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Foreword

The text that follows is the second facet of a course holding on mor-
phological operators and on random models. It is given yearly in November
(morphological operators) and March (random models) at the Ecole des
Mines de Paris during European sessions. Indeed, the chapters below corre-
spond to half of the lectures on random sets and functions, the other part
being taught by Dominique Jeulin. The Matheron axiomatics for random
sets, which is introduced here as a counterpoint to the Boolean model, is
more developed in Jeulin’s part, as well as the dead leaves model, which is
extended to numerical functions and to sequential structures. In addition,
the relationships that link the physical properties of the materials with their
geometrical structures are thoroughly treated in Jeulin second part.

The present part deals with three major themes. Firstly, the measure-
ments. The functionals which are introduced and studied admit always both
deteministic and random versions. Emphasis is put on their stereological as-
pects, but not exclusively. The second theme is that of the measurements
associated with two basic erosions, namely with a segment, and with the
extremities of a segment. Finally, two chapters are devoted to Boolean sets
and functions, that turn out to be basic archetypes for random structures,
and also the fathers of all usual models.

Pedagogically speaking, the course comprises the text that follows, plus
two other elements. There is on the one hand the series of transparencies
for the talks, in english and in french versions. Their classification follows
that of the chapters but the theoretical aspects are more developed here.
On the other hand a comprehensive collection of simulations show how to
handle the morphological models. They run in real time by means of the
”Micromorph” software.

Jean SERRA

March 2202
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Chapter 1

Measurements

1.1 Set Functionals

There exists a rather important literature on digital surface description,
and calculus, for 3-D sets [66][106][105]. However if one has in mind to
bridge the gap between digital and continuous spaces, i.e. to provide a Eu-
clidean meaning with digital measurements, the techniques based on digital
boundary measurement (i.e. volume difference between dilate and object, or
object and eroded set) are not sufficient, and one must deal with stereology
[10][31][48] [93]. Below we follow this approach. Moreover we are not exclu-
sively interested in surface area, but more generally in digital estimators of
"good” Euclidean measurements, or functionals. A set functional is a finite
number W measured on a set X € P(R"), for purposes of describing it. In
physics, it is also called measurement or parameter. For both physical and
logical reasons, it often fulfills the following requirements :

e to lend itself to sampling, which allows the condition of c-additivity:
WXUY)+WXNY)=WX)+W(Y) X,Y € P(R");

e to be homogenous, i.e. to commute under magnification :

W (kX)=kP.W(X) where k is a positive integer with 0<p<n;

e to be invariant under translation :

W(Xp) = W(X)

or, more severely, to be invarariant under translation and rotation ;
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e to satisfy a certain robustness, e.g. to be continuous, or be increasing,
on the class of the compact convex sets.

For obtaining functionals that satisfy such properties, the first task con-
sists in delineating a convenient class of sets. The whole class P(R") is too
general and cannot serve even to introduce the Lebesgue measure (e.g. in R?
the area). The class K'(R") of the non empty compact sets is already better:
the Lebesgue measure exists on it, and it is even upper semi-continuous, but
such a class is still too comprehensive. For exemple, a compact fractal set in
the plane R? usually has no perimeter. Following H.Hadwiger [40] and L.A.
Santalo [120], we shall base our approach on the Conver Ring, i.e. on the
class R(R™) of the finite unions of compact convex sets in R™. This class
is not only closed under displacement, magnification, intersection and finite
union, but it allows one to derive all basic functionals from a unique one,
namely the connectivity number, in a way which has a deep stereological
meaning.

The main symbols used below for displacements are the following:

{z} represents the point © € E considered as an element of P(E);
Q stands for the angles in the plane;

A(x,a) straight line of R? of direction o and passing through point x ;
w stands for the solid angles in the space;

) plane of R® going through x, with normal w;
A(x,w)  straight line of R of direction w and passing through point x.

1.2 Euler-Poincaré Characteristic

Euler-Poincaré characteristic v™ (also called connectivity number or again
EPC) is defined by means of an induction on the dimension n of the Eu-
clidean space R".

For n = 0, the space is conventionally reduced to a unique point, and
v%(X) =1 or 0 according to whether set X is this point or the empty set.

For n =1, put
h(z) = 1°(X{z}) — (X {z +0}) (1.1)

where x + 0 designates the right limit at point x. The term h'(x) is
non-zero only at the right ends x; of the segments that form X, where it is
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i (x)

Figure 1.1: An example of the Euler Poncaré constant in R2.

equal to 1. Then the EPC in R! is defined by the sum
VI X) =Dk (). (1.2)
For n = 2, in R?, introduce similarly
h2(z) = 1 (X NA(z)) — 1 (X NA(z +0)) (1.3)

Again, h?(z) differs from zero uniquely at the convex outputs x, of the
grains, where it is equal to 41, and at the convex inputs x;, of the pores,
where it is equal to —1. In the convex ring, such locations are always in a
finite number, so that the quantity

X = Y W ag) = 3 W3 () (L4)

is also finite, and defines the EPC in R2. Geometrically speaking, the
constant v?(X) is nothing but the number of the grains of set X minus that
of its pores, as we can verify on fig (1.1)

In R3, the principle is the same, and relation

B3 (x) = v3[X NII(x)] — v?[X N1I(z + 0)] (1.5)

induces, by summing in x, the Euler-Poincaré constant v3(X) =
S"h3(x;). In algebraic topology, the genus of a connected boundary 9Y
is defined as the maximum number of the loops one can trace on Y with-
out disconnecting it. It is equal to 0 for a sphere, to 1 for a torus, to 2 for a
tore provided with an handle, etc... It can be proved that the E.P. C. v3(X)
is equal to

(X)) =D 1 - GOXi)] (1.6)

where the 0.X; are the connected components of the boundary 9.X.
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Figure 1.2: An example of the Euler-Poincaré constant in R3.

1.2.1 Geometrical Interpretation

The theory of Euclidean surfaces is classical, and dates back to the beginning
of the 20th century (R. Poincaré). The comment below derives from [53],
more information can be found in general documents such as Encyclopedia
Britannica.

In R™, a closed orientable surface is topologically equivalent to a sphere
with an even number 2p of holes (made by removing discs) which have
been connected in pairs by p handles (shaped like the surface of half of a
doughnut). A closed non orientable surface is topologically equivalent to a
sphere which has had a certain number ¢ of discs replaced by cross-caps. The
numbers p and ¢ are said to be the genus of the surface not being closed
means that some discs have been removed and the hole left open. A torus is
a sphere with one handle ; a M&bius strip is a sphere with one cross-cap and
one "hole” ; a Klein bottle is a sphere with two cross-caps; a cylinder is a
sphere with two "holes”. In general, the Euler-Poincaré number of a surface
is equal to 2 — 2p — ¢ — r, where p is the number of handles, ¢ is the number
of cross-caps (zero for an orientable surface), and r is the number of holes
(or boundary curves).

More simply, remember that the EPC of a simply connected object (i.e.
homeomorphic to a cube) equals 1, that of a torus (typically, a donut) equals
0, and that of spherical crown (such as a football) equals 2. Moreover, the
constant v is C-additive, which means that

v(A)+v(A)=v(AUA) +v(ANA), (1.7)

an equation that allows one to reduce complex figures to the most simple
ones. Thus, the ECPC of lampshade pierced by 1000 pin holes equals -1000.
The Euler Poincaré number of the union of disjoint surfaces is the sum of
each of them.
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The topological number v allows to bridge the gap between Euclidean
and digital spaces, since it can be equivalently defined in both modes when
we interpret it in terms of graphs. Here, a convenient set model is the class
of all finite unions of compact convex sets. This class, called ”the convex ring
of R™ allows to elaborate a theory about measurements (Hadwiger theorem
below), and on the other hand lends itself to digitization. In this framework,
a deep property of Euler-Poincaré number is stated by the following theorem
[40].

Theorem 1.1 (Hadwiger): the only functional defined on the convez ring in
R™, of degree zero, invariant under displacements, C-additive and constant
for the compact convex sets, is the Fuler-Poincaré number v.

Moreover, this translation invariant EPC does not depend on the direc-
tion by which it has been constructed, hence it is isotropic and rotation
invariant. In addition, it has dimension 0, therefore it is invariant under
magnification. Finally note that unlike the number of particles, number v
is a local measurement: one needs only small neighborhoods around best
points to estimate it statistically.

1.2.2 Digitization of the Euler-Poincaré Number

Historically, the Euler-Poincaré constant (in brief: EPC) appeared in two
slightly different domains of mathematics. Firstly, there was Euler’s reason-
ing about the relations between the polyhedrons vertices, edges and faces,
which was formalized in terms of planar graphs by Cauchy. This way of
thinking leads to counting algorithms, which are based on the elementary
edges, squares and triangles (in the hexagonal grid). It extends to various
cubic, cube-octahedron and rhombo-dodecahedron of R3, without any par-
ticular theoretical difficulty, but with a growing heaviness of the elementary
operations to be carried out.

The second way, Poincaré’s, and Hadwiger’s later on, links the successive
definitions of EPC thanks to an induction holding on the dimensions of the
space [40]. When transposed to a digital grid, this approach is limited to
cubic (or to parallelepipedic) grids, but, in return, leads to a much simpler
and faster expression than the graphs one. Thus, for a bounded digital set
A, we have :

In Z!, v1 (A) = N (vertices) — N (edges) = N () — N (—)
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v,(A)= N(*) -N(—) - N(7) + N{~=)

-neh+ NeDDh + e

Figure 1.3: Decomposition of the 3-D Euler-Poincaré Constant into a series
of elementary erosions.

In Z2, for the square grid :
vy (A) = N (vertices) — N (edges) + N (faces)
=N(e)=N(-)=-N()+N(DO)

Still in Z2, if we agree on calling Nj (A) the sum of the constants o7 of
the horizontal sections of A, we can see that

va (A) = 71 (A) — 77 (40 ), (18)

where A© | stands for the Minkowski substraction of A by the unit vertical
segment.
In Z3, this is the same, and Euler’s number v3 (A) defined as

vg (A) = N (vertices) — N (edges) + N (faces)- N (blocks) (1.9)
is expressed by the same increment as before, for
vy (A) = 73 (4) - 75 (40 ) (1.10)

when 73 (A) is the sum of Euler bidimensional numbers of the horizontal
sections of A, and where © stands for he Minkowski substraction of A by
the unit vertical segment (equation (1.10) can easily be extended to R™
by recurrence). Constant vs is independent of the choice of the ”vertical”
direction.

From an experimental point of view, the equation (1.10) is very conve-
nient, for in image processing systems, Euler bidimensional constants are
generally rapid to get and the unit linear erosion between two consecutive
planes is a simple operation too. It is this equation (1.10) that has been
implemented in the shinbone example in chapter 13.
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1.3 Minkowski Functionals

When set X is an element of the convex ring R(R™), one can wonder about
the ECP of the sections X N Il of X by hyper-planes of dimension k
(0<k<n), and also about their averages under displacements as IIj varies.
These sums result in n + 1 functionals which are, by construction, invariant
under displacement, homogenous of degree n - k, c-additives, increasing and
continuous for the compact convex sets. These so-called Minkowski func-
tionals go back to H. Minhowski [101], and their importance derives from
the following result, due to H. Hadwiger ([40]) :

Theorem 1.2 Theorem 1.3 : FEvery functional defined on the convex
ring, and which is invariant under displacement, c-additive and continuous
(or equivalently increasing) on the compact conver sets is a linear combina-
tion of the Minkowski functionals.

In particular in R™, up to a multiplying constant:

e the first functional (of degree n) is the Lebesgue measure of X, it is
increasing and upper-semi continuous ;

e the second one (of degree n — 1) is the superficial measure of the
boundary 0X ;

e the last but one (of degree 1) is the so called norm or mean width it
commutes under Minkowski addition, i.e. satisfies the characteristic
relationship

MAX o uY)=IM(X)+puM(Y) (1.11)

For the three usesful cases in practice of n = (1,2,3), the Minkowski
functionals admit geometrical interpretations that make them the basic mea-
surements in image processing. More precisely,

e In R, the first functional reduces to the length L(X) of set X, and the
second and last one to the number v°(X) of segments which compose
X,

e In R?, The three functionals are the area A, the perimeter U and the
EPC v? with

U(X) :Ada/lézyl[XﬁA(x,a)}da:, (1.12)
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a relation that interprets the perimeter as the sum of the intercepts taken
in all directions. Moreover, when set X is compact convex, the perimeter is
related to the projections of X on the straight lines A, by the relation

U(X) = / LIX | Ad)da. (1.13)

J T

e In R3, the four functionals are the volume V, the area S, the mean
width or norm M, and the EPC v3. We have the three expressions

volume v(X) = / v (X N{z}) dx (1.14)
JR3
1 1 f '
surface area —s(X) = — / dw/ n [XNA(z,w)] dx (1.15)
4 4r Jam w
1 [ oo
mean caliper d(X) = e dw / v [X NI (z,w)] dz (1.16)
JA4m J—oo

The three relations Eq.(1.14) to Eq.(1.16) attribute a Euclidean meaning to
digital data. In R3, for example, Eq.(1.14) becomes by discretization

v*(X) = (Number of voxels of X) x vg (1.17)

where vy = a® (cubic grid) or a3/* (fcc grid) or a3/? (cc grid). Similarly,
Eq.(1.15) is written, in the cubic grid

s* (X) = (average number of intercepts) x 2a?v/2, (1.18)

where the averaging is taken over the six directions going from the centre to
the middles of the sides. Since estimate s* (X) concerns the Euclidean surface
s(X), it differs from the facets areas of the digital set X. For example, here,
a facet of a zero thickness counts twice.

e When the 3-D boundary 0X admits two curvatures C7 and Cy every-
where, the norm expresses the intergal of the mean curvature, i.e.

IM(X) = /8 (G + oy (1.19)
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In particular, when set X is convex, its area and its norm can be
interpreted in terms of projections X | II,, and X | A, on the planes
II, and lines A,

7S(X) = dn /.A(X (1L )deo (1.20)

2M(X) = dn /L(X | Au)dw = (2/7) / UX | T)do  (1.21)
. A

1.3.1 Stereology

Definition 1.4 A measurement on a set family in R™ is said to be stereo-
logical when it can be written as a function of measurements performed on
sets of R¥, k < n [153][159].

By construction, all Minkowski functionals are stereological except the
last one (the EPC). In R3 for example, for computing a volume (resp. an
area, a width) the above relations show that it suffices to sample the space
by points (resp.by lines, by planes).

More often, stereology intervenes between specific measures, hence in a
stationary framework. Denote by Vi/(X) the volume of X by unit volume of
the space, by Sy (X) the specific surface, by N4 and Ny, the specific EPC in
R? and R! (or, if so, their rotation averages). Then the above relationships
become

W =Ax =L
Sy =4Ng = (4/m)Uy
My =21Ny4

1.3.2 Steiner Formulae for Convex Sets

When sets X and B are non empty compact convex, the functionals of the
Minkowski dilate X @ B derive from those of X and of B. The relation has
already been given for the norm; as for the volume, we have

e in R?,

A(X @ B) = A(X) + [U(X).U(B)]/2r + A(B) (1.22)
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e in R3,

V(X®B) = V(X)+[M(X).8(B)+S(X).M(B)|/4r +V(B) (1.23)

where A and V stand for the rotation averages as B takes all possible
orientations with respect to set X .

These formulae, established by Steiner in 1839 when B is a ball, are
extensively used for calculating Boolean random sets and functions (see
chapters 15 and 16). In such cases, set B is classically the unit segment, the
unit disc or the unit ball and the general expressions become

for B the unit segment

in R? AX®rB)=AX)+rU(X)/n

in R3 V(X®rB)=V(X)+rS(X)/x
for B the unit disc

in R? AX ®rB) = A(X) +rU(X) + nr?

inR® V(X®rB)=V(X)+arS(X)/4+rM(X)/2
and finally, for B is the unit ball in R3

V(X ®rB)=V(X)+7S(X) +r*M(X) +4/3mr3. (1.24)

In all cases, the measure of the dilate is a polynomial function of the size
of the structuring element, and has for degree the dimension of the latter.
One easily proves that, for r small, the first order terms extend to the convex
ring.

1.3.3 Global Measurements or individual analysis?

So far, set X was always considered as a whole. What additional results
can be found when set X is generated by a union of disjoint convex grains
Y? How the sizes of the sectioned grains are related to those of the space
ones, for example? Denote by E[x| the mean of x over all objets, and by *
the mean of  for all sections of all objets in all directions. In R3, the major
stereological relationship is the following

E[V(Y) =AY NI).LY | A) =AY | TI).L(Y N A) (1.25)
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Figure 1.4: The average number of grains in sections equals 9 in case a),
and 7 in case b).

A somewhat disappointing result, since none of the projection terms
L(Y | A) and A(Y | II) can be accessed from plane sections. In other words,
the mean volume E[V(Y)] of the grains turns out to be inaccessible.

We will now examine the relationships between the numbers of objects
in R? and in its 2-D sections? Let I be the number of the 3-D particles Y, a
quantity equal to the EPC of X since grains Y are convex. It can be shown
easily that

I(XNM) = I(X).L(X | A) (1.26)

which means in terms of dimensions

"number in R? =7 (number in R3)”.” (mean diameter)”. (1.27)

An example is depicted in fig (1.4) which shows two groups of spheres

in a unit cube. In case a) the average value I(X N II) is 9 whereas in case
b), where there are more spheres, but smaller, one finds (X NII) = 7.

1.3.4 Extension to Numerical Functions

In order to generalize the above results to numerical functions, we can model
gray tone images by the class Fg of those functions f from R?(or R") into
[—00, +-00] whose all sections X;(f) = {x : z € R2, f(x) > t} are elements
of the convex ring. The W functionals under study become mappings from
Fr into [—o0,400], and the prerequisites introduced in the previous set
approach extend easily. Invariance under displacement holds now on hori-
zontal translations only, and on rotations around the ”vertical” axis of the
gray tones. C - additivity becomes

WV +W(fNg) =W()+W(g)  f.9€Tr; (1.28)
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However the generalization of the set oriented homogeneity requires more
precautions: does it involve magnifications or affinities? In gray tone images,
where the vertical axis T of the gray intensity represents quantities such as
color, heat, electrical intensity, etc.. that are physically heterogeneous to
the space coordinates. In such conditions, a global compatibility under
magnification turns out to be cumbersome, and we must separate the space
magnifications from the intensity ones. The convenient notion here is that
of dimensionality [131]. A functional W is said to be dimensional when

WA f(px)] = A\ P W[f ()] zeR" feFr (1.29)

where k and p, integers # 0 , are the dimensions of measurement W. Di-
mensionality preservation orients us towards products of planar operations
by vertical ones (i.e. typically affinities). Each numerical Minkowski func-
tional is then obtained by summing up the set corresponding one over the
gray tone axis T. We will analyse in more detail the case of the numeri-
cal functions on R? which allows to draw figures, but the results below are
obviously valid in R™.

e Integral and areas : we draw from the areas of the sections the
following (possibly infinite) volume V(f) and cumulative histogram

G(t) ‘ ‘
Vin = [ 1wz = [ A (130

Gri) = [ APl v(s) (1.31)

e Gradient and perimeter : from Steiner formula (extended to the
convex ring), the perimeter is equal to the derivative at the origin of
the dilation by a disc

r— 0= [AX, ®rB) — A(X))] — rU(Xy) (1.32)

When Xj is a finite union of convex sets Y;(t), this limit is upper bounded
by the finite sum > [A(Y;(t) ® rB) — A(Yi(t)] so that we can write

/'U[det — limy o[ (V(f ®7B) — V()] (1.33)

Jt
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Figure 1.5: Euler Poincré Constant for numerical functions.

Now, the limit in the right member is nothing but the Beucher gradient
by dilation g*. Therefore the relationship proves the existence of the gradi-
ent g7 on the convex ring of functions and provides it with the geometrical
interpretation as the sum of the perimeters of the successive sections

[ = [ gt (@)ds (139

Jt JR2

e Connectivity Number : The sum of the ECP taken on the sections
of function f measures the integral of the differences in height in f.
For figure (1.5) for example, we obtain

/‘U[Xt(f)]dt _ D1+ D2— D3 (1.35)

e A counter example : length [ of a curve: Although volume,
cumulative histogram, gradient and connectivity number are dimen-
sional functionals, it is not true that this property is satisfied for all
usual measurements. It is not true for example for the length of a
curve in R! ® T, as given by the expression

I = /[1 + [f1(z)]?]dx (1.36)

In an affinity of ratio two, the flat zones keep their lengths, and the
other ones increase with the value of the slope: the length is no longer a
convenient measurement !
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1.4 Other measurements

Other measurements are introduced in the next chapters. They are some-
times stereological, such as the roughness, the range or the star in chapter
14, sometimes not.

We will conclude the current chapter by presenting three non hadwige-
rian measurements, the first two are defined in the convex ring (convexity
number and 3-D contacts), and the third one in the more general class of the
compact sets (fractal dimension).These three measurements are invariant
under displacement, homogeneous, continuous on convex sets, but, unlike
the Minkowski functionals, they do not fulfill the c-additivity condition

p(XUX)+p(XNX') =p(X)+p(X), (1.37)

which is not essential here.

1.4.1 Convexity Number

Consider, in R? the test line A, of normal a & da/2 , and let Nt (X, a) be
the number of its first contacts with set X when A, sweeps the plane. When
0X admits everywhere a radius of curvature R, we can split the contour
0X into its convex portions for which we have

2rNT(X) = [ NT(X,a)da = / du/R, (1.38)
J2m R>0
and its concave ones, yielding
2aN~(X) = [ N(X,a)da = / du/ | R, (1.39)
J2m J R<0

The two functionals N*and N~ called convexity numbers [129] are not
c-additive, but are linked with the EPC by the relationship

v(X)=NT(X) - N (X) (1.40)

1.4.2 3-D contacts

Consider a random packing of spheres of radius R, and a cross section
through it. The spheres becomes discs, and the distribution of the short-
est distances between discs follows a law

F(I) ~1.438 n(IR)'/? (1.41)
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Figure 1.6: An example of convexity numbers.

where n, is the number of contacts between spheres per unit volume [108].
This law, which governs some modes of thermic and electric permeabilities,
has been experimentally verified [10].

1.4.3 Minkowski Dimension

Consider a compact set X in R?. When set X is dilated, or eroded, by a
small disc 7B, whose radius tends towards zero, it may happen that, under
the development of finer and finer details, the area increment divided by r
does not tend towards a finite perimeter, as in Steiner formula, but towards
infinity. In such a case, there always exists a smaller value d, with 1<d<2,
such that the quantity

AX ®rB) — AX ©rB)/2r (1.42)

tends towards the finite limit kr'=¢, where k is a constant.The value d then
defines the Minkowski Dimension of set X. Indeed, the whole gamut of
dimensions, from 1 to 2 is covered, since for all sets of the convex ring we
have d = 1, but for a brownian trajectory, d = 1,5 and for a Peano curve,
one finds d = 2. The fractal sets of B. Mandelbrot [70] admit also non-
integer dimension d, i.e. a local notion, but they are richer, for they bring
into play, in addition, the global notion of self-similarity.

Minkowski dimension extends to R™, but is not a stereological notion.
In practice, in the isotropic case, ones passes from R? to R? by adding 1
to d. Experimentally, the object under study is accessed via a series of
magnifications ¢, whose limit of resolution r decreases. For a given r, the
perimeter of set X is

Ux(r) = A(X ®rB) — A(X ©rB)/2r = k/2r* L. (1.43)
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Figure 1.7: Two micrographs of clay material at magnifications x300 and
x 1000, and the plot of the contours increasingness. The slope of the line
equals the fractal dimension minus one.

Therefore, we have to check whether LogUx (r), as a function of Logr fits a
straight line. If so, its slope provides an estimate of d — 1. Finally, when the
object under study is no longer a set but a numerical function, by applying
the previous approach to the successive sections X;, we obtain the following
expression

Log grad,(f) = (d — 1)Logr + k/ (1.44)

We will apply the approach to a specimen of clay seen in scanning elec-
tron microscopy, at successive magnifications 102, 3.102, 103, 3.10% et 10%, as
depicted in Figure (1.7). The apparition of new details at each step suggests
the fractal model. Indeed, the increments of the gradient yield the estimate
d*=1.8



Chapter 2

Covariance and Linear
Erosion

2.1 Introduction : two sister notions

The current chapter is devoted to the studies of the Lebesgue measure of
two erosions. In the first one, the structuring element B = B (r, «) is made
of two points separated by a distance r in direction « ; in the second one, it
becomes the whole segment whose extremities are the two previous points.
Both erosions are carried out in the Euclidean framework which allows nice
geometrical interpretations (in stereology in particular). Indeed, since both
erosion and Lebesgue measure are increasing and upper semi-continuous
operations on the compact sets [82], the digital measurements are approxi-
mations of the Euclidean ones, and tend toward them as the spacing of the
grid tends toward zero. The measurement associated with the doublet of
points is named covariogram, or covariance, that corresponding to the seg-
ment is the linear moment. Both depend on the vector h = (r, ) introduced
by the structuring element, therefore they yield curves.

The similarity of the two structuring patterns (a segment or its extrem-
ities) induces proximities in the measurements, but also differences. In case
of a set X the two behaviors near the origin are identical as soon as the set
under study is supposed not to be fractal, since then a very small segment
hits the boundary 0X at most once. For the sake of pedagogy, we share the
presentation into Minkowski Functionals (covariance) and roughness (linear
moment) but all results are valid for the two structuring elements.

Differences arise when one wishes to extend the set measurements to

22
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gray tone images. If h (z) stands for the indicator function of set X, then

- two point z and x + h belong to X when k(z) - k(x+h) = 1 or
equivalently inf (k (x),k(x +h)) =1

- the segment [z,z+h] Dbelongs to set X  when
inf{k(y),y € [x,x+h]} =1

This allows two different generalizations in the case of the covariance,
but one only for the linear moment. The most useful representation of the
former is k (x) - k (x + h) = 1, because it corresponds to the very physical
notion of a power spectrum. Unfortunately it does not admit an equivalent
for the linear erosion.

Another, and deeper difference appears for sets and functions as soon as
we leave the vicinity of the origin. As modulus 7 increases, the linear moment
can only decrease (it is even a convex function) whereas the covariance may
oscillate, which results in two complementary perceptions of the object under
study. Linear moments inform us about size measurement (granulometries,
average grain, star ...) and covariance about packing, fabric, periodicities,
superimposition of scales, etc ...

In mathematical morphology the comparative study of covariance and
linear erosion dates from the end of the sixties [39] ; it has been presented
in full length and with number of examples in [129] where it occupies 90
pages. Here, more modestly, we have reduced this exhaustive study to 20
pages, and we have taken new examples.

2.2 The Covariance

2.2.1 Set Covariogram

Let h be a vector of origin 0, modulus r and direction «, in R™. Take for
structuring element B the point doublet {0, h} and consider the erosion

XoB=XNnX . (2.1)
made of all those points common to X and to its translate by vector -h.

Definition 2.1 : The Lebesque measure of X N X_p, defines the set covari-
ogram of X, it is denoted by

K(h) = Ko(r) = Mes[X N X_p] = Mes[X N X4] (2.2)
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Figure 2.1: Covariogram of set X in direction «

We see that

K,(0) = MesX  and that / K(h)dh = [MesX]? (2.3)

i.e. the integral of the covariogram equals the square of the area (volume)
of X. The tangent at the origin —K'a(0) = —[0K«a(r)/0r|,=o0 is nothing
but the total variation of set X in direction «, (e.g. in the convex case its
apparent contour), so that we can write, according to Crofton’s formula

— / K'a(0)da = 2U(X) (inR?);
_ / K'a(0)da = 7S(X)  (in %)

The set symbolism of rel. 2.2 may be rewritten more analytically by
introducing the indicator function of set X. This gives

Ka(r) = Mes|X 1 Xp) = / F@).f(x + h)de (2.4)

where the sum is extended to the whole space. If now f is no longer an
indicator, but an arbitrary measurable numerical function, the the above
integral (2.4) defines its covariogram.

It may happen that the object represented by f be reproduced as one
likes (e.g. a crystal of quartz) or, even if it is unique, reproduces itself indef-
initely through the space. Function f is then interpreted as a realization of
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a Random Function. In the first case, for f2? almost surely (a.s.) integrable,
the covariogram becomes

Kq(h) = E{MesXﬁX nl}  (for sets)
/f x+ h)dz] (for functions)

Ku(h)

In particular, when the object under study is large with respect to the
working mask, a more convenient framework consists in interpreting X, or
f in terms of stationary random closed sets, or functions. For the sake of
clarity, we will treat the set case first, and then the function case.

2.2.2 Stationary Set Covariance

In a stationary random closed set X, the notion that corresponds directly
to the above covariogram K, (r) is the non centered covariance

Cii(r,a) = C(r,a) +p? = Prob{z € X N X} (2.5)

By duality with respect to the complement, we can define the covariance
Cri(r, ) of set X, that Coo(r, ) = Prob{x € X°N X5} of "pores”set X¢,
and also the cross covariance Cpi(r,a) = Prob{z € XN X}, as well as
Cro(r,a) = Prob{z € X N X;}. Now these four moments correspond to a
unique notion, up to a constant and to a multiplication by —1. Indeed, the
probability that a point x belongs to set X can be decomposed into

Prob{z € X} = Prob{z € X and z+h € X}+Prob{z € X and z+h € X}
(2.6)

which results in
Cii(r,a) =p— Cio(r,a) =p — Cor(r,a) = p— (1 — p) + Coo(r, )  (2.7)

Experimentally, the non centered set covariance is estimated in a zone Z
as the ratio C11(h)* of the favorable locations of the doublet B over all its
possible locations inside the mask Z i.e.

A[(XNZ)o B]

Cu(h)” = A[Z © B]

(2.8)

Behavior at the origin and infinity: We find again the properties of
the covariogram K (h), now enriched with stochastic interpretations. Near
the origin 0, we have

Ci1(0,0) = Aa(X) = p; (2.9)
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Figure 2.2: Pseudo-periodicities and covariance

The directional average of the tangent at the origin equals the specific
perimeter (resp. surface) in R? (resp.in R3)

—(1/27r)/011(o,a)da — /mUAX) (inR?)
—(1/4n) /C’n((),w)dw _ Sy(X)/4  (inRY

As h is very large, the two events © € X and € X}, become independent,
hence lim C11(r, o) = p? = [A4(X)]%.

Pseudo-periodicities:The maxima of the covariance, when their ab-
cissae are multiple of each other, e.g. the three values 30, 60, 90 in fig.(2.2)
, indicate pseudo-periodicities of the objet. However, the covariance is blind
to connectivity : the covariances of the two sets depicted in fig.2.2 are graph-
ically identical

Clusters and Noise: Features of different scales (in fig.2.3, the parti-
cles and their clusters) add their covariances and in particular the associated
tangents at the origin. Moreover, we see in the present case an oscillation
due to the equal inter particle distance in the clusters. As the limit when
the lower scale tends towards 0, or in digital cases is equal to 1, we obtain
a Poisson noise of variance po(1 — po), that appears as a jump down of the
ordinate near the origin.

Rectangle (or Cross) Covariance: The division of the space into a
set and its complement is sometimes replaced by a partition of the space
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Figure 2.3: the two scales of the grains and of the clusters are added on the
covariance.

into n phases X1, X»...X,,. The study of their space relations is then carried
out by means of the rectangle covariances Cjj(h) = C;(r, o) for 4, j € [1,n]

Definition 2.2 : The rectangle covariance of a stationary multiphased set
1s the joint probability that point x belongs to set X; and point x + h to set

X :Cij<7‘,04) :Prob{xeXi,m—i—her} (2.10)
We have at the origin

Aa(Xi) =) Cij(r,a)and i#j = Cij(0,a) = 0. (2.11)

For h large, the two events x € X; and x + h € X; become independent,
hence lim p_,0C;;(r, o) = p;p;.The directional average of the derivative at
the origin is related to the specific perimeter (resp. surface) in R? (resp.in
R?) between phases 7 and j by the following equation

- / CL(0, a)da = (2/m)UL(Xs/X;) = Sy (Xs/X;) /4 (2.12)

The metallographical example depicted in 2.4 concerns a specimen of iron
ore sinter from Lorraine (France)[37]. The (grey) crystals of ferrite are due to
a partial reduction of the (light grey) hematite during the sintering process.
Their genesis appears on the cross-covariance hematite-pore that shows, by
its hole effect, that the ferrite crystals surround the particles of hematite.
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Figure 2.4: Specimen of iron ore sinter.Light gray: hematite ; dark gray :
ferrite ; black: pores. The two cross covariances involving ferrite are quite
identical. That between hematite and pores starts from more below (smaller
contact surface) and exhibits a hole effect for h=>50, which indicates a halo
of ferrite around hematite

2.2.3 Stationary Function Covariance

We now approach the numerical functions when interpreted as realizations
of stationary random functions. The former covariogram K (h) of the deter-
ministic case is replaced here by the centred covariance

C(h) = C(r,) = El(f() — m).(f(w + h) — m)] = E[f(2).f(z + )] — m?.

(2.13)
where m = E[f(z)] stands for the mathematical expectation of the process.
The transition sets = functions shows itself essentially in the behaviors
near the origin and at the infinity. For h = oo, the correlation between
points x and x + h vanishes, so that

C(h) = E[(f(z) —m)].E[(f(z +h) —m)] = 0 (2.14)

Behavior near the origin For h = 0, we find
C(0,a) = E[(f(z) —m)]* = o”. (2.15)

The value at the origin of the covariance is thus equal to the variance of the
process. In particular when function f is the indicator function of a closed
random set X, with a volume proportion m = p, we find C'(0, @) = p(1 —p),
i.e. the variance of the binomial law of mean p.
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Figure 2.5: The function f of the chromosomes is derivable in quadratic
mean (horizontal tangent of the covariance at the origin); the Poisson noise
which is superimposed results in a "nugget effect” at the origin.

A random function f is q. m. continuous ("q. m.” for ”quadratic

mean”) when for any point zg we have

llm|$7m0|H0E[(f($) - f(x(])]Q =0 (216)

The q.m. derivability of function f with respect to each of its variables
is defined in a similar way, by taking the mathematical expectation of the
square of the corresponding partial derivative. Numerical random functions
may be q. m. derivable, random closed sets (via their indicator functions)
are not. The various levels of regularity of functions f are transcribed on
the behavior of their covariances near the origin:

- function f is derivable in quadratic mean if and only if its covariance
is derivable at the origin, which implies by symmetry that the tangent at
the origin is horizontal,

-the piecewise continuous functions (e.g. indicators) are m.q. continous
only. Hence, their covariances are not derivable at the origin and exhibit
oblique tangents;

-an additional Poisson noise is reflected on the covariance by a jump down
at the origin (called nugget effect), whose value is equal to the variance of
the noise. However, if the phenomenon and the noise are independent, the
rest of the covariance is not further affected : a very useful robustness !

Sums of Stuctures The covariance sums up the structures that are
non correlated. For proving it consider the sum f= > f;, 1 <i<mnofn
independent random functions f; of zero means (for the simplicity). To say
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that they are non correlated is equivalent to saying that E|f;(z) f;(z+h)] =0
for all z, h and 4, j with i # j Therefore the covariance C(h)of the sum f is
equal to

C(h) = E[f(x)f(z+h)] = Elfi(2) filz + W] =) _Ci(h)  (2.17)

More deeply, one may wonder about the link between a basic shape (e.g.
the lung nodule) and the stationary structure it generates by random du-
plication over the space. Can we build a stationary random function whose
covariance be a given covariogram ? A very simple model to answer such a
question consists in starting from Poisson points {z;,7 € I} in R?, of vari-
ance A , putting at each point x; an independent realization f; of a primary
set (or function) of covariogram K,(r), and in taking the sum f = > f; of
all these primary objects. One proves easily [129] that the resulting random
function f is stationary and admits the covariance C(r,a) = AK, (7).

Covariance and Power Spectrum A physical interpretation of the
the behavior at the origin is provided by the famous theorem of Wiener-
Khinchine

Theorem 2.3 (Wiener-Khinchine) A given function C(h) can model the
covariance of a stationary random function f if and only if it is the Fourier
transform of a mon negative measure. Then the Fourier transform of C(h)
is the energy spectrum ¢(v) of function f.

Corollary 2.1 1 This last condition amounts to saying that C(h) is definite
positive, i.e. such that we have, for all positive weights A; and all points x;
we have

Z )\i)\jC(a:i — .%'j) > 0. (2.18)

Corollary 2.2 2 : Since Fourier transformation exchanges the behaviors at
the origin and at infinity, we obtain, in particular

| / b(v)dv = C(0) = E[(f(x) — m)]? = o (2.19)

The sum of the energies associated with all frequencies is thus equal to
the point variance o3, i.e. to the value C(0) of the covariance.

Behavior at infinity By duality, the theorem of Wiener-Khinchine, or
more precisely the second corollary, also suggests that one takes into account
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the beginning of the power spectrum. This allows one to introduce the range
a of function f as follows

#(0) = | / ‘ C(h)dh = aC(0) = ao? (2.20)

Geometrically speaking, the range is the distance beyond which two data
may be considered as independent. Moreover, when expressed in statistical
terms, the notion gains an ergodic meaning. Let Z be a large working zone
and denote by fz(x) the integral [, f(z—y)dy, then, as Z — oo, the variance
02 of fz(z) over the whole space admits the following limit

0% = E[(fz(x) —m)]? — [a/MesZ]C(0). (2.21)

With respect to the variance 0'% of a sample Z, the range turns out to
be, asymptotically, the unit size of the phenomenon under study. More
generally, whatever large Z is, if 08 , stands for the variance of the point
function f inside Z, it can be shown that

U(%/Z =% - o2 (2.22)

This remarkable identity, known as Kriges formula, constitutes the starting
point for Geostatistics[75][79].

2.2.4 Intrinsic Theory, Variogram

Large though the working field Z is, the variance of a closed random set
inside it remains necessarily bounded by maximum possible variance

sup{p(1 —p),p € [0,1]} =0, 25. (2.23)

In contrast, certain physical phenomena can exhibit a quasi infinite range
of fluctuations, i.e. a variance which increases without limit with the size
of the domain of experiments (ore deposits, rains...). Then the estimated
Variance[ag /Z]* of a point inside the domain Z increases indefinitely with Z,
at any scale of analysis. From Kriges formula, this means that the stationary
model is just inadequate : o2 = (C(0) being infinite, the covariance no
longer exists. However, the increments of f may still exist and have a
meaning. By assuming them stationary, we can study their variances, also
called variogram y(h)

v(h) = E[f(z) = f(z+ h))? (2.24)
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Figure 2.6: Simulation of Poisson steps, that admit only a variogram (as-
cending curve). The experimental covariance (decending curve) is pure ar-
tifact.

Clearly, we always have v(0) =0, and
0% < 0o & (h) =2[C(0) — C(h)] (2.25)

When o2 = oo, although the covariance vanishes, the variogram remains
defined and new behaviors at infinity appear. Of course, one could argue
that numerical data are always finite! We will answer the objection by means
of a very suggestive model that lends itself to easy calculations, namely the
Poisson steps.

Start from a Poisson point process of variance X in R!, and place a jump
of amplitude d at each Poisson point. fig. 2.6 The random variable d follows
a law of mean 0 and of variance 0. In such a model, only the increments
are defined, their average is equal to zero and their variogram to

v(h) = rio? (2.26)

When the data are known along a finite segment of length L, the variogram
is estimated from experimental data by the relationship

L—h
V' (h) =1/2(L = h) /0 [f(z +h) = f(2)]dz (2.27)

where the right member admits for expectation E[y*(h)] = vy(h) = rAo?.
But whereas the mean of the phenomenon does not exists, it is always pos-
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Figure 2.7: Left: thin section of beech, of size 1506 x 1016 pixels, with 1 pixel
= 1 micron. Right: the variograms in the two orthogonal main directions,
and their beginnings (the lower curves).

sible to put fr, =1/L ./;)L f(z)dz, and to introduce the pseudo-covariance

L—h
Cov'(h) =1/(L=1) [ (flas ) = fo)(f(@) = )z (228)
Such a pseudo-covariance admits for expectation
E[Cov*(h)] = L/3 —4/3.h+2/3.h*/L (0< h< L) (2.29)

where the actual phenomenon (behaviors at the origin and at infinity,
parabolic increasingness instead of a linear one) is completely distorted (fig.

2.6) .

To conclude on this point, we will say that when different scales inter-
fere, even when the structure under study is binary, it is always preferable
to investigate it by variograms rather than by covariance. The wood speci-
men depicted in figure 2.7 illustrates such a situation. It is a thin section of
beech taken normally to the axis of the trunk . The horizontal direction is
that of the the radii that start from the center of the tree; the vertical one
is that of the annual rings . Its stucture combines fibers of a few microns
with vessels that are twenty times larger but both more or less elliptic. In
superimposition, two orthogonal directional structures appear: horizontally
they are the radii that start from the centre of the tree, and vertically some
elements of the annual ring. Both horizontal and vertical variograms show
a finite variance at 0.4 (the ordinate of the sill). Nevertheless, if we want to
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see acurately the fiber structure that governs the physical properties of the
wood, we must magnify ten times more, and then the sill is far from being
reached fig.2.7. We are typically in the situation of an infinite a priori vari-
ance, so that covariance measurement would provide a wrong quantization
of the structures.

2.3 Linear erosion

2.3.1 Moment P(h)

As previously, symbol h denotes a vector of origin 0, of modulus r and of
direction « in R”, but the structuring element B now becomes the whole
segment [0, h] so that

XOB={X_y,uc|0,h]} (2.30)

The eroded X © B is the set of those points common to set X and to
the family of its translates by all vectors contained between 0 and h .
The moment P(h) of set X is the Lebesgue measure of X © B | it is
denoted by
P(h) = Py(r) = Pogr(r) = Mes[X © B] (2.31)
and the integral St of moment P(h), divided by P(0), is called the star of
X
St = (1/P(0)) / P(h)dh = (1/MesX) / P(h)dh (2.32)

An Example Linear Erosion is given in fig. 2.8. Near the origin, the
behavior of P(h) is identical to that of the non-centred covariance, at least
for non-fractal Euclidean sets and for digital ones

P(0) = K(0)= MesX
—PL(0) = —K.(0) = diametral variation of X.

The rotation averages also admit the same interpretations as for covari-
ance. As vector h increases P(h) becomes smaller than K(h) since the
requirement of having the whole segment [z, x 4+ h] included in set X is more
demanding than having the two extremities only included in X

Va: Ko(r) > Py(r) > 0and 7 <19 = Py(r1) > Pa(ra) > Py(o0) =0.
(2.33)
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Figure 2.8: Linear erosion comparated with the covariogram.

Granulometries Unlike covariograms and covariances, the moments
P,(r) are associated to granulometric measures. Here a preliminary com-
ment is worthwhile. There exist two different ways for weighting a size
distribution. Recall the story of the butcher who sells lark pie, and adver-
tises "Excellent mixed pie : 50% lark, 50% horse”, because he guarantees
the proportion of one horse to one lark. As well, when one deals with statis-
tics about sizes of objects, it is advisable to clarify whether each individual
is counted for one such as blood formula, in medecine, or in proportion of
its volume (or any increasing parameter) such as sieving techniques. One
speaks of analysis in number in the first case, and in measure in the second.

Coming back to the linear erosion, suppose direction « fixed, and con-
sider the chords that intersect set X. Their distribution function is expressed

by
proportion of the chords >h =1— F(h) = P'(h)/P(0) (2.34)

as shown in fig 2.9. In such a formalism, all chords have the same weight,
hence they are counted in number. Now, what about the granulometry in
measure GG, where each chord is weighted by its own length? Consider the
adjunction opening X o B =X © B @ B of set X by segment B(r, a), and
its measure. We see form figure 2.9 that

[1 — G(h)|]MesX = Mes|X o B] = P(h) — hP'(h) (2.35)
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Figure 2.9: Geometrical interpretation of the area of the opening X o B.

Hence the granulometry by openings derives from P(h), which contains all
the information necessary to calculate the distribution function in measure

G(h).

Weights, individuals, sampling, and Stereology The distinction
between various ways of weighting allows a pertinent approach to questions
such as sampling or stereology. When the space is sampled according to
a regular grid, the sampling process weights automatically in volume, for
the probability of finding a vertex in a grain is proportional to its area (or
its volume in 3-D). For the same reason, when extracting the grain which
contains the origin, one implicitly introduces a measure weighting in the
drawing lots. Similarly again, a random section on a 3-D material weights
the individual objects according to their diametral variation normal to the
section plane. If in addition the grains on section are themselves weighted
by a grid, then the product of the two operations is a weighting in volume.

Moments in Number and in Measure We will draw the moments
in number from relation 1 — F(h) = P'(h)/P’(0) that implies

Elh] = /0 "1 = F(h)]dh = —P(0)/P'(0) (2.36)
and more generally
B[N = [n(n — 1)/ — P'(0)] / = W2 p(h)dh, (2.37)
JO

Concerning the moments in measure, we suppose for the simplicity that
both distributions F' and G admit densities f and g respectively. Then we
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Figure 2.10: f(h) sees that the whiskers of the cat have been cut ...but g(h)
sees that it ate a mouse !

draw from the definition g(h) = hf(h)/E[h] the expression of the moment
in measure M[h"]

Mh"] = /0  hng(h)dh = [n(n + 1)/P(0) /0 Thnlp)ldh (2.39)

An Example of Densities f(h) and g(h)(?7)

2.3.2 Stationary Random Approach

Just as previously with the covariance, the stationary random version of
P(h) is obtained by replacing the measure of the linearly eroded set by
the volume proportion of the erosion, i.e. by dividing P(h) by the unitary
volume (or area, or length). Since this unit is a constant, all above interpre-
tations remain true. Therefore, for the sake of simplicity, we keep the same
symbol P(h) in the following. The stationary version allows one to make
play symmetrical roles to P(h) and to the eroded Q(h) of the pores. If hy
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Figure 2.11: Star Y, of the pores at point «.

stands for the grain chords and hg for the pore ones, we can write
P(0) = p=L(X)=E[h]/Elho+ hi]

Q) = 1—p=Lg(X°) = Elho]/Elho + h]
—P'(0) = -Q'(0) = NL(X) = NL(X") =1/E[ho + hi]

The Star Consider the pores for set X, and assign to each point x € X
the set Yy of all points y € X that are seen directly from z. The mathemat-
ical expectation of integral

Mes(Yz) :/ Indy(y)dy [Indy(y) : indicator function of Y]
(2.39)
defines the star St(X), of set X. Interestingly, this n-dimensional mea-

surement turns out to be stereological, in that it depends on the linear
moment P(h) only; we have

SHX) = E[Mes(Y,) = /]R prob{lay] € X | & € X}y

- PW) R P(y—a)dy = /‘P(h)dh/MesX.

since by stationarity P(y — ) does not depend on point z. In the isotropic
case, the connection between star and moments in measure is more obvious,
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since the orientations are eliminated by integration in «, and we obtain

St3(X) :Lhﬂ®/mMPth:m@Mmﬂ in R
&ﬂX)::2m%A/thth:ﬂBNWﬂ in R?
JO

When set X is a population of disjoint convex sets the star admits a nice
stereological interpretation. Each point z of grain X; sees the totality of its
own grain, and nothing else. Hence the latter is weighted in measure in the
star, i.e.

St3(X) = M[V]=n/3M[h?] in R
Stao(X) = MJ[A] = n/3M[h?] in R?

In contrast, when X is arbitrary, such as a porus medium for example, the
zone of direct vision Y varies from point to point. The star then allows one
to define a mean volume of the pores, even if they are connected, and to
calculate it from plane sections .

2.3.3 Curvatures

We conclude the chapter by some comments about curvatures that are appli-
cable to both covariance and linear erosion, since they involve behaviors near
the origin of these curves. We will approach them via limited expansions of
the chord distribution, and treat successively the 2-D and 3-D cases.

Mean curvature in R? Let X € R? be a set which admits a finite
curvature C' in each point of its boundary dX. Consider a point € 90X,
of radius of curvature R = 1/C and of tangent direction a. Its contribution
to F,(r) is proportional to R — /R2 — (r/2)2) ~ 72/8R, hence, if N, 4(a)
stands for the convexity number of the grains direction o we have

NL(a)Fo(r) =7 ME[l}
pATe T4 R”

As a varies, Nj4(a)da = du/R when R > 0 and 0 when not ; so that

the directional average fi(r) of the Np(a)F,(r) becomes

r small (2.40)

fﬂﬂ::%L@X)ZbOMMR? (2.41)
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Figure 2.12: Roughnesses of handwritings.

By combining this result with the symmetrical one for the pores, we obtain

fi(r) + fo(r)

r 2
fny =10 B

_r ' 2 _
= L 1(0X) /@X du/R :

(2.42)

So, for r small, the chord histogram f(r) is linear and its slope is equal to
the quadratic mean of the curvature of X divided by eight .

We see in figure 2.12 a use of roughness measurents for comparing various
handwritings. The aramean (d), the tamoulic (a) and the slavonian (c), do
satisfy the model of finite curvatures (up to a nugget effect du to graphical
noise); the slope of f(h), practically zero for the aramean, increases from
tamoulic to slavonian, whose curvatures are more and more narrow. In
contrast, the model is not satisfied for classical arabic, with its surfeit of
punctuation.

Mean and Total Curvatures in R3 The previous model extends from
R? to R3and brings into play, at each point, the average curvature C' and the
total curvature C’ associated with the main radii of curvature Ry and Ry by
the relations 2C' = 1/Ry + 1/R2 and C’ = 1/R1 Ry. The limited expansion
of f(r) near the origin becomes now

2 __ v
F(r) = rw. (2.43)

Two cases are interesting :

e Set X is made of N, disjoint grains homeomorphic to balls, then f(r) =
rE(3C? — 47N,)/8.
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Figure 2.13: Roughnesses of two roads, from profiles of their surfaces.

e Set X is the sub-graph of a numerical function; in this case the term
in C’ vanishes and f(r) reduces to

f(r) =r3/8E(C?). (2.44)

This last relation has been succesfully applied to roughness characteri-
sation of roads, from profiles of their surfaces 2.13.

Two series of 1.000 and then 10.000 passages of 6,5 tons trucks going
at 65km/h have been emulated on a test ring. By measuring f(h) in six
directions and applying the above formula, we find

E(C?* = 2,210 %2mm™2  before wear;
E(C?* = 10 2mm 2% after wear.

Remarkably, such a regular model (curvatures at each point are assumed!)
still provides pertinent information here.

2.4 Exercises

2.4.1 Distribution function of the diameters of spheres from
the law of their intercepts

When set X is made of disjoint spheres, one can go back from the granulome-
try Fi(r) of the intercepts to that F3(r) of their diameters. The contribution
of a sphere of diameter D to the chords > r is (7/4)(D? —r?), which yields,
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after integration over the diameters

Nm—HUWﬂw/ﬂwaw%wmma» (2.45)

T

By differentiating both members with respect to r we obtain the equation
NLfi(r) = NLF(r)] = No(x/2)r[1 - By(r)] (2.46)

from which we deduce the specific number of the spheres
Ny = 2/7NLF{(0) (2.47)

and their moments E3, Mg as functions of the chords moments Eq, Mji,
namely

E3(D") = [n/fn(0)]EL(D™2) and Ms(D™) = (n+3/3) My (D). (2.48)

2.4.2 Poisson tesselations

The random function which is studied here-below comes from the ”turning
band method”, a method from G. Matheron [81], and is constantly used in
fractals construction. It is instructive for several reasons, not only as an
application of Poisson lines, but also as a mean and variance-free example
of a model, and that can only be reached through its increments. Conse-
quently, we will also wonder about the meaning of the induced experimental
covariances (critics also from G. Matheron, in his theory of regionalized
variables[79]).

1. In R!, a Poisson tesselation is defined as follows. Given a realization
of Poisson points {x1,7 € I}, we consider the function f, constant betwen
two consecutive points, and which jump by s; at point x; , where the s; are
independent random variables, with a mean 0 and a variance o2.

Simulate f when the jumps value +1 with a probability 1/2, and when
Poisson density varies from 1 to 10.

[ Procedure steps, with n < 40 ; when n increases, notice the fluctuations

for larger and larger ranges].

2. Prove that the random function f has no mean nor variance, whereas
the increment |f(z + h) — f(x)| is stationary , with a zero mean and with a
variance equals to 202 |h| so that the variogram of f is y(h) = o2 |h|
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[We find 202 |h| by poissonizing the number of jumps on [0, h]].

3. For h > 0, we know that the variogram of order one, 1 (h), is given

by

() = BIF(0) = O] =2/ |~ {1 = expMhfeosu—1)/ul} du (249
By a direct proof, show that
for small b y1(h) ~ 2\h — 4X3h3 4+ £(h3) (2.50)

for large b~ y1(h) ~ (Ah/m)/? (2.51)

Measure the vis for the above simulations of ex. 7.1. Why does the
observed linear behaviour continues on quite long distances ?

[In order to set the limited expansion near the origin that appears in
rel.(2.50), assign the probabilities Py, to the upwards jumps and P’y to the
downwards ones, with P, = P’y = e~ (Xh)"/n!. For small h, we have

Y1(h) = PyP| + PiPy+ 2 [PyPy + P,Py + PLP{] + ... (2.52)

which leads to relation (2.50). The lack of second order terms explains
the quasi-linear experimental behaviour. For large values of h, set 8 =
(M/2)Y/2 . The sum of the positive jumps tends towards the variable 6%+ Y6,
and the negative jumps one towards -0 +Y 6, where Y is the reduced normal
variable, hence

Yi(h) ~OE|Y; —Ya|= (Ab/m)/% . (2.53)

Thus, 1, which was initially proportional to 7y, is finally proportional to
its square root].

4. Build rectangular Poisson tessalations, by summing the simulations
of horizontal and vertical bands of the first question (two different densities
A1 and Az have to be considered). Measure the ;(h) in the direction 7/2.
Interpret. What happens when these directions increase 7

[We come back to the previous case, and note that jumps on a di-
agonal segment of length h admit a decomposition into two independent
families of positive and negative jumps, with the same Poisson parameter
(A1 + )\g)h/QﬁUp to factor \/2, this results in the sum of an horizontal
and a vertical component for vy, as well as for yv1 when h is small and h
large. Finally, as these characteristics do not depend upon the number of
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directions, they remain valid under averaging of Poisson bands in all direc-
tions of the space : numerous fractal reliefs are simulated on this principle].

5. Critics of the "finitary” mathematician to the above approach : ”

What does a infinite random function f mean ? You will ever have finite
means to build it, which will lead to finite numbers as well. So, please, keep
your subtleties and variograms for yourself, and use a covariance as everyone
else does”.

Well, let’s try for a realization f of vertical Poisson bands, that we in-
tersect by a segment of lenght L, and whose direction is orthogonal to the
banding.

(a) Estimate the hypothetical covariance C'(h), which in fact does not
exist here, from the experimental quantities

m*Z(l/L)Q/O. f(@)dz and  C*(z,y) = (f(z) —m*)(fy) —m"). (2.54)

By putting
-L—h
C*(h) = (1/L — h) / C*(z + h,z)dx (2.55)
J0
Show that for h>0
E[C*(x 4 h,z)] = 2L/3 + (2® + (2* + h?))/L — 22 — 2h (2.56)
and, by integrating in x, derive
E|[C*(h)] = L/3 — 3/4h +2h*/3L (2.57)

Calculate the mean of the experimental variogram and covariance on
several band simulations. Comment on the results.

[An apparent variance E[C*(0)] = L/3 is found, depending on the length
L of the segment considered. It is a pure artefact, since the true variance is
infinite. Although there is no covariance (the variogram is linear), the biases
introduced by this procedure of estimation result in an apparent confirmation
of the existence of a covariance (with a range!). It will be noted also that the
stucture of the phenomenon is extremely distorded: mnot only is the straight
line replaced by a parabola, but even the slope at the origin is changed (3/4
instead of 1) Thus C*(h) represents almost nothing of the true structure]
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(b) Show that the experimental variogram

-L—h

2 (h) = (1/L - h) / et h) — fa)]? da (2.58)

0

has an expectation
E[y*(h)] =~(h) = |h| (2.59)

and does not run into the same bias problem as C*(h).Comment

[We observe that the experimental variogram of relation (2.58) does not
involve any cumbersome mean value (so that E(y*(h) = ~y(h)); it is linked
to C*(h) by the expression.

20*(h) = —2~*(h) + (L)L — Bym*+(1 /L — h) / (@) - m P de

h

(2.60)
which introduces a variance in right member. When the experimental
variance of a phenomenon increases with the size of the zone investigated,
without tending towards a horizontal asymptote, it is not wise to fit the struc-
ture under study with a stochastic model possessing a covariance. However,
in such a case, the variogram still exists and its estimation is significant.

Consequently it provides a safer method than the covariance.]



CHAPTER 2.

COVARIANCE AND LINEAR EROSION

46



Chapter 3

Boolean Model and Random
Sets

3.1 Introduction: a counterpoint

The quantitative description of random sets has to be carried out at two
different levels. First of all, we have to define them properly, i.e., provide
them with adequate axiomatics, and then derive their main mathematical
properties (characterization of random sets by their Choquet functionals,
infinite divisibility, etc.). However, a purely mathematical approach would
not be sufficient, and must be complemented with a forthright description
of the random sets, i.e., by effectively giving recipes for the construction of
random sets possessing desirable morphological properties. For the sake of
pedagogy, it is better to start with this second aspect, and to concentrate on
one particular model. We propose the Boolean model, since it is especially
interesting in itself, and lends itself to many attractive derivations. Moreover,
the model, and its derivations, are for a large part due to the Centre de
Morphologie Mathematique of Fontainebleau.

The counterpoint between the Boolean model and the general properties
of random sets results in the following sections :

Boolean model Random sets
2 Construction 3 Definition and Basic Properties
4 Functional Moments 5 Infinite Divisibility
6 Convex Primary Grains 7 Semi-Markov RACS
8 Specified Boolean RACS 9 Derived models

47
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3.2 Construction of Boolean Sets

The first outline of the Boolean model appears in the literature with Solomon
[148]and B. Matern [74] ; the latter took a disk with a constant radius as
primary grain, and calculated the covariance of the model in this particular
case. A few years later, G. Matheron [76] gave the general definition of
the model, that we adopt here, and calculated the key formula 3.6. The
literature on Boolean models and on their uses is copious, a non exhaustive
list on the subject inludes the books of D. Jeulin [60] (use in physics),
G. Ayala [3] (statistical inference), 1. Molchanov [102] (estimations in the
general case), and the papers of A. Greco and Al [37] (Multiphased model),
J. Goutsias [34] (discrete approach), M. Schmitt [144] (density estimation
in the general case), J. Serra [128] (overview and derivated models) and S.
Stoyan [151] (spherical primary grains).

The definition of the Poisson point process in R™ is well known. This
random set of points is characterized by the following two properties :

(a) If B and B’ are two sets such that BNB’ = ¢, the numbers N(B) and
N(B') of points falling in B and B’ are two independent random variables.

(b) The elementary volume dv contains one point with probability 6 (dv)
and no points with probability 1- 6 (dv). The measure 6 is called the density
of the process. Here we will take 6 = constant, because it leads to more
geometrically interpretable results.

Suppose we take a realization of a Poisson process of constant density 6,
and consider each point as the germ of a crystalline growth. If two crystals
meet each other, we suppose that they are not disturbed in their growth,
which stops independently for each component. Let us transpose this de-
scription in terms of random sets. The I points of the Poisson realization
are at the points x1 (i € I) in R™. The elementary grain is an almost surely
compact random set X’ ; we pick out various realizations X/ of X’ from its
space of definition, and implant each X/ at the corresponding point x; The
different X/ are thus independent of each other.

We shall call the realization X of a Boolean model, the union of the
various X/ after implantation at the points z; :

X=UX] (3.1)
S

The Boolean model is extremely flexible : it is a first step, where one
admits only negligible interactions between the particles X} . Figure 1 rep-
resents a typical Boolean structure.
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Figure 3.1: Natural objects that fit with Boolean RACS: wolfram carbide
(on the left) and ferrite crystals (on the right).

3.3 Random Sets

We have just introduced a random closed set X (in brief, a RACS) via
the technique which allows us to construct it (in the following, we use the
same symbol X for denoting a RACS and its realization). However, just
like a random variable, a RACS is mathematically defined from a collection
of events, namely the relationships ” K misses X”, where K describes the
class of compact sets. These events are governed by the classical axioms of
probability, which require first a o-algebra, call it oy and then a probability
P on the measurable space (F, of), where F denotes the set of closed sets
in R™. The o-algebra o is generated by all countable unions of the events
and by their complements. To define P we associate with any event V of oy
the probability that this relation V is true.

Here, a few topological comments are necessary. To handle the random
sets correctly, we must be able to express how a sequence {X;} of sets tends
towards a limit X. On the other hand, we have to restrict the class P (R")
of all possible subsets of R”. Indeed the Euclidean space is too rich for
our purpose. For example, a set such as ”all the points with irrational
coordinates in the plane” has absolutely no physical meaning. In order to
make this simplification, define the distance p, from point z to set X, as
follows :

p(e,X) = infd(z,y), =E€R',  XeP®E),  (32)
Yy

where d is the Euclidean distance. With respects to p, there is no difference
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between a set X and its topological closure BcX (i.e., X plus its boundary),
since p (z, X) = p (z,8cX),Vz, VX. In other words, all the notions derived
from p will not be related to the parts P (R™) of R™, but to the equivalence
classes of sets which admit the same closure. For example, the points with
irrational coordinates of R?, and the whole plane itself, will be considered
as identical. Hence, from now on it suffices to concentrate upon the class of
the closed sets of R™. The distance p generates a topology, called the hit-
or-miss topology. Matheron [78] [82] and Kendall [63] exhaustively studied
it in a more general frame than R"”. By definition a sequence {X;},X; € F
, converges towards a limit X € F if and only if, for any x € R", the
sequencep{z, X;} converges towards p (z, X) in R;. From this standpoint,
we can derive all the basic topological notions, such as neighborhoods, con-
tinuity, semicontinuity, etc. We quote only one result, for it will be useful
below.

Proposition 3.1 An increasing mapping ¥ from F into itself (or more
generally from F x F — F) is upper semi-continuous (u.s.c.) if and only
if Xi | X in F implies ¥ (X;) | ¥ (X) in F

Here, 7 X; | X 7 means that X;11 C X; and X = NX; . It is not obvious

that, if X is a RACS and ¥ an arbitrary set translformation, the trans-
form ¥ (X) is still a RACS. However, if U is a semi-continuous mapping
from F — F (or F x F — F), the resulting set ¥ (X) is always a RACS.
Hence, X U X', X N X', 0X, X¢, X ® K, X © K, and the finite itera-
tions of these transformations provide RACS (Note that a mapping may be
semi-continuous and not increasing, e.g., the boundary mapping X — 0X).
Similarly, the volume, V (X), in R3; and the area A (X), in R? which are
semi-continuous mappings R3 — Rt (or R? — R*) provide random vari-
ables.

It is well known that the probability distribution associated with an
ordinary random variable is completely determined if the corresponding dis-
tribution function is given. There is a similar result for RACS. If X is a
RACS and P the associated probability on o define

Q(B)=P{BcC X} (3.3)

to be the probability that X misses a given compact set B € K. That is,
we obtain a function @ on K, called the functional moment, associated with
the probability P. Conversely, the probability P is completely determined
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if the function @ on K is given (Matheron-Kendalls’theorem [80, 63]). It is
interesting to find the necessary and sufficient conditions for a given function
Q@ to be associated with a RACS :

(i) One must have 0 < Q(B) <1 (Q is probability) and Q(¢) = 1, since
the empty set misses all the other ones.

(ii) If B; | B in K , we must have Q(B;) T Q(B).

(iii) Let Sy, (Bo; By...Bp) denote the probability that X misses the com-
pact set Bg, but hits the other compact sets Bj...B,. These functions are
obtained by the following recurrence formula :

51(Bo;B1) = Q(Bo) —Q(BoU Bi),
Sn(B();Bl...Bn) = Snfl(B();Bl...anl)—Sn,1(30UBn;Bl...Bn,1).

These S, which are probabilities, must be > 0 for any integer n and any
compact sets By, By...B,.

The last two prerequisites make the quantity 1 — @ an alternating Cho-
quet capacity of infinite order. The three requirements (i), (ii), (iii) must
obviously be satisfied by the function @. Choquet [20] proved that they
are also sufficient. His basic theorem orients us toward the calculations to
perform in order to characterize a RACS. The morphological interpretation
of rel (3.3) is clear. When B is centered at point z,Q(B) is nothing but
the probability that x belongs to the pores of the dilate X @ BcB, i.e. the
porosity gg(z) of X @ BeB at point z.

3.4 Moments of the Boolean Sets

We now apply Matheron-Kendall’s theorem, which has just been stated, to
the case of the Boolean model. By definition, the primary grain X’ is known,
and the question is to express the @ (B)’s of X as functions of those of X" .
Consider an arbitrary point a. Denote by 7(a) the probability that point a
lie in grain X, and look for the probability that a be not in set X. In the
elementary zone dz, two mutually exclusive favorable events may occur

- either no germ, with a probability 1 — g(dz)

- or one germ, but the grain X; does not reach a : Probability ¢(dz)[1 —
nla—2)).

By composition of these two probabilities and integration of z over R™,
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we find for porosity ¢

q=Q(a) = Prob.{a € X} = exp[—0 ‘ n(a — z)dz] = exp{—0MesX}

JR
(3.4)
More generally, if B, stands for a compact set centered at point a, then

B, CX°©aeXOB&ac (X®BeB) =U{X;DBcB, i € I}¢ (3.5)

Hence, B, is included in the pores of the boolean RACS X iff point a belongs
to the pores of the boolean RACS of primary grain X/@® B , i.e.

P(B C X°) =Q(B) = Prob{B C X} = exp{—0Mes(X'® B)} VB €K

(3.6)
Now, according to Matheron-Kendall theorem, a RACS is characterized by
the probabilities Q(B) as B spans the class K of the compact sets. Thus,
relation (3.6) describes completely the RACS X , and shows, among others,
that it is stationary. This relation, which links the functionals of X to those
of X', is the fundamental formula of the model [76][82]. One derives from it
a series of important properties and formulas.

3.4.1 Set Properties

a.We see from 3.6 that Q(B) does not depend on the location of B. Hence
the Boolean model is stationary. One can also prove that it is ergodic, i.e.
the spatial averages for one realization tend toward the corresponding @ (B).
Thus, we can speak of porosity of a specific surface, covariance, etc., without
referring to a particular portion of the space.

5. RACS X is closed under dilation. We derived from 3.6 that the dilate
of X by K (K a deterministic compact set) is still boolean with primary
grain X’ @ BcK.

v. The cross-sections of X are Boolean, since 3.6 does not depend on the
fact that B belongs to a subspace of R". Similarly, if we cut a thick slice of
X, limited by two parallel planes, of normal w, and if we project the slice
on a plane normal to w, the projection set is still Boolean.

. The Boolean model is infinitely divisible (this basic property in fact
implies all the other ones of this section). ”Infinitely divisible” means the
following : if one picks out two realizations of the model, and superimposes
them, taking the set union of phases X, then the result is again a model of
the same family.
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b)

Figure 3.2: The union of two Boolean sets is still Boolean

€. Domain of attraction. Just as the normal law appears as the limit of
an average of independent random variables, the Boolean model also turns
out to be the final term of an infinite union of other random sets. One says
that it has a certain domain of attraction. The following result ([27], [129])
illustrates this point.
Let X be a random partition of the space, arbitrary but stationary and
ergodic. From X, construct a set Y by assigning each class X’ of the par-
tition to the phase ”grain” with a probability p, independently from one
class to another . Now superimpose n realizations of Y, and let Y, de-
note the intersection of the grains of the n realizations. Assuming that
np — 0(0 <60 <oo0) asn — oo (if not, Y | is trivially equal to @), and
denoting by @, (B) the functional moments of Y;,, we have

lim Qn (B) = exp (0 Mes X') " Mes (X' @ B) (3.7)

n—oo

i.e., according to Matheron-Kendall’s theorem, a Boolean model of density
6(Mes X')~! and with primary grains the class X’ of the initial partition.
(. The number of primary grains hitting B follows a Poisson distribution
of parameter §Mes (X’ @ BeB). This is a direct consequence of the infinite
divisibility. D.Stoyan [151] enlarged this result to the case of a density 0 (z)

variable over the space.

3.4.2 Applications of the Fundamental Formula

a. Porosity. Reduce the structuring element B to one point ; then

B={}=Q(B)=q=exp (-0 Mes X') (3.8)
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B. Covariance. Take for B two points that are vector h apart
h
B= { & } — Q(B) = Coo (h) = %K™, (3.9)

where K(h) = Mes (X' N X}) is the geometric covariogram of set X. The
covariance Cyg (h) represents the probability that the two points of B lie
in the pores. For the covariance C1; (h) of the grains (i.e., P (B € X)), we
have

Ch1 (h) =1 —2q+ Coo (h) =1 — 2q + ¢2PKM (3.10)

. Law of the first contact. Suppose a random point x in the pores is
chosen uniformly, and let R be its distance to the grains. Denoting by F'(r)
the distribution function of the random variable R, we obtain

1—-F(r)= M, (3.11)
q
where B, is the ball of radius r (or the disk in R?).

d0. Specific surface and perimeter. To avoid some pathological anomalies,
such as fractal sets, we assume X’ to be regular enough (a finite union of
compact convex sets, for example). Then the specific surface of X i.e., the
surface Sy of 9X per unit volume, in R3, and the specific perimeter Uy of
X, in R?, are the derivative of Q (Br) in r = 0, that is

Sy = 0.8eS(X).eVE) i R3 (3.12)
Us = Q.U(X') e~ PAX) in R

Before going on with the Boolean model for more specific cases, we now
resume the analysis of the general properties suggested by this section.

3.5 Infinite Divisibility

The key notion we met in the preceding section is that of infinite divisibility.

Definition 3.2 We say that a RACS X is infinitely divisible with respect
to the union, if for any integer n > 0, X is equivalent to the union UY; of
n independent RACS Y;, i = 1...n, equivalent to each other.

This property depends only on the functional ). The following theorem,
from G. Matheron [82], characterizes the infinitely divisible RACS.
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Theorem 3.3 A function Q@ on K is associated with an infinity divisible
RACS without fixed points, if and only if there exists an alternating capacity

of infinite order ¢ satisfying ¢ (¢) =0 and Q(B) = exp{—¢(B)}.

This theorem opens the door to the Boolean sets, but not only to them.
Imagine, for example, the union in R3of a Boolean set and trajectories of
Brownian motions. The result is infinitely divisible, but not reducible to
Boolean structures. For random variables, a classical theorem of P. Levy
states that an infinitely divisible variable is a sum of independent Gaussian
and Poisson variables. It seems that the equivalent of such a theorem does
not exist for random sets, although the Boolean sets and the Poisson flats
are in fact the major representatives of this type of model.

Beyond the infinite divisibility is another more demanding structure,
namely, that of the RACS stable with respect to union. A RACS X belongs
to this category when, for any integer n, a positive constant A\, can be found,
such that the union X7 U Xs...U X, of n independent RACS equivalent to X
is itself equivalent to A, X. Obviously a stable RACS is necessarily infinitely
divisible, but the converse is false. The following theorem (Matheron [82])
characterizes stable RACS. A RACS X without fixed points is stable with
respect to union if and only if its functional Q(B) = exp (—¢(B)) for a
capacity of infinite order ¢ satisfying ¢(¢) = 0 and homogeneous of degree
a >0, ie.,

¢ (AB) = X\*p(B) (A>0,BeK) (3.13)

The Poisson lines (in R?) or planes (in R3), and the Brownian trajectories
(in R?), are stable RACS. Indeed it results from their definition that the
stable RACS are self-similar, and model the sets described by B. Mandelbrot
[70].

3.6 Convex Primary Grains

We go back to the Boolean thread of ideas. For the results we derived
from rel.(3.6) until now, we did not need to make explicit the quantity Mes
(X" @ BeB). If we want to go further in the analysis, we now must try to
exploit it. There is a particular, but particularly important case, where Mes
(X’ @ B) admits a simple expression ; it is when both X’ and B are convex.
Then Steiner’s formula is applicable (J. Steiner (1840) reedited in Miles
and Serra [100], Blaschke [13]), and provides several new fruitful results.
Consequently, we now assume the compact random set X’ to be almost
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Figure 3.3: Two Caucasian dolerites of the same volcano, but from two
different eruptions.

surely convex. For the sake of simplicity we also assume that the various
X’ which constitute X are uniformly oriented. This latter hypothesis is
not compulsory, but allows us to reduce the notation without substantially
modifying the meaning of the results. (For more detailed expressions, see
[76] and [129]).

3.6.1 Stereology

Start from a Boolean set X3 in R3, with a Poisson density 63, and primary
grain X}of volume v'; surface s’; mean width d’. On any test plane IT , X3
induces a Boolean set Xo = X3 NI of density 6o, of primary grain area a’
and perimeter u’.

Since the covariance is the same for both RACS of R? and of R? | we
can write

93’(}’ = 92&’ X 7T93S/ = 492’&/ 3 93d’ = 92 (314)

The primary grains X} induced on IT are related to X% by the following

formula :
, 1

2
(Formulas (3.14) and (3.15) can be generalized to the nonconvex case; [129)]).
The relations involved in (3.14) allow us to set and to solve the classical
problem of ”"Nucleation versus Growth”, that we introduce here by means
of an example.Figure 3.3 depicts rocks micrographs from two eruptions of
the same volcano. The second one displays more pores (in black) . Did the
physical process generate more 3D pores, or larger ones ?

v a-d (3.15)
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Now, the average pore number in section is the product of the 3D number
of pores by their mean width, which prevent us from separating the effect of
nucleation from that of growth, unless we use a model. Assume that both
textures are modeled by boolean RACS where the grains of the model are
the physical pores. Let (0%;v';s';d’) be the parameters of the first one, and
(037;v";s”;d”) those of the second one. A pure growth would imply that

0370 (050" = KB ;037" [0S’ =k 5 037d” )04d =k (3.16)

whereas in a pure nucleation, these three ratios are equal. Now, we draw
from the stereological relations (3.14) that

0370”050 = 027 a” 05’ = 1.227 and 037s” /05s" = 07w J0hu’ = 1.224.

(3.17)
Therefore, in the present case, the physical process may be considered as a
nucleation.

3.6.2 Convex erosions

Consider a 2-D Boolean set Xo, with parameters (62, X}), and take for B’s,
first the segments of length [ and second the families AB of sets similar to
a given plane convex set B, having nonzero area. According to Steiner’s
formula we can write

Q(l) = exp (=02 [A (X3) + (I/m) U (X3)]), (3.18)
Q (AB) = exp (—02 [A (X3) + (\/2m) U (B) BeU (X5) + NA(B)]) . (3.19)

We immediately derive from (3.18) the pore traverse length distribution
G (1),

1-G(l)= 52/,((3) = exp (=0 (BeU (X3) /7) -1), (3.20)

and from (3.19) and (3.11), the law F' (r) of the first contact;
1—F(r) =exp (=0 [rbcU (X') +7r?]). (3.21)

Now we can perfectly well consider X as the plane cross section of a
Boolean set X3 in space. What knowledge of X3 can we get from Xy 7
Obviously not an exhaustive one (take, for example, the union of X3 and a
3-D Poisson point process Z; X3 and X3UZ induce the same X3). However,
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Figure 3.4: Left: polished section of formed coke Gx10* (pores in black);
right: linear erosions of the pores (in black) and of the carbon (in grey)
plotted in semi-Log coordinates.

using (3.14), (3.15) and (3.29), we can interpret the functionals (3.18) and
(3.19) in terms of R?, i.e.,

Q (1) = exp (=03 [BeV (X3) + (1/4) BeS (X3)]) , (3.22)
Q (AB) = exp (05 [BeV (X3) 4+ (A/8) U (B) BeS (X3) + (A?/27) A (B)( Ec]\/.f) (Xx3)])-
3.23

Comparison of (3.19) and (3.23) is instructive. In R? we see that when B
describes the class of compact convex sets, @) (B) involves only three param-
eters of X, namely 0y, BcA (X)) and BeU (X5), which can easily be estimated
from (3.19). However, these three parameters do not exhaustively character-
ize X, since B only spans the class of compact convex sets. In other words,
the morphological notions related to the convexity of B, such as size distri-
butions, can easily be studied, but others, angularities, for example, cannot.
In R3 we have a similar result, since RACS X turns out to be described by
the four parameters 63, BV (X'), BeS (X') and BeM (X') . Unfortunately,
when the structuring element B moved in R3 is planar, it does not allow
us to access all the parameters, but only their linear combinations given
by Log @ (AB) in (3.23), which provide only the three terms 638V (X3),
038cS (X3), and O3BcM (X%). In order to go further, we can alternatively
specify the primary grain more completely as we will do below, or calculate
the two-dimensional @ (AB) for the projection of the thick sections of Xj.
For example, if d is the thickness of the section, and B is a polygon with n
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sides, we have :

/ A /
Q(\B) = exp <_93 { E;cQV (X3)+ 2 [U(B) +d(n _/2)] @cg (X3%) }>
+5 [2A(B) + dU(B)] BcM (X3) + N’ dA(B)

(3.24)
which enables us to estimate the four characteristics of X3 ( [129] ; see also
[98]).

Take for example the form coke depicted in fig.3.4. We see from the
plot on the right that the pores may be considered as Boolean, but that the
solid phase cannot. The we draw from the plot that

0ra' = —Log 0.58 = 0.54 and ' =#6u' = —8/Log 0.58 = 14.8 (3.25)

and from the stereological relations (3.14) that fsa’ = 030" = 0.54 and Ou’ =
(m/4)03s" = 11.6. Nevertheless, one cannot extract #3 and v’ from these only
pieces of information.

3.7 Semi-Markov RACS

The underlying concept which governs Boolean textures with convex pri-
mary grains is the semi-Markov property. As soon as the chord distributions
for the pores are exponential (3.18), we can suspect the model to be some-
how Markov. Nevertheless the grain chords are not exponential , and thus
X never induces a 1-D Markov process on any linear cross section. Such an
asymmetry leads us to the Matheron definition of the semi-Markov property
[80].

Definition 3.4 Two compact sets B and B’ are said to be separated by a
compact set C if any segment (x,x") joining a point x € B to a point 2’ € B’
hits C. Then a RACS X is said to be semi-Markov if for any B and B’
separated by C the RACS X N B and X N B’ are conditionally independent,
given CNX = 0.

Proposition 3.5 The RACS X is semi-Markov if and only if its functional
Q satisfies the relationship

Q(BUB'UC)-Q(C)=QBUC)-Q(B'UC), (3.26)

where B and B’ are separated by C.
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In particular, if the union B U B’ is compact and convex, then they are
separated by their intersection BN B’ and the semi-Markov property implies

Q(BUB')-Q(BNB)=Q(B)-Q(B). (3.27)

Moreover, if X is indefinitely divisible, the converse is true, and rel (3.27)
implies that X is semi-Markov. One can rediscover this result intuitively
in the following way. Intersect X by the straight line A, and pick up one
point x in the pores of X N A. x separates A into two half-lines A; and
As. A primary grain X’ of X which hits A; cannot hit As since X’ is
convex ; moreover, the various primary grains are independently located,
thus any event on X N A; is independent of any other one on X N Ag, given
x e X°

The characterization relation (3.12) points out that it is interesting to
combine the three properties of stationarity, infinite divisibility and semi-
Markovianness. Indeed, according Matheron [82], any RACS of R3 satisfying
these three conditions is equivalent to the union of three stationary inde-
pendent RACS, X;...X3 X; is a Boolean set with convex grains; Xs and X3
are the unions of cylinders the bases of which are 2-D and 1-D Boolean sets
with convex grains. Note that if these two latter Boolean models have points
as primary grains, the associated cylinders become Poisson lines and planes,
respectively. In other words, the Poisson plane and line networks and the
Boolean models are the two prototypes from which any stationary, infinitely
divisible semi-Markov set may be constructed (the same comment applies
to the RACS in R?). If we now replace infinite divisibility by the stability
condition, then we restrict the possible class of sets. Indeed the only RACS
which are stationary, stable and semi-Markov are the Poisson flat networks
(planes and lines in R?, lines in R?).

Unlike the classical Markov chains, the semi-Markov concept does not
require any ordering relation in R?, and thus is isotropic. Defined in the
continuous space, it can lend itself to digital sampling, and defined in R? or
R3, it is connected with spatial textures directly, and not via line sections.
Its natural field of application is textures presenting a limited number of
phases, which can thus be modeled by sets.
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3.8 Testing Boolean RACS

3.8.1 Test approach

Again we go back to the Boolean thread of ideas and we wonder how to
test whether a texture is Boolean. Altough general approaches have been
proposed by M. Schmitt [144], and by I. Molchanov [102] for the general case,
it is mainly the convex (and most frequent) case that lends itself to efficient
tests, based on the Steiner formula. Indeed by making varying the planar
shapes of the structuring element B (e.g. segments, squares, hexagons), one
obtains :

- various functions LogQ(AB) to be fitted with straight lines, parabolae,
etc;

- and, if the fits are satisfactory, various estimates of 6a’ , 6u’ and 6 (in
R?) and of 6v' , s’ and Od’

These tests hold on both Boolean hypothesis and convexity of X’. One
can design other more or less sophisticated tests, based on the variance of
X' for example, that avoid convexity assumption. The one which follows is
just based on porosity and on number of intercepts. Start from the Choquet
functional Q(l,«) for B a small segment of length [ and direction a. As
I — 0 we have at the origin

porosity ¢ = Q(0) = exp{—6a}
« — specific diameter = Q,(0) = —0d,,Q(0)

which provide two relations to estimate q a and q da from the experi-
mental data (note that no convexity assumption for the primary grain has
been made at this level). We will check the soundness of the approach on a
simulation, where the actual data are the following

Data of the simulation X Parameters to estimate
field area 800 x 600 pixels 6 =4/4800 = 8.33 x 1074
mean area a'of X' = 622 fa’ = 8.33 x 0.0622 = 0.518
diameter d'of X' = 24.9 Od = 24.88 x 8.33 x 1074
mean number of germs = 400 =2072 x 107

The experiments made on the simulation shown in fig.3.5 (left) yield the
following values

Measured values in field Z Estimated parameters
pores area XN Z = 273191 (0a’)* = In(1/q*) = 0.564
diametral variation of X N Z = 5635 (0d')* = 1953 x 10°°
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Figure 3.5: Left: simulation to be tested ; right: dilate of the simulation by
an haxagon of size 10.

A result which is acceptable. It remains to estimate . We will proceed
by dilating the simulation according to an hexagon H of size 10 (hence of a
vertical diameter 21), which results in a new boolean RAC of same density
0 as previously but of vertical diameter d’ = d + 21. Hence we obtain
0 = (0d” —0d') /21, an equality which provides the basic relation of the test.
Numerically speaking, we have to measure the area of the pores of set X @ H
and also its diametral variation in the eroded field Z © H ( i.e.100 331 and
3643 respectively), so that

0* = [(0d")* — (qd')*]/21 = (3631 — 1953)/21 = 7.98.10~%. (3.28)

Without being as precise as the two estimates (fa)* and (6d)*, the estimate
0* is still acceptable.

3.8.2 Heuristic approach

The Boolean model provides several relationships between accessible param-
eters and indirect ones . The Central Limit Theorem suggests to use them
a priori, i.e. in situations where the model is possibly not satisfied. The
counting algorithm for partly covering objects is a typical example of suh a
heuristic use. If az stands for the area of the field Z under study and a’ for
the mean area of the primary grain X’ (estimated from a few isolated grains
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Figure 3.6: Heuristic use of the Boolean RACS for counting red blood cells.

in Z ), then, if the structure is boolean, functional Q( A) implies that
{number of objects in Z} = —(aZ/a')Log q (3.29)

Now, even when the structure is not boolan, rel.(3.29) is generally still ver-
ified with an accuracy < 15% . For example, start from the left micrograph
of 204 (non convex!) red blood cells depicted in fig.3.6, threshold it between
100 and 255 (porosity q = 0.640 for a field of 39360 pixels), and extract
ten isolated cells (right image), whose avearge area is 93.0 pixels.Then by
applying rel.(3.29) we find

N = —(39360/93) Log 0.640 = 188 (3.30)
The estimate is robust: if the low threshold is replaced by 90, we obtain

a=100.1 ; ¢=0.609 ; N =195 (3.31)

3.9 Specified Boolean RACS

Coming back to the Boolean model, we now present three more specific
models, which rather often appear in applications. Note that in all these
cases the 3-D density is accessible from 2-D sections.

3.9.1 Isovolume Primary Grains

Let X be a Boolean model of density 3 and primary grain X’ such that
V (X’) is constant and not random. Then from the pore covariance Cyg(h),
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accessible from line sections, we get

log COO (0) = logq = 03V (XI) 5
.
— / log Coo (h)dh = 63V (X'),
9" Jrs

which allows us to estimate #3 and V' (X’). One can also test the hypothesis
"V (X') is constant” from more sophisticated measurements performed on
2-D sections ([129]).

3.9.2 Spherical Primary Grains

The 3-D primary grains are balls. Denote the distribution function of their
radii by F3(r). The model is completely determined by the covariance
Coo (h).We have

;r—r [log Coo (2r)]®) = 63 [1 — F3 (r)] (3.32)

and in particular when r — 0
1 iti
— [log Coo (2r))) — 6, (3.33)

[In practice, using the left-hand side to estimate 63 would result in a large
estimation variance, so it seems wiser to open the model with a small ball
of radius rg i.e., essentially replace #3 by 63 [1 — F3 (rg)] given by 3.32].

3.9.3 Poisson Polyhedron Primary Grains

In a partition of the space by isotropic Poisson plane networks, pick out the
polyhedron containing the origin, and take is as a primary grain X’. This
compact random set depends on one parameter only, namely, the intensity
p of the Poisson planes ([97], [99]). The geometric covariogram K (h) of X’
is given by the formula

6

ae . (3.34)

K (h) = BeV (X 1 Xp) = =

The two basic quantities used for estimation are @ (I) of (10) and the co-
variance Cog (k). Putting 6’ = 60/7*p3, we obtain

Q()=qe ™t with g=e?, (3.35)
Coo (h) = g2 e mPIN = 2 fK (D) (3.36)

which allows us to estimate the two parameters 8 and p of the model.
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3.10 Derived Models

The Boolean model is the seed for a considerable number of random sets.
In what follows, we give only a short presentation of a few of them (more
detailed information and examples may be found in Jeulin [54] and in Serra
[129]). We hope that these few derivations will suggest ideas to the reader
for inventing his own models.

3.10.1 Three-Phased Structures

There are many ways of building up models for multiphased textures. De-
pending upon whether or not we wish to emphasize the dependence between
two phases, we could use either the following metallographic or petrographic
models.

3.10.1.1 Metallographic model.

We developed this model in conjunction with Greco and Jeulin [37] in order
to describe the morphology of sinter textures. It often happens, in metal-
lography, that one type of crystal, say Xo, wipes out all others, which can
survive only in places left by Xs (i.e., in X§). For example, assume that X
and X are two independent Boolean sets, and that X wipes out X7. This
leads to a three-phase texture Xo, X3, X4, with

Xo, X3 :XlﬂXQC, X4 :chﬂXQC:XgﬂXQC. (337)

If the primary grains X] and X} are convex the intercept histographs of
X’ and of X3 should be negative exponentials (tests for the model result).
An interesting piece of information for the three-phase structures is given by
the co-occurrence matrix, which is equivalent here to the three covariances
C1, Cy and Cj3 of the three phases that are present. We have

Cy(h) = Ca(h) (unchanged)
Ca(h) = Ci(h)[1 =2+ C2(h)],
Ci(h) = [1-=2¢ +Ci(h)][1—2¢2+ Ca(h)].

3.10.1.2 Petrographic model.

This RACS was proposed by Serra to model synthetic soils in which the
clay partly surrounds the quartz grains, and partly spreads out in the pores,
looking like small spots. A Boolean model is chosen, whose primary grain is
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- with probability p, a ball of quartz of radius r; surrounded by a spher-
ical crown of clay of thickness ro — 2, which we call contour clay,

- with probability 1-p, a ball of clay of radius r%, which we call isolated
clay.

We Booleanize and rule that when quartz and clay overlap, the quartz
obliterates the clay. As in the former case, two phases exhibit intercept his-
tograms which are negative exponential (the pores and the pore-clay union).
The cooccurrence matrix is easily calculable, and constitutes the main piece
of information on the model. The 3-D characteristics p, r1, 2 and ] are
derived from these covariances.

3.10.2 Dead Leaves Model

This other variation of the Boolean model that we now present is due to
Matheron [77] and has been extended by D. Jeulin to multiphased structures
as well as to numerical functions [58][59]. It has the dual advantage that
it provides us with a tessellation of the space, as well as a model for non-
overlapping particles.

Dead leaves partition. When one looks at a cloudy sky, one sees only the
lowest clouds, which hide those above. The dead leaves model is just a
quantitative description of this type of superposition. Although the basic
relation 3.38 is independent of the dimension of the space, we will take our
realizations to be in R?, and develop the model in this space.

Let X’ be a primary grain in R?. Place the origin of time ¢ in the distant
past, at -co. From the origin to the present (i.e., t = 0) take the realization of
Boolean sets, independent of each other, with identically distributed primary
grains X’ at time instants given by a constant spatial Poisson density 6dt.
The grains appearing between —t and —t+dt hide the portions of the former
grains.

At time zero the plane is completely covered (since the origin of t is -00),
giving a random stationary partition of the space. The probability @ (B)
that a given compact set B is included in one class of the partition is

Mes (X' © BcB

Q(B) = Mes )
Mes (X' @ BcB)
This relationship completely characterizes the partition, and opens the way

to the classical measurements (size distribution, convex erosion, covariance,
etc.).

(3.38)
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Relief grains. From now on, the assumption of connexity of X' is very
essential ; however, our restriction to a 2-D isotropic analysis is only for
pedagogical reasons. Imagine that the observer is now able to decide whether
or not a given class of the final partition corresponds to an entire primary
grain X, that has not been partially obscured by another. The union of
all these classes generates a stationary random set X made up of disjoint
compact convex grains.

Denote by A’ and U’ the random area and perimeter of the primary grain
X', let F(dA’,dU’) be the law of these two variables, and Bew [B; A’, U’] be
the probability that B C X', where X’ is a primary grain with functionals
A’ and U’ and located at the origin of R2. If B is a connected compact set
(and only in this case), we have

"Bew (B_g; AU F (dA,dU")
Al +BcA! + U'ecU’ |27

Q(B) = / do (3.39)
JRZ .
From this relation, we can derive the specific number N4 and the dis-
tribution Fj (dA1,dU;) of the areas A; and the perimeters U; of the relief
grains X :

: F(dA,dU") F(dA’,dU")
Ny = ’ NuFy (dAy,dUy) = ’
A / A’ £ BeA + U'kcU’ 21 aFy (dAy, dUn) A’ £ BeA + U'eeU’ 2
(3.40)

We see in the denominator the bias affecting the size distributions of the
areas and perimeters ; i.e., large values appear with a lower frequency in the
relief grains X7 than in the primary grains X'.

3.10.3 Hierarchical Models

By hierarchical models (Serra [127]) we mean the following. During the
time interval (0, dt) we generate an initial Boolean model with density Odt
and primary grain X ; at the instant d¢ we generate a second elementary
process that will interact with the first, etc. The resulting set at time ¢ is
denoted by X;. In both particular cases that we present below (« and f3),
the primary grains are assumed to be deterministic sets.

a.Separated grains Any primary grain X +q¢ appearing during the interval
[t,t + dt] is suppressed if it touches X;; this will generate a random set with
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separate grains (Fig.10a). Then, denoting by @ (B) the probability that
B C Xf, and by Q) (B) its derivative with respect to ¢, we have

Q; (B) = —0 Mes (B @ BcXy) - Q; (X3) (3.41)

B.Gypsum crystals Each primary grain X 1q¢ that does not touch X
is suppressed. If it does touch X;, we take its union with X; for constructing
Xitae- This will generate a random set with clusters of interpenetrating
crystals, as in a gypsum crystal, for example. We now have

Q; (B) = —0 Mes (B®BeXy) [1—Q (X7)] . (3.42)

The integral equations 3.41 and 3.42 cannot be solved in general, but only
computed by numerical means.

However, when the number of steps of the hierarchy is finite, they can
effectively be calculated. One particularly interesting case happens when
there are only two steps. Starting from a first Boolean model (61, X1), we
generate a second one (6, X)) and allow them to interact in one of the two
ways described above. The ”separate grains” model now becomes a three-
phased model (X7, X2, and the background) where X; and X» are disjoint
from each other. The probability @ (B) is

exp{ —61 Mes (BeX| ® B) — 02 Mes (BeX), ® B). }

exp [—01Mes (BeX] & X3)] (3:43)

(For the gypsum crystal type model, replace exp[ | by 1 - exp [ ].

3.10.4 Boole-Poisson Model

Although Conrad and Jacquin [22] constructed the following model (3.7) to
describe aerial photographs of geological cracks, by using Poisson polygons
and Boolean fissures, their "mixed random set” is extremely general. For
simplicity, we will present it as it was originally. Start from an anisotropic
Poisson line process in R?, with density p and denote it as X;. Intersect each
polygon II of the partition with a stationary random set X5 in the following
special way. For each polygon of the given realization of X1 use a different
realization Xo of X3. The union of all these portions of X, together with
X1, makes up the set we shall call Y. If Q1 (B), Q2 (B) and Q (B) denote
the functional probabilities with X7, X2 and Y, respectively, we have

Q(B) = Q1(B) - Q2(B) =exp (—[pU (B) + 0 beA (X5 B)]),  (3.44)
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Y

Figure 3.7: Left: set of faults observed from aerial photographs ; right:
simulation of a Boole-Poisson RACS admitting the same parameters.

3.11 Exercises

3.11.1 Boolean simulations

This exercice, which is mainly visual, is aimed at highlighting the general
aspects and construction flexibility of boolean models ; it will also give an
idea about the variability (very large, sometimes) from one realization to
the other when the parameters of the model are determined. Some of these
simulations shall be saved and will be used for the exercice about tests.

1. Simulate boolean sets with square, hexagonal or circular grains, with
a fixed or variable size.

[For the first ones, one only has to dilate Poisson points, for the sec-
ond ones, to consider the union of several dilations of various sizes. Two
procedures-isobool and isobool 2 - may also be applied).

2. The previous simulations are isotropic, at least on their definition
grid. Carry out now some anisotropic simulations from segments or ellipses.
[As previouly, make a union with Poisson points dilations with differ-
ent size and orientation segments, or with ellipses ( procedures eldil and

elbool )]
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3. Simulate boolean sets with primary asymmetric grains, as for instance
a mixture of equilateral upwards and downwards triangles.

[Use the procedure tribool. The shapes catalogue may also be grown
with dropdil, which dilates according to asymmetric droplets of the eight
possible orientations].

4. As a last example of non convex primary grains, we will use doublets
of disjoint disks which centers are d apart (cell division model)

[Make a union of a first realization of Poisson points with its horizontal
translate of distance d, then a second one with its translate at angle 4500200
and of distance d, etc ... Make a union of all the points you got, and dilate
them with a small disk.

5. Start from a Poisson points simulation with a regionalized density g
(cf. exercise 9-5), and pass to the boolean system with small homogranular
circles. Explain.

[We get a binarization technique of the function g.

6. Simulate conic boolean functions (we will use the cones sizes and
heights whether to isolate the islets or whether to invade space). Simulate
a cones doublets realization.

[Use procedures conedil 1 and 2, applied to Poisson points, consider
the sup for several points density, matching several cones sizes. In case of
doublets, act as for question 4 to get the points, and dilate with a cone].

3.11.2 Boolean tests

1. Symbols a/ and w/ denote the mean area and perimeter of the primary
grain respectively, and ¢ and u the porosity and specific perimeter after a
booleanization. We know that

q =exp{—0d'} and u = 6u exp{—0a'}

Check both relations on several simulations of the previous exercise, and
particularly on the disks doublets. What about the boarder effects ?

[Use the function perim. Note the generality of the approach, which
does not imply that the primary grain is connected. Note also that, only the
products Ou’ and Oa’ are accessible, but neithert u'nor a]
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2. When the primary grain is supposed to be convex, the first boolean
test is based on linear erosions, which must be negative exponentials. If K
is the segment with length L and direction «, we indeed have

logQ(K) = logQ1(L, ) = —(Ld., + a’) (3.45)

where d, is the mean diameter of the primary grain in direction «. Test re-
lation (3.45) on one of the convex grains simulations of exercise 1, and apply
it successively to grains and pores. Test it afterwards for circles doublets,
and for primary grains with regionalized density.

[Use the procedure pvonl (which corrects boarder effects) and report the
measurements on semi-log paper. Note that 0 is still inaccessible].

3. Use the images of the previous question, and erode them now by
hexagons or squares. Prove that the logarithm of Q(K), for a square with
side L and directions «, 3, is

log Q(K) =log Q2(L,a) = —0 [L? + L(d, + djs) + o] (3.46)
which yields estimator 6 such that
0L =1log Q1(L, ) +1log Q1(L,a + 7/2) —log Q2(L, ) —logq  (3.47)

Discuss the experimental results. Does the formula remain admissible
when the primary grain is not convex anymore 7

4. Measure the covariance of the disks doublets realization. Interpret
the results.

[The mean distance between two primary grain disks turns out to appear
as a hole effect in the covariance].

5. Develop the questions (2) and (3) for Boolean islands.

[Start from the simulations of conic Boolean functions of the previous
exercise. The function is Boolean if and only if all sections are Boolean
sets. Tests arising from relations (3.45) and (3.46) are applied to each grey
level t. By integrating over the gray levels t, we obtain

_ / log Q1 (t: L, a)dt = 0 [Lpl, + o] (3.48)
JT
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with pl, and v'integral of the directional gradient and volume of the pri-
mary grain respectively (similar extension for relation(2))]

6. Check that the specific number v(t) of the maxima at altitude t of a
random boolean function simulation fulfills the relation :

v(t) = bq(t)w(t) (3.49)

where w(t) represents the probability that the primary grain has a height

3.11.3 Boolean model and counting

The Boolean model allows to calculate explicitly a number of relations be-
tween observable characteristics of the primary grain. These relations can
be used as tests (cf exercise above), or, on the contrary, can be admitted in
a heuristic fashion, without further discussion.

For instance consider, in R?, a random primary grain with a mean area
a’ and a mean perimeter u’. After booleanization, the number 6 of grains
per unit area is linked to the porosity ¢ and to the specific perimeter s by
the two relations

fa' = —logqg and Ou' =s/q (3.50)

1. Simulate a succession of boolean R.A.C.S. with circular grains (for
the sake of simplicity) of variable densities, homogranular or not. Once s
and g have been measured on the simulations (whose parameter 6 is given),
check the relevance of the first relation (3.50) and of the following relation

u'/a' = —s/qlogq (3.51)

[Use procedures isobool and isobool2. Define, for 6* = n fized, for
instance, at 50, the validity scope of relations (3.50) and (3.51) with respect
to a’

2. Simulate hierarchical R.A.C.S. (therefore non boolean), for which all
variables taking place in relations (3.50) and (3.51) are known. To what
extent are these relations still correct? Explain.

[You can start from the procedure rose, or directly from isobool, when
a realization is intersected with a Poisson points set, followed with a circular
dilation. The first relation (3.50) implies that we have quite a precise idea
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about the mean size of the primary grain ; the relation (3.51) rather implies
that its shape is known, and that its size changes very little. Therefore
rel.(3.51) may be better for the low values of q. Formulae (3.50) and (3.51)
are anyhow satisfied as long as the object under study can be locally modelled
by a boolean model, that allows free covering]

3. Extend the first relation (3.50) to Boolean random functions, and test
it by simulating boolean islets.

[Dilate Poisson points by cones, by considering the sup of two or three
realizations with different densities or sizes of cones. The relation (3.50)
must now be integrated with respect to grey levels :

O’ = — / log qidt (3.52)
Check numerically the ranges of validity of the various parameters]

3.11.4 Hierarchical models

The adjective ”hierarchical” indicates here the implementation of a second
boolean generation (62, X4), conditionally to a first one (61, X}). The second
grains mays lean on the first ones or avoid them. This leads to aggregates
in the first case, and to separate sets in the second one. Although these
models are rapidly incalculable, they can nevertheless be developed in easy
and instructive simulations.

1. Simulate hierarchical models for each of both types, and choose 6; #
f> and primary grains of different sizes.
[ Procedure rose(as in desert rose) and hard].

2. Iterate the hierarchies in order to construct a sequence. Boolean
models will be considered with respect to smaller and smaller disks.
[Procedure flake (as in Von Koch ”snow flake”) and disjoint].

3.11.5 Boolean domain of attraction

Choose half a dozen ordinary tesselations. For instance, the starting point
may be the watershed lines of images such as electrop or barrier (after a
small preliminary filtering in order to avoid too many classes). Skeletons
may also to drawn according to influence zones or even Poisson lines. In
each partition, assign the value 1 or 0 to each class with a low probability p
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for the 1s. Consider the union of the results, and test if it can be considered
as boolean. Draw the conclusions.

3.11.6 Poisson lines in the plane

1. Use a square grid and simulate Poisson points (density A) on the axes O
and Oy.Take the perpendiculars on these points. This leads to a family of
Poisson anisotropic lines, that segment the space into rectangles.

Convert the previous drawing into an approximately isotropic process,
by incorporating lines with slopes £1, +2 and =+1/2. Simulate several
realizations for both methods and note the important size variability.

[The procedure lines creates Poisson rectangles, and diags, Poisson
polygons in the six other directions. In lines, n is the effective number
of points on each azxis ; in diags, n\/2 points are implemented on each di-
agonal, and nm points on each azis with £2 and +1/2 gradient. These
operations can be deconditionalized when extracting beforehand n values in
Poisson law with parameters AL (L being the unit length of the axes)].

2. Prove that Poisson lines induce, on each line, a Poisson points process,
with a density 2\ in the isotropic case. Compare this result with the previous
eight directions approximation.

[Isotropic case : the lines with directions («, « + da) induce a small
Poisson with a density Asin ada, which implies, through a summation over
m, a total density of 2A. In digital case, the points induced on the axis Oy
(for instance) have a density of (1++/2 +6v/5)/7 = 1,62].

3. Conditional sections. Suppose K and K’ be two compact convex sets
with respective perimeters v and u/, and K’C K. Prove that if one and only
one line intersects K, then, the probability it also intersects K’ equals the
perimeters ratio v’ /u.

[If a line has a direction (o, a+da), such a probability equals the diame-
ters ratio D!,/ Dy in the direction . As and varies the searched conditional
probability is then given by

™ D!, D o

—Zdoa = — 3.53
Jo T (359

4. Mean chord. Knowing that a line intersects K with an area a, prove
that the conditional expectation of the intersected length is wa/u.
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[In direction o, this expectation equals a/Dy ; when deconditionalizing
in a, we get ma/ul.

5. Specific number of peaks. Prove that if two lines intersect a disk of
radius r, there is one chance out of two they intersect inside the disk. Infer
that the number of intersections per surface unit equals v = A2

[1st point : if the intercepted chord on the first line has a length I, the
second one intersects it with the probability 21/2mr (question 3). But the
conditional expectation of lis wr/2 (question 4), which leads to the result.

2nd point : the a-priori probability that two lines intersect the disk equals

ﬁ%—g’\ﬁ exp {—27rA}. When r — 1o, half the number equals wA?%].

6. Determine the relative variance var(A), in number, of the polygons
size,by means of their average in measure M(A). It is reminded that

var(A) = = -1 (3.54)

[Let Yy be the polygon including the origin. The probability it also con-
tains the small area v dr do equals exp {—2\r}, which leads to :

M(Yy) = ./0‘27r dov ./0‘00 exp(—2Ar)rdr = /2 (3.55)

On the other hand, since each peak labels one and only one polygon,
we have E(A) = 1/v, and (3.54) induces var(A) = n2/2 —1 ~ 4. This
particularly high value explains the large disparity of the sizes considered in
simulation.

3.11.7 Poisson partitions

The model here-under was initially proposed by F. Conrad ([22]) in order
to describe aerial photographs of geological cracks as those presented in the
course. But the approach by "mixed” random set, on which the model is
based, is extremely general and applies to any set or random function in R™.
We shall limit ourselves here to R?.

1. Let X be a tesselation and X5 a R.A.C.S. of the euclidian plane. Let
us build a realization X] of X : each polygon is kept or rejected, indepen-
dently of the others, with a probability p. Affect the restriction of a distinct
realization in Xs to each remaining polygon II. The union of these portions,
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together with X7, may be considered as the realization of a random closed
set A.

Denoting by Q the characteristic functional of A, prove that the following
relation (1) is satisfied for any connected compact set K

Q(K) = Q1(K) [q +p Q2(K)] (3.56)

where q = 1-p, and where Q1 and Qg stand for the characteristic func-
tionals of X1 and X5 respectively.

[If K misses X3, then it is contained in a single polygon II, therefore we
can equivalently say that K misses A, or misses the restriction X5 NII, or
again misses X5. This leads to the relation (3.56)].

2. Let Xj and Xo be two tesselations of isotropic Poisson lines in the
plane, with respective densities A; and Ay. The relation (3.56) becomes

Q(K) = exp{—Mu(K)} g+ pexp {-Agu(K)}] (3.57)

where u is the perimeter. Simulate A in a square grid, and check relation
(3.57). When p = 1, is Q(K) different from the Poisson lines functional ?
What is the explanation ?

[We can use the procedure lines 2, which directly builds A according to
the square grid isotropy, or start as well from a simulation diags, richer in
directions, and then simulate A polygon after polygon. Take a Ao at least
twenty times larger than A1, and for K a square or an hexagon with side
k. Q(k) is estimated by the procedure binerotest. Denote, when setting
on semi-logarithmic coordinates, that log Q(k) looks like two successive seg-
ments, whose angle is all the larger as p is small.

3. Similarly, draw a simulation A where X5 is a boolean R.A.C.S., and
another one where X5 is a random function of Poissons tubes.

[In the latter case, we will get Xo by dilating the simulations diags by
cones).

3.11.8 A few point models

1. Order two analysis. The points models that follow are stationary and
generally admit a covariance measure C(dx), which can be decomposed into
the sum of a Dirac measure and a function g(x)

C(dx) = mé(dx) + g(x)dx (3.58)
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The mean number of points Zg in the borelian set B is
m(Zg) =m a(B) (3.59)

and the covariance between the numbers in B and in B’ is
C(ZB, ZB’) =ma (B N Bl) + /2 /2 1B(x)1B/(y)g(m — y)d%‘ dy (360)
JR?2 JR

In the isotropic case, there is a simpler way to reach g from experiments.
Note H(r), the average number of points which are included in the disc of
radius r, centered on a point x; (not counted), which is itself part of the set
model. By taking for B’ the disc of radius ds centered x;,and for B the disc
(r, x;) minus B’, relation (3.60) becomes :

T

C(Zg,Zp) :27rda:/0 g(s) s ds (3.61)

But, this covariance is nothing else than the centered version of mH (r)

C(Zp,Zp)) = E|Zp —m(Zp)|[Zp — m(Zp)] =m [H(r) — 7T7“2m] dx
(3.62)
where the primitive [H(r) — 7r?m] of sg(r) is experimentally accessible.
Write a computing procedure for H(r)
[ Procedure pp, for "point packing”].

2

2. Anisotropic Poisson points. Work again with procedure points and
divide the simulation by setting in a memory the random points (x;, y;) and
in the other (x;, yi/2). To which extend does the affinity of ratio 1/2 make
the simulation more anisotropic from a visual point of view 7 Interpret by
calculating the number of points which are included in the flat (sides 2,1)
and long (side 1,2) rectangles.

[Only the density varies, here doubles. Such thing as Poisson points
cannot be anisotropic /|

3. Measure the primitive H(r) for Poisson points simulations, and for the
centres in the model of disc doublets. Derive g(s) and explain. Calculate
H(r) for the germs centers in the hierarchical sets derived from the boolean
model.

[For Poisson points with a density A, we find, in square grid H(k) ~ \(k
+ 1) and in hervagonal grid H(k) ~ X\(3 K + 3k + 1), which duly corre-
sponds to Poisson law variance, and implies g(s) = 0. In case of doublets
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from d apart, H(r) undergoes a thrust, at distance d. In hierarchical cases,
clustering situations (rose, flake) lead to an additional increase of H(r),
and repulsive ones (hard, disjoint) to a decrease, followed an asymptote in
both cases. The range of function H(r) - mr®m corresponds to the average
size of the interactions between points).

4. Calculate H(r) for the set of points generated by the crossing of
isotropic Poisson lines, with an intensity A. Derive the measure g(r) = 43 /r.
Simulate such a process and calculate its H(r). Give an interpretation.

[We will simulate a process wich is close to the model, but easier to
implement, by considering two realizations of lines U diags, and by inter-
secting them. A linear increase of H(r) is noticed, unlike all the other point
processes considered until now. In theory, if x; is a point of the set, the
disk B(r, z;) includes, on the one hand, lines intersections different from
those which define x; (average number mr2\?, see ”Poisson lines” exercice),
and, on the other hand, the points of the two lines that intersect at point x;
(average number 8\r). Consequently, H(r) = 7r?)\? + 8\r, and

/lr sg(s) ds = 4X\3/r therefore  g(r) = 4X3/r | (3.63)
0

5. Regionalized density. In this last exercice, we come back to image
processing. Let f be a numerical function of the plane. Simulate Poisson
points with a variable density f. Apply the simulation by chosing for f a
grey tone image. Explain.

[Procedure regpoints. This simulation is explained as the binarization
of the numerical grey image, whose quality is all the smaller since the in-
volved gradients are steeper and steeper].
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Chapter 4

BOOLEAN RANDOM
FUNCTIONS

4.1 Introduction

The very starting point of the theory of Boolean functions lies in a theorem
of G.Matheron dating from 1969 [78], which proves that the upper semi-
continuous functions, considered via their sub-graphs, form a compact space
with respect to the hit-or-miss topology (a result that allows one to construct
probabilities). But Matheron did not continue in this direction and his main
book [82] does not even mention the theorem. In fact the generalisation of
the Matheron-Kendall theorem to numerical functions is due to Serra [129],
chapter XII. This second starting point arose during the eighties, and after
a relatively slow begining the theory has spread in different directions. It is
now applied in geostatistics, for calculating isofactorial models and change of
supports [83],[113], in material sciences for modelling the physics of rupture
[57], and for characterizing the roughness of steel plates [56], in medical
radiology of the bone [111] and also for simulating textures that satisfy
given properties [19]. An exhaustive presentation of the method can be
found in [134]. The current chapter follows the same plan, but in a simpler
style.

The idea to threshold roughness profiles and to consider the resulting
sections as Boolean appears in D. and P. Jeulin [55]. The first formal study
is due to Serra ([129]), who defines a restricted version of Boolean functions
(called hereafter basic Boolean functions (BBF) or Boolean islands), gives
its characteristic functional @, (B) and develops Q¢ (B) for B, a flat com-

80
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pact convex set. Later on, the same author [133] improved the analysis of
Boolean islands by studying integrals of log Q; (B). Jeulin [56] calculated a
series of polyhedral primary grains, which are useful in electron microscopy,
and established several useful stereological results. Préteux & Schmitt [111]
simulated Boolean islands in order to check the experimental access to @ (B),
using a three-dimensional approach, and have used the model to describe
vertebral spongy bone textures in scanner imagery. The initial BBF model
led to a second particular model, namely the rocky deeps, and to the gener-
alized Boolean functions (called below Boolean functions) in [131], chapter
15. Mathematical aspects concerning the measurability of the primary grain
f{ acccording to variable ¢, and also the determination of Boolean functions
have been approached by Préteux and Schmitt (in[131], chapter 18).

4.2 Morphological Random Functions

The topology of the semi-continuous functions has already been introduced
section 4.2.2, when space F is metric. Here we briefly sketch G. Matheron’s
approach to the upper semi-continuous functions from an L.C.D space F into
R. Just as in chapter 4, they are considered, via their subgraphs, as closed
sets in £ ® R. In this approach, the familly C of those sets C' € F (E ®ﬁ)
that satisfy the two conditions

i/ CDE_

ii/ Vo € BVt €R, (z,t) € C = {2} ® [~00,t] C C

is identified with the class F of the w.s.c. functions E — R, and it is
proved to be a compact family in F (E ® @). The topology on F' is obtained
as the restriction to C of the topology on F(E ®R). Consequently, the open
sets in F' are generated by the parts of F' whose elements f satisfy the two
conditions:

X (G)=sup{f(z),z€G}>b and inf{X;(G),GDK}<a (4.1)

as G spans the open sets of E, and K its compact sets (a,b € R). This
results in the following criterion of convergence [theorem 3.2.1 in [78]]

Proposition 4.1 A sequence f, converges towards f in F if and only if
it satisfies the two following conditions: 1/ for all x € E, there exists a
sequence Tn, — x in E such that the sequence fn(zn) — f(z) inR. 2/ If a
sequence T, converges towards x in E, then the sequence fy, (Tn,) satisfies



CHAPTER 4. BOOLEAN RANDOM FUNCTIONS 82
lim fr, (an,) < f(2).

The next step consists in equipping F' with the o-algebra generated by its
topology, i.e. by the events X ¢ (G) introduced in rel.(4.1). Finally a random
u.s.c. function f is defined by providing the measurable space (F, o) with
a probability P. The compactness of set F' ensures that there actually exist
probabilities on o.

Just as a random variable is characterized by its distribution function, a
random function f € (F,o, P) is completely determined by the joint proba-
bilities

Pr{sup{f(z),z€ Bi} <A1 ;.. sup{f(x),z€ Bp} <A} (42)

for every finite sequence Bj...B, of compact sets in E and of real values
A1...An. Formula (4.2), due to by J.Serra [129], expresses a general theorem
on random sets due to G. Choquet [21] and G. Matheron [82], which is in-
terpreted here for random functions .

4.3 Definition of a Boolean function

To make the transition from Boolean sets to Boolean functions, it suffices to
dilate Euclidean Boolean sets by a half straight line. More precisely, consider
a o-finite measure 0 (d¢) on R (i.e. such that the measure of any bounded
interval is finite). Associate with the Euclidean space R™ x R the measure
6 (dt)dz which represents the intensity measure of a Poisson point process J
over R" x R, where dz stands for the elementary volume in the ”horizontal”
space R™, and dt for the elementary length along the ”vertical” axis R. The
measure 6 (dt)dz is assumed to be constant on horizontal slices, and variable
along the t-axis. The horizontal stationarity which results is not necessary
for the theory, but it allows a more expressive formalism, and suffices in
practice. It will be implied for the rest of this paper, except for Section 5.
Suppose we take a realization of the Poisson point process with intensity
measure 0 (dt)dz and consider each of its points as the germ of a crystalline
growth, the crystal being the umbra, or subgraph, of a function f’(z). We
call f/ the ” primary grain”, by analogy with the set case and use the notation
f' (z) for both umbra and function. The random function f’ is u.s.c., almost
surely bounded and with compact horizontal cross-sections for all ¢ > —oo.
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It is, by construction, implanted at the origin, and its translate to point v,
teR” x Ris fy:.

Consider the I (dt) Poisson points located in the slice (¢,¢ + dt), and
generate I (dt) realizations of a same random primary grain f/, which are
shifted to the points of the slice. Repeat then the same procedure for all
horizontal elementary slices. The primary grain f] (z) = f’ (z/t) may vary
as a function of the depth t. The Boolean function f is finally obtained by
taking the sup of all the ;,t for all slices. In other words, we can state the
following.

Definition 4.2 Let py, (dx) be the Lebesque measure in R™ and 0 (dt) be a
o—finite measure on R. Consider the Poisson point process J in R™ x R,
whose intensity mesure is py, (dy) @ 0 (dt),y € R™,t € R. Let {f' (x/t)} be
a family of u.s.c., independent random functions from R™ intoIR, which are
parameterized by t and such that all cut-off sets Yy, if R x R

Yy ={z, ' (z/t): fl(x/t) > u} u > —00 (4.3)

are a.s. compact. The f'(x/t) are called primary grains centred at the ori-
gin. Then the Boolean function f, of primary grain f' (x/t) and of intensity
0(dt) is obtained by taking the following sup :

f (@) = Sup{fys(x/t);(y,) € T} (4.4)

The simulations depicted in figure 4.1, due to J.M Chautru [19], illustrate
this definition by showing two types of Boolean functions that we will study
later on. In equation (4.4) we implicitly admit some measurability conditions
of f'(z/t) with respect to t, which will no longer be developed here (for
theoretical developments on this point, see [112]).

4.4 The Characteristic Functional @ (B)

Let B be a compact set contred at point (0, tg) on the t-axis. According to
the Matheron-Kendall theorem ([82], p.30), the probabilities @ (B) that B
lies in the pores (i.e. misses all the f’) as B spans the class of the compact
sets of R™ x R and as tg spans the t-axis, characterize the Boolean function
f

In the case of Boolean functions, the functional @) (B) can be calculated
easily (Serra,[131], p.321) and allows a rather simple expression. Indeed, we
may state as follows.
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Figure 4.1: Simulations of the two major types of Boolean functions:
Boolean islands (left, cone grains) and Rocky deeps (right, paraboloids
grains)

Theorem 4.3 The characteristic functional Q (B) of the Boolean function
f=1f"(=/t),0(dt)] is

oo
Q (B) = exp {— / 0 (dt) Bepr, [(f (z/t) ® BeB) NI14] } ; (4.5)

J =00

it shows that the random function f is stationary.

In this formula, B has been centred at the origin and BcB denotes the
symmetric of B with respect to the origin in R” x R. When B is shifted up
or down by tp, we just have to replace ¢t by t — g in rel.(4.5). TI_; denotes
the horizontal plane at level ¢. We can illustrate these various parameters
by taking an example. Suppose that 0 (dt) = 6104 + 0202 is the sum of
two Dirac measures at levels t; < 0 and to > 0 . Take f'(x/t1) = f] (z)
and f’ (z/t2) = f}(z) to be the two primary functions and the disc B as
structuring element. If Bel; (resp.Belz) designates the average length of the
section L of f] (z) ® B by the horizontal line II_4 (resp, the section Ly of
f5 () ®B by II_42), then the probability @ (B) that B is above the graph
of the Boolean function f is, according to rel.(4.5)

Q (B) = exp {—01BcI; — O2cly} (4.6)

The example shows how some parameters of the primary grain, or more
precisely, of its dilated versions, are reached via quantities that we can ex-
perimentally access (left member of rel.(4.6)).
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4.4.1 Decompositions and uniqueness

But this example also exhibits a certain ambiguity. Consider the Boolean
function f* obtained by only one Dirac measure, namely (61 + 02) d;1, and
whose primary grain is either f] with a probability 6; (61 + 62)™*, or f} +
(t2 —t1) with a probability 6s (61 + 92)_1. Clearly f = f*, whereas both
densities and primary grains differ from each other. A same Boolean function
turns out to admit several decompositions. The range of this ambiguity is
given by the following proposition, due to Préteux & Schmitt ([112], p. 382).

Proposition 4.4 Let f = [f' (z/t),0(dt)] be a Boolean function. FEuvery
decomposition of f yields an intensity measure ¢ (dt) such that

/]R;Q(dt) = I/]R;@(dt) (4.7)

(i) If g0 (dt) < oo, then there exists a decomposition of f of the form
|d' (z),ady] i.e. as Boolean islands.

(i) If fRG (dt) = oo, then there exists a decomposition of f of the form
¢ (z/t), "], where = is the Lebesque measure on the negative t- awis.

In type (i), which is the more often used in practice, the Poisson points
are concentrated in the plane Ily. In type (ii) the intensity measure admits
a uniform density. Here the simplest case occurs when the corresponding
primary function ¢’ (z/t) is independent of the altitude of its location. We
then find the rocky deep model ([131] chapter 15).

In the previous chapter, we had to assume the compacity of the primary
grain X’ of the Boolean RACS X for avoiding a full covering of the space.
Here the corresponding notion consists in taking primary functions f’ all of
whose horizontal cross sections X;(f’), t < oo are compact. We still have
to associate an origin, i.e. a characteristic point, with each f’. In case of
Rocky deeps, we can pin them up by their tops, but for Boolean islands it
is preferable to fix the characteristic point at a centroid of their support, in
order to have all the bases (rather than all the tops) located in the same
horizontal plane [112].

4.5 Spatial law

Among others, the characteristic functional @ (B) given by (4.5) allows us to
calculate the spatial law of the model, i.e. the joint distribution of f (z) at n
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points x1 ... z,, n finite. As an example, we will determine the probabilities
of order one and a moment of order two.

We start by choosing B as the point (0,t), located at altitude t on the
t- axis, and by setting ¢ = @ (0,t). ¢ is the porosity of the section of f at
altitude t. Relation (4.5) implies

+00

Pr{f () <t}=qt=exp{—/

J =00

0 (dw) Bepn [(f (2 + )= N Ty } .

(4.8)

Thus, the probability distribution of f involves only the n—volumes of

the horizontal cross-sections of the primary grains, which are weighted by

6 (dt). When it exists, the mathematical expectation of f (z) derives imme-
diately

m:./oioo(l—qt)dt—./_‘(;qt dr. (4.9)

The probabilities of order two, and the associated moments (covariance,
variogram) may be calculated in a similar way. But their implementation
involves a double integral in ¢t. In the present case the variogram of order one,
ie. 291 (h) = E|[f (0) — f (h)]| better suits the computational aspect of the
model. 71 does not have the statistical properties of the covariance of the
variogram and cannot serve to predict variances. However, morphologically
speaking, it reveals the same features of f(z) as those detected by the
usual variogram ~, (anisotropies, periodicities, superimposition of scales,
hole effects, nugget effects, ranges, etc). We will obtain v; (k) by noticing
that

£ (0) = f(R)| =sup{f(0), f (R)} —inf {f (0), f(R)}, (4.10)
and that
Sup{f(0),f(h)} = f(0)+ f(h)—inf{f(0),f(R)}, (4.11)

thus
[(f) = F (W] = f(0) + f(h) = 2inf {f(0), f (h)}. (4.12)
Now, if B stands for the horizontal doublet [(0,0), (k,0)] and if

Qi(B) =Pr{f (0) <t f (h) <1}, (4.13)
then oo
Efinf {£ (0), f (W)} = / 1 g (B)dt (4.14)
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and finally:

~+00

nW =3B O =10 = [ w-@@. @

—00

4.6 Divisibility under Supremum

Boolean random functions satisfy two major structural properties, namely
divisibility under the sup operation , and semi Markovization. In this sec-
tion, we present some results concerning only the first aspect. The second
one is studied in ([131], ch.15), where the reader will also find the proofs
which are missing here.

Before presenting these results it should be noted that first, the horizon-
tal stationarity, which was necessary to formulate relation (4.5) and the spa-
tial law, is no longer required here, and propositions 5-9 remain valid without
this assumption. Secondly, concerning the fact that a random set approach
to functions via their subgraphs is applied: all these random subgraphs share
a fized part, which is made of all the points (x, —00), z € R™.Similarly, when
we transform the subgraphs by an anamorphosis such as e’ , we yield new
subgraphs, (associated with the positive random function) which all contain
the half R™*! space of t < 0, as a fixed part. Indeed, the properties asso-
ciated with infinite divisibility are valid only when the random sets under
study have no fixed points ([82], p. 55). For this reason, we have restricted
ourselves, in the definition equation (4.3), to the parts of the primary sub-
graphs which are above all the thresholds tg # —oo. In the same way,
when positive Boolean functions are concerned, we have to use exclusively
compact structuring elements B of R®*! which miss the half space of the
negative or null ¢. This approach comes to work on the subgraphs minus
their fixed points. Under these constraints, we may state the following.

Proposition 4.5 The Minkowski sum of a Boolean random function f by
an arbitrary compact set K C R™ x R s still a Boolean random function.
(The Minkowski addition f @& K of function f by set K C R™ x R is, by
definition, the function whose subgraph is the Minkowski sum of the subgraph

of f by K.)

Corollary 4.1 Let f be a Boolean function in R™ x R. The cross-section of
f by any subspace H is a Boolean function when H is parallel to the t-axis,
and a Boolean set when it is orthogonal to the t-axis.
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Figure 4.2: Suprema of Boolean Functions, involving anisotrpic conic and
cylindric islands, and paraboloidic rocky deeps.

It suffices, for proving the corollary, to consider the horizontal cross-
sections of f and of f N H. These induced Boolean functions will be inves-
tigated with more details for the Boolean Islands, when H is parallel to the
t-axis (Section on stereology).

Proposition 4.6 If {f;} = { 7 0j (dt)} .7 € J is a family of Boolean
functions whose sum 6 = 3, Jg 05 (dt) is finite, then f = Sup{f;} is a
Boolean function of intensity 0.

Figure 4.2 illustrates proposition 4.6. Now, what about the converse
point of view, i.e. that of the infinite divisibility under supremum? A ran-
dom closed set X is said to be infinitely divisible under U if, for any integer
k > 0, X is equivalent to the union NX of k independent random closed sets
Xi,t = 1,2,...,k, which are equivalent to one another. In particular, any
Boolean random closed set is infinitely divisible under U. Moreover, owing
to a Matheron theorem ( [82], p. 56) and to equation (4.5) we can state the
following.

Theorem 4.7 Any random Boolean function f from R™ into R is infinitely
divisible under Sup; i.e. for each integer k, it can be written as

f=Sup{fi,i €[1,.., K]}, (4.16)

in which f; are k equivalent independent Boolean random functions.



CHAPTER 4. BOOLEAN RANDOM FUNCTIONS 89

Figure 4.3: The function k; A f;. The random function f; is piecewise replaced
by zero.

Note that there exist infinitely divisible random functions which are not
Boolean (e.g. the Poisson functions (in [129], p. 471), whose horizontal
sections are Poisson hyperplanes).

The following instructive property derives from infinite divisibility and
shows that Boolean functions, just as Boolean sets, admit a domain of at-
traction. Consider m realizations {f;},1 < i < m, of a stationary random
function f of R™ which is non-negative, u.s.c., and a.s. bounded. Further-
more, let there be m realizations {X;} of a stationary random partition of
R™ into a.s. bounded classes of non-zero measures.

All points of the topological closure PcX; (j) of each class X; (j) of the
realization X are coded with the value -oo or +o0o with a probability p
which is independent of the class. This results in the function k; (x). Next,
construct the random function

om =v{kiN fi,1 <i<m}; (4.17)

Fig.4.3 illustrates k; A f; in R'. Denote by k' the random function which
assigns the value 1 to the closure of the class of X which contains the origin,
and the value 0 everywhere else. This gives us:

Proposition 4.8 When p — 0 and m — oo such that mp — 0 < oo,
then the random function ¢n, defined in equation (4.17) converges to the
stationary Boolean islands with primary grain f Ak and with 6 (dt) = 0'§,
where § is the Dirac measure located in t = 0, supp stands for the support,
and

0" = 0 {Bepy, [supp (f NE')] }71 . (4.18)
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Figure 4.4: In Boolean islands, the Poisson points are concentrated in the
horizontal plane IIy and the primary grains are positive functions: the study
of the Boolean islands may be restricted to the positive t.

We thus discover a domain of attraction for the Boolean model and this
is, without doubt, a strong reason why this model is so well-suited to the
description of various physical phenomena.

4.7 The Boolean Islands

The Boolean islands model is obtained by taking for 6 (dt) a Dirac measure
implanted at the origin of the t-axis, i.e. by putting 6 (dt) = 04 (dt). The
germs turn out to be an n-dimensional stationary Poisson point process
located in IIg and having an intensity 6 (see Fig.4.4). Clearly, this designs
the simplest Boolean function that can be imagined; indeed, it has been the
first to be proposed in the literature.

If we replace 0 (dt) in rel.(4.5), the characteristic functional becomes

Q (B) = exp {—0 Bepy, [(f' ®BcB) N1lo) } . (4.19)

When B is moved by a vertical translation of vector t, BeB is replaced
by BeB_; and

(f' ®@BcB_;)NIlg = (f' ®BcB)_,Nllp = [(f ®@&cB) NI ,  (4.20)

thus
Q (Bt) = exp {—0 Bepy, [(f' @ BeB) NI }, (4.21)

which is Serra’s original formula ([129], p. 470). For the sake of simplicity,
the primary grain f’ is considered to be a non-negative function: it is always
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possible to modify the t-axis by the anamorphosis ¢ = (principal value of
tan~1t) = II/2. Since the B are compact we can also consider that the
expression ” B is implanted at the origin” means ”the origin is the highest
point of B” (or one of the highest points in case of non-unicity). Then,
f' @ BcB is still non-negative.

To say that point (z,t) belongs to (f’ @ BcB) N1I; is equivalent to say-
ing that (f' @ BcB) (z) > t. Such an event occurs with a probability 1-
F, (t, f' ® BcB) where Fy (t, f' ® BcB) is the distribution function of the
random variable f’ @& BcB. We know from Matheron ([82], p.47) that we
can invert integration over R™ and mathematical expectation, and write:

M (k,B) = —/(;ootk_llogQ(Bt)dt

e dm/‘ "1 [1 = Fy (¢, f ®BcB)] dt,
JR™ J0O

_ %E [/n (f @ eeB)* () dx] .

Thus there is a one to one and onto correspondence between the moments
of log @ (By) and the average space integrals of the powers of f' @ BeB. In
particular, for k = 1, one finds (Jeulin, 1985; Serra, 1985):

00

M(l,B):—/

JO

log Q (By) dt = 0F [ / (' @ pcB) (x)dac]. (4.22)

n

Let us summarize these results by stating :

Theorem 4.9 A Boolean islands model is a Boolean function with mea-
sure 0 (dt) being 0 times a Dirac measure concentrated in t = 0, and with
a non-negative primary grain f’'(x). It allows the following characteristic
functional

Q (B:) = exp {—6 Bepn [(f ®BcB) N1L] }, (t>0)
such that

—'/Ohootk_llogQ(Bt)dt:%E [/ (f @ BeB)* (2)dz|.  (4.23)

n

We will now complete the study of this model by calculating # and
various measurements on f’ from the @ (B). By simplifying the notation,
we consider that
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-v(f") and h(f’), i.e. volume and maximal height,
- @, St, porosity and specific surface of f NIy,
- 8}, surface of f NI,

are always mathematical expectations.

4.7.1 Volume of f' and its support
First, we take B to be the origin. By applying rel.(4.22) we find

M (1,{c}) =— / log q:dt = 9/ E[f (z)] dz=0v(f"). (4.24)
Jo n

Consider now the support supp(f’) of f’ (i.e. the set of points x € R"
where f’ (z) # 0), and take B to be the vertical segment of length 7 whose
top point is the origin. Formula (4.22) gives

M (1,B) = 0v (f") + 01 By, [supp (f')] - (4.25)

In digital imagery, the dilation by an elementary vertical segment con-
sists in adding one to the function f under study. More simply, the above
procedure comes to work on the set X7 = {z: f(x) > 1} and to compute
its porosity q;0. The Boolean assumption implies that :

log q1 = 0 Bepy [supp (f')]- (4.26)

4.7.2 Pseudo-covariance

Choose B to be a pair of points distant from the horizontal vector h, of
modulus |h| and direction . Let Q¢ (h) = Q¢(|h|, @) be the probability that
B misses the umbra of f. The equation (4.22) now takes the following form

— /O-oo log Q¢ (k) dt = 260" — Q/In inf [ (z), f' (x + h)] dz, (4.27)

or, if Kj(|h|,a) denotes the n-dimensional geometric covariogram of section
X of the primary grain f’ by the hyperplane II;, equivalently

00

_ /'OO log Qs (h) dt:9/ 2K (0; o) — KJ(|h], )] dt. (4.28)
J0O JO

We may consider this integral as a sort of pseudo-covariance because it
can exhibit nugget effects, hole effects, or more or less periodic oscillations,
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etc. just like the true covariance ([129], chapter 9). Note that the variogram
of order one which can be drawn from rel.(4.27) concerns function f’ and
not function f, as was the variogram i (h) of Section 4.

Furthermore, it is a functional which is directly related to the primary
grain f’, and which can be calculated theoretically when one wants to test
a specific model.

4.7.3 Gradient

Suppose that the primary grain function f’ (z) is regular enough so that we
can take the derivative with respect to |h| under summation in rel.(4.27)
(this implies that the primary grain is not fractal). We obtain for h =0 :

/°° Q) (0;) /Q; (0)dt = 6 /°° 0K (h]:0) /O |h]|,_ . (4.29)
JO JO

Here, @} (0;) is the (specific) variation of the diameter of the Boolean
set X; = f NI in the direction «, and Kj is the (global) covariogram
of the primary grain X, = f' N 1Il;. By averaging over the directions «
perpendicular to the t-axis, equality (4.29) becomes a relationship between
the specific surface s; (of n, not n + 1, dimensions) of the set X; and the
(non-specific) surface s} of its primary grain section Xj :

o9 ~O0

st /qudt = 0 /0 S(dr),  (4.30)

. .00
[ o[ @i /@ioar= |
JQn J0O J0
a relationship whose left member is experimentally accessible. This set rela-
tion, which is informative in itself, can be interpreted in terms of functions.
By introducing the module ¢ (x) of the gradient of the primary grain func-
tion f’ (z) and using proposition (14-4) in [131] we obtain
~00
/ St/qtdt =0F |:
JO

(@) dx] . (4.31)
JR™

4.7.4 Number of maxima

We will end with a result about the maxima [56]. Take for primary grain a
random function f’ that has (a.s.)only one maximum value, b’ say, and locate
conventionally the maximum at the vertical of the origin. The probability
that the random variable A’ lies in the interval (¢,t + dt) is w(dt) and v(dt)
stands for the specific number of maxima of f (i.e.after booleanization) in
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the interval (¢, +dt). Then the elementary zone dV of size dx x dt contains
a maximum of f if there is a germ in dx, if the corresponding grain as
a height A/, and finally if this maximum is not covered by an other grain,
which occurs with a probability Q(dV') ~ g;(1—6dzdt). Therefore the specific
number v(dt) of maxima of f (i.e. the average number of maxima per unit
volume in R™) between the altitudes ¢ and ¢ + dt is given by

v(dt) = 0.q,3(dt), (4.32)

a relation that allows to estimate the unknown probability w(dt) from the
experimental data.

4.8 Convexity and Boolean Islands

Generally, convexity occurs in Boolean models (sets or functions) for two
reasons. Via the Steiner relationship, it provides a means for calculating
Bepy, (f' @ BeB) for various B, and consequently for testing the model; more-
over it allows us to formulate and solve stereological questions. In testing
problems, three levels of assumptions have to be distinguished:

() the support supp(f’) of f’ is compact convex (in R™)
(1) all the horizontal cross-sections of f’ are compact convex (in R™)
(#44) the subgraph of f’ is compact convex in R™ x RT.

Each hypothesis contains the preceding ones. Below, we develop the first
two cases only. As a matter of fact nothing really new is reached within the
framework of assumption (iii) (for further discussion see [131], pp. 334 and
398).

Before comparing the first two assumptions, we recall the classical
Steiner formulae ([129], p.111). In R3, when B is successively a segment
of length [, a disc of radius r or a ball of radius A, the average volumes of
the dilates of a compact convex set A by [B, rB and AB are given by :

v(A®IB) = v (A) + Ls(A)
v(A®TB) =v(A)+ Frs(A) + arid (A) (4.33)
v(A®AB) = v (A) + As (A) + 222 (A) + 43

(v, s and d denote the volume, surface and mean width respectively) .
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Figure 4.5: Synthetic image obtained from roughness profiles of an iron plate
(D. Jeulin).

In R?, when B is successively a segment of length [, then a disc of radius
r, we find similarly :

a(A®IB) = a(A)+—=1 (4.34)
a(A®AB) = a(A)+u(A)+ )2

(a = area, u = perimeter). This said, averaging according to the rotations
of the space is not a dogma. We can alternatively perform cylindrical dila-
tions. In the case of a primary grain f’ of R? x R*, this technique comes to
averaging with respect to the rotations of R? ; the volume of the dilate is
then given by a Steiner polynomial of R? (in which B is the circular basis
of the cylinder) multiplied by the thickness 7 of the cylinder.

Lastly, we can remark that the linear structure of the rel.(4.33) may sub-
sist in practice even when none of the three convexity assumptions is stricly
satisfied. A classical example is given by Jeulin’s study on the roughness of
iron plates ([56]). The rolling process has torn up small ” crescents of moon”
which are visible on the photograph in 4.5.This relief of an iron plate is re-
constructed from a series of roughness profiles, where the t-axis is strongly
emphasized. Whereas the primary functions are obviously non-convex, D.
Jeulin succeeded in proving the Boolean structure of the relief by using
non-isotropic Steiner formulae ( [56]).

Although these primary functions are not convex, the volumes of their
dilations by horizontal segments of length A can be fitted with linear func-
tions of A.

4.8.1 Convexity of the support supp (f’)

Assumption (7) concerns above all the calculation of §. When it is satisfied,
the probability @ (AB) that a ball AB of R™, lying in IIj, misses the support
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supp(f) is such that
log Q (AB) = —0 Bepy, [supp (f') ® A BeB] . (4.35)

By taking supp(f’) for A in the third rel.(4.33) (resp. the second
rel.(4.34)) we obtain a polynomial of degree 3 (resp. 2) in A, whose co-
efficient of the term of highest degree allows one to estimate 8. Then the
other terms give the Minkowski functionals of supp(f’). The reader will find
a more detailed presentation of this technique in Serra ([129], pp. 495-502).

Notice that this procedure tests the Boolean structure of supp (f) and,
at the same time, determines 6 and the major characteristics of supp(f’).
However, there is no certainty that f itself is Boolean but only presumptions.

4.8.2 Convexity of the horizontal cross-sections of f’

As far as convexity is concerned, assumption (4¢) is an important one. First,
if we extend the previous procedure to the series of the cross-sections f, we
can test whether all these sections are Boolean, and have strong presump-
tions that f is Boolean.

Secondly, if the section at level ¢ is Boolean with a density 6;, then 6; is
6 multiplied by the probability that the primary function f’ is higher than
t. Denoting by G (t) the distribution function of the maximum height of f’
we have:

6, =0[1— G (1), (4.36)

a relation which can be used to estimate G (t) from experimental values of
0.

Thirdly, using Steiner’s formulae we access the average Minkowski func-
tionals of the section as functions of the level t. If we want to express them
more synthetically, we can use functionals of M (B) type rel.(4.22). For
example, in R? x R, for B a compact convex set with an area a (B) and a
perimeter u (B), we can write

—I/(;oologQ(ABt)dt - 9{1} () +A%E [/]R;ze' (x)dx] +Xa(B)h (f’)},
(4.37)

where h (f’) is the mathematical expectation of the maximal height of f’,
i.e.

h(f') = Q/O'OO -G ()] dt. (4.38)



CHAPTER 4. BOOLEAN RANDOM FUNCTIONS 97

Figure 4.6: Two natural textures that can be modelled by Boolean islands.
The elementary crystals of ferrite (left) are convex. In contrast, neither the
red blood cells, not their supports (right) are convex.

(In rel.(4.37), the Boolean function is assumed to be isotropic. When not,
one must average the left member with respect to the rotations of B in R2.)

Notice that the average integral v (f') of f/, and that of its gradient
¢ could be calculated directly, see rel.(4.24) and (4.31) without assuming
convexity, but also without any guarantee that the Boolean model, hence
the formalism, is valid.

4.8.3 Heuristic use of Boolean islands

In the previous chapter, we draw from the Boolean RACS a counting al-
gorithm that proved to be efficient even when the structure under study
was not Boolean at all. The Boolean islands lend themselves to the same
use. The algorithm derive now from the integral (4.24), which allow us to
estimate 3 as soon as we know a priori v (f’), or by direct measurements
on isolated grains . The number of red blood cells (estimated by 188 in the
binary approach of the previous chapter) is now given by the above formula
(4.24) :

— /0-00 log g dt = O (f') . (4.39)

which results in N = - (field area . — [ log qdt) / v (f') = 39360 x 70,055
/ 14.020 = 197.
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4.9 Stereology for Boolean Islands

The situations which require a stereological approach are, in general, of two
types. First, they can concern a (3-D) material with a variable grey tone
at each point. For example, in radiology we could consider the X-rays or
the NMR tomography of an organ. (We assume here that we have access
only to individual planar cross-sections of the material, and not to series of
sections.) Secondly, the material under study may be two-dimensional and
is accessed by vertical profiles (e.g. roughness measurements). The block
diagram representation of Fig. 7 clearly shows the two situations, since it
exhibits one vertical section, and is itself the cross-section of a 3-D grey tone
function.

If a 3-D function is a Boolean island f3 of intensity #3 and with primary
grain f3, then it is easy to see that it induces a 2-D Boolean island function
f2 on each planar cross-section of the space. Let II () be one of the planar
cross-sections, with orientation w; let 2 = 6 (w) and fi = f5 (w) denote
respectively the induced intensity and the induced primary grain. To fs and
f4 there correspond sets in the 3-D space R? x R and to f3 and fj there
correspond sets in the four-dimensional space R3 x R.

We first show that 65 is proportional to f3. A grain f’ (x) at the point x
in R3 induces another grain in the section II (@) if and only if the support
supp[f (z) ] of f (z) hits II (zw). This leads us to a problem concerning the
supports of Boolean sets. We know ([76], p.70; [129], p.489) that

g2 = 03D3 (w) , (4.40)

where Dj (w) is the average apparent diameter, or width, of supp|[fs (z)]
in direction w. Likewise, we can go from the function f3 to the function
f1 induced on the linear cross-section A (w) in the direction w using the
following relation:

91 = 9353 (w) , (4.41)

in which 6 is the induced intensity on A (w) and Ss(w) is the average
apparent 2-D surface of supp|f} (z)] perpendicular to the direction .

We obtain a second relationship between the parameters of f3 and of fs
by noting that the porosity q; is the same if it is measured in R? or in any
vertical cross-section, i.e.

_ /0 h log qudt = O3v3 (f3) = 202 (f3) = 6101 (f1) (4.42)
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and by combining with rel.(4.40):
vs (f3) = v2 (f3) D3 (@) = o1 (f1) S5 (@) - (4.43)

This asserts that the mathematical expectation of the integral of the original
primary grain is equal to the product of the expectation of the integral of the
induced grain and the measurement of the apparent contour of its support
in the complementary sub-space of the section.

By applying similar reasoning in R? x RT. We obtain

O2v2 (f3) = 1 (@) v1 (f1)
and (4.44)

v2 (f3) = v1 (f1) Dy (@),

where a € (0, 27) is the normal to the vertical cross-section under study (e.g.
vertical profiles on a rough metallic surface). We can state the following.

Theorem 4.10 Let f be a Boolean island function in R3 x R. The cross-
sections of fs by 3-D and 2-D sub-spaces parallel to the t—axis are still
Boolean islands in R? x R and in R x R respectively. The corresponding
intensities and mean volumes are given by rel.(4.42) and (4.43). Similar
statements and results exist from R? x R to R x R, see rel.(4.44).

Comments :

(1) Obviously, the theorem could be stated in R™.

(2) These results remain rather general in the sense that they do not
assume convexity nor isotropy for the primary functions.

(3) However, these results suffer from the inevitable stereological limi-
tation that measurements in sub-spaces of R? can give all Minkowski func-
tionals of the space, except the last one, i.e. the countability. Here, it is
03 [or v (f5)] which remains inaccessible. In rel.(4.40) and (4.42) the left
members may be estimated by experiments. So we only know the product
O3v3 (f3) -

(4) Instead of sections we could also consider slices S with a non-zero
thickness dw, and parallel to the t-axis. The sup of the grey intensity taken
at each point « € S, along dw, generates a Boolean island. The technique for
studying it is that presented for Boolean sets in Serra ([129], pp. 496-497).

4.9.1 Use of stereology

What can we gain from these stereological calculations 7
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(a) First, we can use them for studying evolutions. For example, in R3,
if we wish to know if A3 has increased by 10% from one state to another, it
is not necessary to know v§ : we simply assume that it is constant.

(b) During an evolutionary process, we can also separate the part due to
the nucleation of new grains from the part due to the increase (or reduction)
in size of the already existing grains. Here again we must assume that the
grains are convex. Let us denote the parameters of the final state by capital
letters. If variation by simple growth has occured (in R3 x RT for example),
then

(93‘/3/) / (931)5) = k?’,
(9355) / (938%) = kQ,

since 3 = 05. On the contrary, these three ratios are equal if there is nu-
cleation without modification in the probability distribution of the primary
grain. In the same way, we can test the increase in volume with constant
intensity (change of scale of the primary grain in R? only), etc.

—/ log g:dt = Oyv5 = O3v% (4.45)
0

we can deduce a counting algorithm. If we know v4 and v4 a priori, or from
direct measurement of isolated grains, then from (4.45) it suffices to calculate
the proportion of surface g on each level to deduce an estimate of f2 (or 63).
It turns out that even when the Boolean model fails, for large distances in
particular, (4.45) remains a good estimate (within 10 %) of the number of
objects in a scene. Furthermore, this estimate is quite insensitive to noise (as
opposed to the Euler-Poincaré constant) and is well adapted to the case of
partial coverings. Finally, a threshold is unnecessary because (4.45) asserts
that all levels are examined.

In conclusion, note that one can also decide to reject stereology, and
choose a sequence of planar cross-sections which are close to each other.
This is often the best solution in X-ray tomography and in nuclear mag-
netic resonance images. It then suffices to dilate the function by several
simple polyhedrons in order to obtain a reasonable estimate of #3 from a
few cross-sections. The measurement of the remaining parameters can be
obtained from planar and linear structuring elements, and the list of param-
eter estimates of the model is therefore complete. Note that the hypothesis
of convexity is still indispensable for the calculation of the intensities 3 and
62 (it involves the Steiner formula).
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4.10 The Rocky Deeps Model

When one contemplates the view of a submarine coral reef, where the deeper
the rocks the darker they appear, one has the impression of diving into
infinite deeps. The theory of Boolean functions allows one to model such a
relief as follows [131]:

(a) the elementary Poisson point intensity is

(4.46)

6(dt) =0 when t > 0
0 (dt) = 0 |dt| when t < 0;

(b) the primary grain f’ is independent of ¢

f@/t)=f(@)  (t<0). (4.47)

Figs.4.1 and 4.7 give an idea of the model, that we shall call "rocky
deeps”. In fact it is a Boolean random function of the general type, and
even the simplest one, since the primary grains exhibit the same shape and
size everywhere. So, we can reasonably expect simple expressions for the
characteristic functionals.

Let B(h) be a compact set implanted at height h. The probability
Q) (By) that B(h) misses the rocks is given by the characteristic functional
(4.5), which becomes in the present case:

Q) = ep{-0 [ o [(formEm)nnjaco),

Q(By) = exp{—e/(;m@cun [(f’@EcB)_hmHt} dt},

Q (By) exp {—9'/];00 Bepiy, [ (f' @ BeB) N1, | du}. (4.48)

Example of Boolean rocky deeps; the Poisson density is uniform over the
negative half space and null for positive t. The primary grain (here a cone)
is the same for all depths, and has the origin located at its top.

This relationship is the fundamental formula of the model. The deriva-
tion and the integral of log @ (Bp,) are instructive. Indeed,

1 dQ(Bn)
Q (Br) dh

= OBcpy, [(f' ® BeB) NI, ] (4.49)
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Figure 4.7: Example of Boolean rocky deeps; the Poisson density is uniform
over the negative half space and null for positive t. The primary grain (here
a cone) is the same for all depths, and has the origin located at its top.

i.e. the logarithmic derivative of @ (Bj) equals € times the average measure
of the cross-section of f' @ BeB at level h. So the left member of Eq.(4.49)
must be positive and decrease as h increases, and these two properties can
be tested from the estimates of @ (Bp). If we now calculate the moment of
order p of log Q (By), (p > 1), we obtain, by integrating by parts :
OO0 0 go o]
— / hP?~%1log Q (By) dh = p—1 hP~ecpy, [(f' @ ECB) N1, dh.
o ’ (4.50)

We have already interpreted the right member of this equality in terms
of integrals of (f' @ BeB)Pwhen studying the Boolean islands. This leads to
the following basic formula of the Rocky deeps model:

.00 P .
— / hP~21log Q (By) dh = —E{/ (f ®bcB)” () dm}, p>1
Jo p(p=1" Urn
(4.51)
It exhibits the same structure as the corresponding relation for Boolean
islands (see Eq (4.23)) but with different integrands.
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4.11 Exercises

4.11.1 Random w-continuous functions

This exercise aims to provide a random status to the w-continuous classes
introduced in chapter 4.

1. Construct the class of the random w-continuous functions

[Given a modulus of continuity w, the lattice L, is compact as a closed
subset of the (compact) set F' of the upper semi-continuous functions from E
into R. The events (4.1) that generate the o-algebra o on F' admit a similar
meaning in L., and the compactness of L, ensures that there do exist
probabilities on the o-algebra of the measurable space (L, o). Moreover,
we draw from Theorem 4.14 that the dilations (and the erosions) acting on
L, as well as their finite sup, inf, and compositions preserve class L, in the
stationary case, and then are continuous.

The random functions which will be obtained from (L, o) will result
in relatively regular realizations. For example, a Lipschitz Boolean function
will accept sharp valleys, but without strict verticalities.]

2. Establish first the following lemma :

Lemma 4.11 : A function f: E — R, E a metric space, is w—continuous
if and only if for all x € E;t € R and h > 0, we have

flx)<t and  y € Byp) = fly) <t+h (4.52)
where function 6 designates the largest inverse of modulus w, i.e.
0 (h) =sup{d:w(d) <h} h,d € Ry (4.53)
and where By () is the closed ball centered at x and of radius 6 (h).

[ Suppose f to be w-continuous, and f (x) <t for some x € E and some
t € R. Fix the value h. If point y € By (x), then d(x,y) = 0 (h) ie.
wld(z,y)] < h. Since f is w-continuous, we have

fly) < f@) +wld(z,y)] <t+h (4.54)

Conversely, suppose that implication (4.52) is true for all z € E,t € R
and h > 0. If there is no pair (z,t) such that f (z) <, then f = +o00, hence
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is w-continuous. If not, f(x) admits finite upper bounds ¢t and rel.(4.52)
implies, for any point y at distance 6 (h) from x apart, that

f)<h+t = [ <h+ A\{tt>F@)}=h+f(x) (455)

and finally | (y) — £ (2)| < h = w [d(2,y) .
Now point y may, in turn, play the role of starting point for an arbitrary
point z, since f (y) < oo, and this achieves the proof.]

In more geometrical terms, the lemma says that when a point (x,t) is
strictly above the subgraph of the w—continuous function f, in the product
space F x R, then the whole cone of summit (z,t), of generator w (d) and
oriented upwards, is strictly above the subgraph of f.

3. How does the w-continuity affect the characteristic functional
rel.(4.5)7

In terms of Random Sets, the property depicted by the previous lemma
has a meaning of a condition : when we know that compact set K misses
the subgraph of f, then all the sections of the cone generated from K, miss
it too. Prove that this result can be stated as follows :

Proposition 4.12 Let f be a random u.s.c. function from a metric space
E into R. Function f is almost surely w—continuous if and only if there
exists a function w : Ry — Ry continuous at the origin, and such that we
have for all K € K,t € R and h > 0 :

Pr{sup {f (z),z € dgny (K)} <t+h/sup{f(z),z € K} <t} :(1 |
4.56
where O (h) =sup{d:w(d) <h}.

[ Observe that implication (4.52) extends to compact sets K, since the
dilate of set dg(ny (K) of set K by the closed ball By is the union of the
balls By (), as x spans K. Hence we have

sup{f(z),z€ K} <t = sup{f(x),xeég(h)(K)}<t+h
(4.57)
Therefore the event of the left member of Eq.(4.56) is almost sure, which
yields Eq.(4.56). Conversely, the datum of Eq.(4.56) means almost surely
implication (4.57), hence the a.s. w-continuity of f.]
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