512
voxels, and one would like to describe the thicknesses of the bone walls. For
answering the question, S. Bouchet proposes to compute the histogram of
the quench function of the bone. Indeed, this quench function is a sort of
diameter associated with all points of the 3-D skeleton. Therefore, it has a
3-D meaning, and weigths the various walls according to the extension of
their medial surface, which seems reasonable.

The skeletonization is shown in fig.(1.8), via the display of a cross section,
before (a) and after (b) the process. One can remark that some white
particles are disconnected (lack of homotopy), others are clustered (3-D
action), and that small holes do not enlarge (3-D lacunae). The histogramm
of the quench function for the whole bone is given in fig.(1.9, b). The first
mode corresponds to the fine walls in the centre of the bone, and the second
mode to the thickness of the external envelope.
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Figure 1.9: Pespective view of the bone (a), and histogramm of its quench

function (b).
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Chapter 2

3-D Geodesy and
Segmentation

2.1 Geodesy and three-dimensional vision

In this chapter, we would like to show how 3-D geodesy enables us to "see”
the binary structures in three dimensions. For human vision, the main dif-
ference between planar and three-dimensional sets is that we do not see the
latter, but only their perspective projections, whereas the 2-D sets are inte-
graly surveyed. Of course, we can make the perspective directions vary, move
and turn the objects, but that does not allow to penetrate their interiors.

Now if we interpret a geodesic marker M as a point of view, and its
increasing geodesic dilations inside a given set A as a progressive discovery,
of even display, of the set, we get in hand a substitute for the perspective
vision. It will be something else, different and with other advantages and
disadvantages : we will be able to focus on internal branchings and necks
in complex structures for exemple, or even to count correctly a number of
holes.

Theoretically speaking, geodesy in three dimensions brings nothing really
new into play, and from the algorithmic point of view, requires uniquely
the choice of a digital unit ball. In the following we take the unit cube-
octahedron, preferably to the cube, because it is more isotropic, but above
all because its smaller size (13 voxels versus 27) allows us a finer description
of the medium under study.

Since the problems treated below do not derive from new theoretical
developments, it seems more appropriate to present them by means of two

23
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Figure 2.1: a) Kidney under study (supremum of the sections); b) other
kidney specimen.

case studies, possibly accompanied by theoretical comments (specially at the
end of the chapter, about the convenient metrics). The two examples used
here were born from experience, more precisely from two separate issues in
three-dimensional optical microscopy.

2.1.1 1st issue : the kidney

In February 2000, Dr. John Bertram®, nephrologist and serving Chairman
of the International Society for Stereology, spent two days at the CMM,
during which he presented his current work. The subject of his research is
the embryonic development of the kidney studied in animals such as the rat.
He takes advantage of the property of embryonic kidney to develop in vitro,
which enables him to study the organ evolution by confocal microscopy
without animal destruction.[3].

Dr. Bertram left us the serial sections of two kidneys, and proposed to
work with a student from the Ecole des Mines, for developing a morphologi-
cal approach to his problem. Hence the decision to launch an internship for
Gabriel Fricout.

We can see in figure(2.1) an image of each kidney after binarization,
showing that the structure develops in the form of a tree. The expected

1Dpt of Anatomy, faculty of Medecine, Univ. de Melbourne, Parleville, Victoria 3052,
Australia
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morphological description bears on the geometry of the tree, and involves
two objects :

- extremities : where are they located 7 how are they arranged in space
o

- branches : where are they located ? according to which hierarchy and
length ?

Confocal microscopy results in a highly anisotropic sample. Each se-
ries contains 29 sections 30 p thick ; in which the orientation is roughly
perpendicular to the trunk.

On each section, the pixels are arranged according to a square grid,
whose spacing is about 44. The digital volume element (voxel) looks like a
cylinder with a square base, which is seven times as high as it is wide. FEach
branch extremity is surrounded by nephrons, whose number is indicative of
the future capacity of the fully-grown kidney. The nephrons, which cannot
be seen here, will become visible through a future double staining. Then,
we will have to study the relationship between the shape of the tree and the
number of nephrons it can receive.

The discussion that followed Dr Bertram’s talk showed that F.Meyer,
S.Beucher and me did agree on ovoiding 3-D skeletons, and on approaching
the problem by means of 3-D geodesy. Nevertheless, the student adopted a
skeleton based method, but in 2-D, and associated with a 3-D back projec-
tion [10], i.e. a tailor-made approach for the images under study. However,
when the shinbone problem arose, one month later, it became obvious that
3-D geodesy only could provide a general framework

2.1.2 2nd issue : the shinbone

Dr. Staub? studies the morphogenesis of long bones, and works on the shin-
bones of chicken embryos. He designed a dynamic model of the long central
zone (shaft), where the compact future bone appears as a series of nested
co-axial cylinders[34] (see figure 2.2). For verifying the model, an experi-
ment conducted by M. Mendjeli has consisted in slicing the shinbone shaft,
perpendicularly to its axis, into a series of a hundred semi-thin sections,
roughly like slicing a sausage. It results into a nearly cubic grid of voxels
whose step is close to the micron and whose size is approximately 300 x 300
x 100.

Unlike the previous example, the primary difficulty here is to detect the
object under study. The nested cylinders are not directly visible, and one
has no idea of the number of gaps and holes they may contain. However,



CHAPTER 2. 3-D GEODESY AND SEGMENTATION 26

Figure 2.2: Two horizontal sections of a shinbone epiphysis

the bone image is virtually binary. Finally, as in the preceding example, the
space is ”oriented” from a marker : here the central marrow space ; there,
the contact zone between the kidney and the gelatine (bottom of the tree).

Is it possible to segment the concentric cylinders of the bone, and to
describe them in quantitative terms (thickness, porosity, contacts between
cylinders, etc ...)?

2.2 Method : wavefronts

2.2.1 Wavefronts and tree diagrams

Let Z be a compact set in R™ and x € Z, be a point in Z. The vawefront from
a point x at distance A is the geodesic sphere F' (), x) of (geodesic) radius
A and centered in x, where geodesy is generated by field Z.We propose to
study the evolution of the connected components number of the wavefront
F (A, z) when, as X increases, the compact space Z is swept. The two types
of branching, division or confluence, supposedly remain in finite number
when A € [0, Amax], so that for any branching at A = Ao < Amax, it is always
possible to find an open interval |A\; Ao[ containing Ao, and inside which there
are no other branching. The number of branches which may gather in g
is supposed to be finite. Finally, as the branching may take the two dual
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Figure 2.3: Example of branching

shapes (division or confluence) when A increases, it is conventionally agreed
in the proof below that the passage Ay — A9 corresponds to a division
Therefore, we are led to the situation described in figure(2.3), where

point x is in black, the ball B (Mo, z) in light grey, its complement K (Ag) in
7 in dark grey, and where the white wavefront indicates the precise moment
of the branching. So, the compact set

K(\) =2\ B (\z)

has a unique connected component, when A < Ag, and more when A > ).
In order to determine what happens when A = X\g, we first observe that for
compact sets, we have N{K (\),A < Ao} = K (o).

The compact K(\g) is composed of only one connected component. Oth-
erwise, they would be separated by a minimum distance d ; but this is in-
compatible with the fact that, for any dilation of size ¢, with 0 < e < d, the
geodesic dilate of K(\g) becomes connected. Therefore, the front F (Mg, x)
itself is connected, as otherwise, to switch from one of its components to
another one, it would be necessary to cross a K(\) with A > Xg, but these
K(\) are not connected anymore.

When 7 has several branchings, the same description applies for each
branch, upwards or downwards from the propagation from point x, which
consequently partitions the set Z into a series of successive pieces.
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The case of the X branching has also to be considered. It occurs when
at least two branches stop at the critical front, and at least two of them
start from there. In this case, the intermediary connected region is reduced
to the front in Mg, for, if it was larger, we would come back to the previous
case; and if the front was not taken into accout, we would no longer have
a critical element, but only separated branches. By gathering these results,
we can state :

Proposition 2.1 Let 7 be a compact of R™. 1If, for any point x € Z, the
wavefront F'(\,x) emanating from x admits a finite number of connected
components, with a finite variation, then, as radius \ varies, F (\,x) par-
titions Z into a finite number of connected sections, corresponding to open
intervals of \, and separated by connected components of the front which are
located at the critical points of the branchings.

Clearly, the mapping z — P (z) which associates with any point = € 7
the tree diagram characterized by the proposition, depends on the choice
of point z, even if, when considering the common meaning of a tree, the
partition remains almost the same for all the points selected low enough
in the trunk. Besides, in this case, the tree may be defined as a partition
for which there is no confluence for a suitably selected origin = (i.e. in the
trunk).

Note that we are talking about connectivity here, and not about homo-
topy: in R? particularly, the sections may show closed pores or toric holes.

2.2.2 The ultimate elements of the wavefronts

This section takes up a classical C. Lantuejoul’s and S. Beucher’s result
[20], but presents it differently. When using geodesics, it becomes possi-
ble to associate any point x € 7,7 € R", with the point or points y € Z

which are the furthest away from z. Indeed, let é (\, z) be the geodesic
open ball of radius A and centre x, and Agbe the upper limit of the A such

that B (\,x) be strictly contained in Z. As the non empty compact sets
{Z\ B\ xz),\< /\0} decrease and that R™ is a separated space, the inter-

section

z < Ao [Z\ B (A, x)} (2.1)
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is itself a non empty compact set, whose points are all at the maximum
distance Ag from x. This intersection is named ” geodesic ultimate eroded

set”, and é (Mo, ) is the ”geodesic ultimate dilated set” of point x.

The existence of extreme points may also be considered in a regional
framework, and not a global one anymore. We must suppose that, Z and
x being given, it is possible to find a u(Z,x2) < Mg (Z,x) such that each

connected component of Z \ é (N, ), 1 < X\ < \g decreases without subdi-
viding. Then, the previous analysis should simply be applied to sets

Kiﬂ{Z\é(/\,x)} <A< o

where the Kj,i € I refers to the connected components of Z \ é (1, ).
Therefore, we obtain the farthest connected components from point x, such
as, for instance, the fingers tips for x taken around the middle of the wrist.

Both algorithm families about geodesics correspond to both our points
of view. Invasion by geodesic balls led to all the particles reconstruction
variants (deletion of the grains crossing the field border, hole filling, individ-
ual analysis, etc ...) and the search for extreme residues led to the ultimate
eroded points, to the objects limits and to the length of a connected com-
ponent ( as a supremum of the distances between pairs of extreme points).

2.2.3 3-D Digital wavefronts

The digitization of geodesic operations may cause errors, but limited ones
; indeed, it is advisable to choose, as a circle or unit sphere, the closest
shapes to their Euclidean homologues. Therefore, in 2D the hexagon, whose
six vertices are equidistant from the center is better than the square, and,
for the same reason, the cube-octahedron is better than the cube in 3D.

This Z2 ball is very easy to build, when a numerical data network in
square grid [30] is available. Tt suffices to shift all even planes by half a diag-
onal of the unit cube (any diagonal, but always the same one). In practice,
data are of course not moved, but only structuring elements. For example,
the substitute for the 13 vertices of the regular cube-octahedron of fig.(2.4)
is calculated by dilating the central point according to the staggered unit
cube-octahedron presented in the previous chapter (which differs whether
the center lies in an even plane or in an odd one). The wavefront emanating
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Figure 2.4: Cube-octahedron

from this central point starts with the point 12 neighbours ; when the inter-
plane equals a/ V2 (a = square grid spacing of the horizontal planes), the
structure becomes completly isotropic and the 12 neighbours are equidistant
from the center. This will be our assumption (section 4) about the shinbone,
but this hypothesis is not essential, and, in any case, cannot be ventured for
the study about embryonic kidneys (section 3)

The switch from the unit ball C(z) of Z3 (octahedron, prism or cube)
to its geodesic version Bj(x) inside a mask 7 is

Bi(z)=C(zx)nZ

and the geodesic ball B, (x) of the size is obtained by n iterations of the
previous one :
Bp () = B1[Bn-1(z)]NZ

The corresponding wavefront, or geodesic sphere equals

Fo (z) = Bny1 (x) \ Bn (2)

2.3 Use of the tree diagram for embryonic kidneys

In order to illustrate the above matter, we propose to segment the first one
of the two kidneys of fig. 2.1. The analysis contains four steps :

1/ set construction from the initial data ;

2/ geodesic distance function of a marker in the set;
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bl

Figure 2.5: a) Perspective view of the binarized kidney; b) confocal section
n]0zb014

3/ extremities;
4/ branches.

2.3.1 Binarization

This simple operation only requires a thresholding between 60 and 255,
followed with the fill-in of the bi-dimensional internal pores. Still, the main
connected component has to be extracted. In order to do this, we take as
marker x one point at the beginning of the trunk. The reconstruction shows
that the kidney tree diagram is broken around the middle in two separated
parts. This is caused by the inaccuracy of confocal microscopy. In order
to put it right, both parts have been reconnected by a small closing (see

fig.(2.52)).

2.3.2 geodesic distance function

The geodesic distance function starts from marker x at the base of the kidney
and progresses inside the tree according to unit cube-octahedra (fig.2.6).



CHAPTER 2. 3-D GEODESY AND SEGMENTATION 32

Figure 2.6: Geodesic distance function from the anchorage point (negative
view of the supremum of the sections)

2.3.3 Extremities

The extremities are nothing but the region maxima of the previous geodesic
function. These ultimate eroded points are shown on 2.7a, where lots of
quite insignificant but very small real maxima can been observed. They are
removed by a small surface opening (fig.2.7b). When using this algorithm in
routinely, it would better to start with a regularization of the set under study
by means of an isotropic tridimensional opening of size 1 or 2, providing that
it does not break the connectivity.

2.3.4 Branchings

The extraction of branchings, which is conceptually simple, may nevertheless
lead to a appreciable computing time. Considering the quite visible structure
of the projected tree, the algorithm used below is slightly less precise, but
faster and easier to implement.

In a first step, bidimensional branchings on the tree projection are in-
vestigated, then, we get back to the 3D space by building vertical cylinders
whose bases are located at the 2D branchings, and slightly dilated (size 2).
Finally, we take the intersection between these cylinders and the 3D tree.
The operation leads to fig.2.8.
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Figure 2.7: a) All extremities of the Kidney ; b) Filtered extremities.

Figure 2.8: Projection of the 3D branchings
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2.3.5 Results

In all, starting from the connected kidney tree, we got to its segmentation
into disjoint branches separated by thin branchings. Some branches contain
one or more, of the tree extremities. From such a segmentation, it now be-
comes possible to replace the object under study by a “tree” in the meaning
of graph theory, where the edges can be weighted geometrical characteristics
(volume, length, location of its center, possible end points ... etc).

2.4 Shaft of chicken embryo shinbones

2.4.1 Purpose

The bone zone under study is situated in the central part of a chicken embryo
shinbone, whose axis defines the vertical. The experimental data form a series
of 98 rectangular slices of 320 x 310 pixels each. The uniform grey of the
shinbone phase allowing an easy threshold (see fig.(2.9a)), the two problems
to be solved are then the following :

1/ Implementing and checking Dr Staub’s model, that is to say switching
from the model of nested cylinders to an effective segmentation of the bone
into nested structures thanks to some convenient quantitative criterion (to
be found);

2/ Once the segmentation is achieved, extracting more specifically the
bridges that link two successive cylinders, and calculating the homotopy of
both bridges and cylinders.

2.4.2 Algorithm

For the sake of pedagogy, we work, on the one hand, on all 98 slices, and
on the other hand, on the first 14 ones only. We call "bone” the first file,
and "bonel” the second one. Thanks to reduced thickness file bonel, some
structures are made more easily visible; moreover, the comparison between
the wavefronts of bone and bonel will inform us about the representativity
of sample bonel.

If the nested cylinders model is correct, the wavefront stemming from
the central medulla zone and penetrating into the bone should propagate
more rapidly when it floods a cylindrical crown than when it crosses the
narrow isthmuses that link the crowns altogether. Therefore, we have to :



CHAPTER 2. 3-D GEODESY AND SEGMENTATION 35

Figure 2.9: a) perspective view of bonel; b)Central cylindric marker M

- generate a relevant central marker M;

- plot the curve of the wavefront surface F'(\, M) versus distance A, which
should show oscillations with more or less periodic minima ;

- decompose the geodesic wave into sections limited by minima values (bone
segmentation);

- extract the wavefront at each minimum, which will result into bridges;

- calculate Euler constant for bridge sets, and cylinders;

. all operations that will now be executed.

2.4.3 Results

The central marker M is obtained by working one section after the other,
and by extracting the central pore after opening (algorithm bonel), see
fig.(2.9)b.

The measurement variation of the wavefront surface, for both files bone
and bonel is shown in fig.(2.10). Their minima are approximately on the
same abcissae, for instance 16 instead of 13 or 6 instead of 5, which is an
auspicious start.

Bone and bonel segmentations, carried out from the following minima
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Figure 2.10: Plot of the wavefront surface versus the propagation steps
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lead to the results shown on fig.(2.11).

In order to extract the branchings between cylinders, a stronger and
partially false hypothesis has to be made: the wavefronts corresponding to
each minimum of the plot are supposed to be exclusively located in these
narrows. Based on this approximation, the bridges between cylinders ¢ and

¢+ 1 match with the set difference between the m + 1 and m sized-geodesic

dilates, where m is the abcissa of a minimum. On figure2.12, the contact
zones between the first two cylinders are shown, for the files bone and bonel.

We now treat the last point, about countings on the various extracted
sets. As one can note on the following table, the bone is quite pierced and

broken.
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Figure 2.11: 3D segmentations of two slices.

a) )

Figure 2.12: Perspective views of the dilated bridges, for ”bone” and ”bone
177
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Region Fuler Poincaré number
bone bonel
initial bone - 158 - 237
connected component, adjacent to the marker -1885 -275
bridges between the first two cylinders 1447 205
same bridges, followed by a unit dilation 32 10

Broken, for when reducing the object to its part adjacent to the central
marker, at least 1885 - 1 536 = 349 small isolated parts are removed (exper-
imental artifacts 7). Pierced, for this main connected component has 1885
holes, if it is admitted that it does not contains internal closed pores (this
seems realistic when we consider the thicknesses).

The EPC of the bridges (1447) seems quite high. In fact, more than
a nut linking one cylinder to the following one, a joint rather looks like a
bundle of fine fibers. This is the reason why an elementary dilation (the
13 voxels of the unit cube-octahedron brings Fuler-Poincaré number 1 447
down to 32.

2.5 Digital Geodesic Metrics

In both examples, we decided to start from digital metrics, those whose
balls are the cube-octahedron of Z3. Then, we considered the cube-octahedra
Bi(x) centered in x, € Z3, and with a size 1 as the structuring elements, and
we have used their successive iterations to generate the wavefronts. Finally,
we have considered the wavefronts as the spheres in a new metric, named
geodesics, thanks to the Choquet theorem.

Meanwhile, we have surreptitiously replaced the metric balls with a set
of dilations when time came to implement the first ones. Are these two
notions equivalent 7 Is it sufficient that the 6, increase with the positive
parameter A 7 This is what we are going to study now. Indeed, for being able
to build wavefronts, the data of a prior metric is a necessary but insufficient
condition. We must also make sure that any point of the space remains
accessible from any other one by a series of arbirary small dilations, namely,
in the digital case, of the unit size. In other words, we must have

8 = (61)"



CHAPTER 2. 3-D GEODESY AND SEGMENTATION 39

One can prove that in the digital cases, this condition, which is equivalent
to the semi-group relation 6,6, = x4, is also sufficient. A number of
families {8, } can be built, that can satisfy it. Here are a few, in two or
three dimensions. It is reminded that 6; (x) can change its shape from one
point to another one.

Metrics of regular lattices : those are precisely the ones where 8 (x)
shape does not change, i.e. which are translation invariant on a a regular
grid, such as,

in Z2 the symmetrical unit square of 9 or 5 points (diamonds), or the 7
point hexagon.

in Z3 cube (27 points), the hexagonal basis-cylinder (21 points) or the
cube-octahedron (13 points), the last one being the finest and the most
isotropic.

geodesic metrics of a first mask : In practice, the previous metrics are
only useful when the studied object is contained in a rectangular mask, Z
say, which does not happen very often. Most of the time, on the contrary,
the mask has cut out a region in a wider field, and, in order to manage
this border effect, 81 () is replaced by 61 (x) N Z. The same construction is
correct when 7 is an arbitrary given set, as the examples of sections 3 and
5 have shown. Besides, iterating a first geodesic used as an initial metric, in
order to build a second one, is not forbiden.

Non unit dilations : Let us consider now as a unit ball the dilate 6,, of
size n of the unit isotropic dilation of the grid, i.e.the square 3 x 3, or the 13
voxels cube-octahedron, for instance. The procedure consists of changing the
connection, by replacing arcwise connectivity by that of the 6,,. It means
that the component containing a given point x is not a one piece object
anymore, but a group of objects whose dilate by 6, is in one piece.

This non unit geodesics may save considerable time in 3-dimensionsal
processes. Suppose for example we want to extract the arcwise connected
component A, at point x of a given set A. We can begin by eroding A by
bn, then reconstruct it w.r. to the unit ball ,, and ending the process by
geodesic dilations according to the unit ball §;. For large diameters of A
compared to n, the computing time is asymptotically divided by n.

Sections and projections : As we have seen before about the kidney
branchings, the projection of the stack of sections pile projection normally
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a) E)

Figure 2.13: Sections numbers 15 (a), and 35 (b), from a stack of 57 confocal
sections of osteocytes.

to their plane may be used as a basis for a tridimensional analysis. Consider
for example a 3-D set A (in R?or in Z2), of connected component v, (A)
at point z. Let Ag and zg be the projections of A and x respectively on a
horizontal plane subspace.Then the vertical cylinder of basis the connected
component of Ag (in the 2-D sense) that includes xg contains 7, (A) . Such
a property allows an easy extraction of 4, (A), specially when the connected
components of A are rather well separated.Beyond projection procedures,
here again, it is not difficult to find non unit dilations and the accompanying
connections. But in this case, only vertically aligned points can be gathered.

The following example illustrates this projection technique.The sequence
under study comprises 57 8-bit digital images of 512 x 512 pixels. They come
from a bone tissue, examined by confocal microscopy, with a one micron
digital spacing. In this small volume of bone, we can see three osteocytes
which are located at various depths. On both slices of fig.(2.13), the nuclei
appear, as well as portions of long fibers of cytoplasm, that we are about to
segment.

By taking the supremum of the 57 slices (fig.(2.14)a) and filtering them,
we keep the three largest projections only (fig.(2.14)b) where the three dis-
joint connected projections of the osteocytes are visible. Consider the ver-
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Figure 2.14: a) Threshold version of the supremum ; b) Extraction of the
three largest objects.

tical cylinders with these projections as the bases, and restrict each of 57
sections to the inside of the cylinders. This results in figure (2.15), that
shows a perspective view of the extracted cells.

In geodesic terms, these operations are equivalent to geodesic dilations
by a vertical segment, taken as the unit dilating ball. This segment size is
not one, but about fifteen points (otherwise, the whole cylinder could not
be found). Then, only objects whose vertical dilate is arcwise-connected are
considered connected, which finally yields the three largest cels of the stack.

2.6 Conclusion

Remarkably, the same wavefront concept in R™ or Z" allows one to describe:
- the connected components,via its surface measurement;
- the bottlenecks, via the minima of its variation;
- the branches, via the variation of its connectivity;
- and the extremities, via through its ultimate locations;
and its application to complex 3-D histologic structures proves the outstand-
ing power of this tool.

From a theoretical point of view, the wavefront properties bridge the
three concepts of connection, metrics and dilation. An additive semi-group
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Figure 2.15: Perspective view of the extracted oesteocytes

of dilations is equivalent to a metric that admits geodesics, as well as to the
compact connected components of a connection. This double equivalence
opens the door to an a-priori infinite number of possibilities ; in fact, it
seems up to now that connections by dilation are the only ones to have
proved their practical usefulness.
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