EXERCISES

1 Boolean simulations

This exercice, which is mainly visual, is aimed at highlighting the general aspects
and construction flexibility of boolean models ; it will also give an idea about
the variability (very large, sometimes) from one realization to the other when
the parameters of the model are determined. Some of these simulations shall be
saved and will be used for the exercice about tests.

1. Simulate boolean sets with square, hexagonal or circular grains, with a
fixed or variable size.

[For the first ones, one only has to dilate Poisson points, for the second
ones, to consider the union of several dilations of various sizes. Two procedures-
isobool and isobool 2 - may also be applied).

2. The previous simulations are isotropic, at least on their definition grid.
Carry out now some anisotropic simulations from segments or ellipses.

[As previouly, make a union with Poisson points dilations with different size
and orientation segments, or with ellipses ( procedures eldil and elbool)]

3. Simulate boolean sets with primary asymmetric grains, as for instance a
mixture of equilateral upwards and downwards triangles.

[Use the procedure tribool. The shapes catalogue may also be grown with
dropdil, which dilates according to asymmetric droplets of the eight possible
orientations|.

4. As a last example of non convex primary grains, we will use doublets of
disjoint disks which centers are d apart (cell division model)

[Make a union of a first realization of Poisson points with its horizontal
translate of distance d, then a second one with its translate at angle 45° and of
distance d, etc ... Make a union of all the points you got, and dilate them with
a small disk].

5. Start from a Poisson points simulation with a regionalized density g (cf.
exercise 9-5), and pass to the boolean system with small homogranular circles.
Explain.

[We get a binarization technique of the function g|.

6. Simulate conic boolean functions (we will use the cones sizes and heights
whether to isolate the islets or whether to invade space). Simulate a cones
doublets realization.

[Use procedures conedil 1 and 2, applied to Poisson points, consider the
sup for several points density, matching several cones sizes. In case of doublets,
act as for question 4 to get the points, and dilate with a cone].



2 Boolean tests

1. Symbols a/ and u/denote the mean area and perimeter of the primary grain
respectively, and ¢ and u the porosity and specific perimeter after a booleaniza-
tion. We know that

q =exp{—0a’} and u = Ou’' exp{—0a’}

Check both relations on several simulations of the previous exercise, and
particularly on the disks doublets. What about the boarder effects ?

[Use the function perim. Note the generality of the approach, which does
not imply that the primary grain is connected. Note also that, only the products
Ou' and 0a’ are accessible, but neithert u'nor a']

2. When the primary grain is supposed to be convex, the first boolean test
is based on linear erosions, which must be negative exponentials. If K is the
segment with length L and direction «, we indeed have

logQ(K) = logQ:(L, o) = —0(Ldy, + a’) (1)

where d/, is the mean diameter of the primary grain in direction «. Test relation
(1) on one of the convex grains simulations of exercise 1, and apply it successively
to grains and pores. Test it afterwards for circles doublets, and for primary
grains with regionalized density.

[Use the procedure pvonl (which corrects boarder effects) and report the mea-
surements on semi-log paper. Note that 6 is still inaccessible].

3. Use the images of the previous question, and erode them now by hexagons
or squares. Prove that the logarithm of Q(K), for a square with side L and
directions «, 3, is

log Q(K) =log Q2(L, ) = —0 [L? + L(d,, + d}3) + d’] (2)
which yields estimator 6 such that
0L =log Qi(L,a) +log Q1 (L, +m/2) —logQa(L,a) —logg  (3)

Discuss the experimental results. Does the formula remain admissible when
the primary grain is not convex anymore ?

4. Measure the covariance of the disks doublets realization. Interpret the
results.

[The mean distance between two primary grain disks turns out to appear as
a hole effect in the covariance)].

5. Develop the questions (2) and (3) for boolean islets.

[Start from the simulations of conic boolean functions of the previous exer-
cise. The function is boolean if and only if all sections are boolean sets. Tests
arising from relations (1) and (2) are applied to each grey level t. By integrating
over the gray levels t, we obtain



_ / log Q1 (#; L, a)dt = 0 [Lel, + /] (1)
T

with pl, and v'integral of the directional gradient and volume of the primary
grain respectively (similar extension for relation(2))]

6. Check that the specific number v(t) of the maxima at altitude t of a
random boolean function simulation fulfills the relation :

when w(t) represents the probability that the primary grain has a height t.

3 Boolean model and counting

The boolean model allows to calculate explicitly a number of relations between
observable characteristics of the primary grain. These relations can be used as
tests (cf exercise above), or, on the contrary, can be admitted in a heuristic
fashion, without further discussion.

For instance,consider, in R?, a random primary grain with a mean area a’
and a mean perimeter u’. After booleanization, the number 6 of grains per
unit area is linked to the porosity ¢ and to the specific perimeter s by the two
relations

fa’ = —logqg and Ou' =s/q (1)

1. Simulate a succession of boolean R.A.C.S. with circular grains (for the
sake of simplicity) of variable densities, homogranular or not. Once s and ¢
have been measured on the simulations (whose parameter 6 is given), check the
relevance of the first relation (1) and of the following relation

u'/a' = —s/qlogq (2)

[Use procedures isobool and isobool2. Define, for 6 = n fized, for instance,
at 50, the validity scope of relations (1) and (2) with respect to o’

2. Simulate hierarchical R.A.C.S. (therefore non boolean), for which all
variables taking place in relations (1) and (2) are known. To what extent are
these relations still correct ? Explain.

[You can start from the procedure rose, or directly from isobool, when a
realization is intersected with a Poisson points set, followed with a circular di-
lation. The first relation (1) implies that we have quite a precise idea about the
mean size of the primary grain ; the relation (2) rather implies that its shape
is known, and that its size changes very little. Therefore rel. (2) may be better
for the low values of q. Formula (1) and (2) are anyhow satisfied as long as the



object under study can be locally modelled by a boolean model, that allows free
covering|

3. Extend the first relation (1) to boolean random functions, and test it by
simulating boolean islets.

[Dilate Poisson points by cones, by considering the sup of two or three real-
izations with different densities or sizes of cones. The relation (1) must now be
integrated with respect to grey levels :

' = — /logqtdt

Check numerically the ranges of validity of the various parameters]

4 Hierarchical models

The adjective ”hierarchical” indicates here the implementation of a second
boolean generation (62, X%), conditionally to a first one (61, X7). The second
grains mays lean on the first ones or avoid them. This leads to aggregates in the
first case, and to separate sets in the second one. Although these models are
rapidly incalculable, they can nevertheless be developed in easy and instructive
simulations.

1. Simulate hierarchical models for each of both types, and choose 61 # 62
and primary grains of different sizes.
[ Procedure rose(as in desert rose) and hard].

2. Iterate the hierarchies in order to construct a sequence. Boolean models
will be considered with respect to smaller and smaller disks.
[Procedure flake (as in Von Koch "snow flake”) and disjoint].

5 Boolean domain of attraction

Choose half a dozen ordinary tesselations. For instance, the starting point
may be the watershed lines of images such as electrop or barrier (after a small
preliminary filtering in order to avoid too many classes). Skeletons may also
to drawn according to influence zones or even Poisson lines. In each partition,
assign the value 1 or 0 to each class with a low probability p for the 1s. Consider
the union of the results, and test if it can be considered as boolean. Draw the
conclusions.

6 Poisson lines in the plane

1. Use a square grid and simulate Poisson points (density \) on the axes O, and
O, .Take the perpendiculars on these points. This leads to a family of Poisson
anisotropic lines, that segment the space into rectangles.



Convert the previous drawing into an approximately isotropic process, by
incorporating lines with slopes +1, +2 and +1/2. Simulate several realizations
for both methods and note the important size variability.

[The procedure lines creates Poisson rectangles, and diags, Poisson poly-
gons in the six other directions. In lines, n is the effective number of points on
each azxis ; in diags, n\/2 points are implemented on each diagonal, and n\/5 /2
points on each axis with +2 and +1/2 gradient. These operations can be decon-
ditionalized when extracting beforehand n values in Poisson law with parameters
AL (L being the unit length of the axes)].

2. Prove that Poisson lines induce, on each line, a Poisson points process,
with a density 2\ in the isotropic case. Compare this result with the previous
8 directions approximation.

[Isotropic case : the lines with directions («, a+da) induce a small Poisson
with a density Asin ado, which implies, through a summation over w, a total
density of 2\. In digital case, the points induced on the axis O, (for instance)
have a density of (1++/2+6v/5) /7 = 1,62].

3. Conditional sections. Suppose K and K’ be two compact convex sets with
respective perimeters u and u/, and K’C K. Prove that if one and only one line
intersects K, then, the probability it also intersects K’ equals the perimeters
ratio v’ /u.

[If a line has a direction (o, + dex), such a probability equals the diame-
ters ratio DI, /D, in the direction «. As and varies the searched conditional
probability is then given by

"Dy Doy,
o DI u U

4. Mean chord. Knowing that a line intersects K with an area a, prove that
the conditional expectation of the intersected length is 7a/u.

[In direction «, this expectation equals a/D,, ; when deconditionalizing in
o, we get ma/ul.

5. Specific number of peaks. Prove that if two lines intersect a disk of radius
r, there is one chance out of two they intersect inside the disk. Infer that the
number of intersections per surface unit equals v = T\

[1st point : if the intercepted chord on the first line has a length I, the second
one intersects it with the probability 21/27r (question 3). But the conditional
expectation of | is wr/2 (question 4), which leads to the result.

2nd point : the a-priort probability that two lines intersect the disk equals

ﬂ;)‘ﬁ exp {—27r\} . When r — 7o, half the number equals wA?].

6. Determine the relative variance var(A), in number, of the polygons size,by
means of their average in measure M(A). It is reminded that
o?(A)  M(A)

var(4) = )] ~ Ba) @




[Let Yy be the polygon including the origin. The probability it also contains
the small area v dr do equals exp {—2\r}, which leads to :

27 o]
M(Yp) = / da/ exp(—2Ar)rdr = m/2\
0 0

On the other hand, since each peak labels one and only one polygon, we have
E(A) = 1/v, and (1) induces var(A) = 72/2 — 1 ~ 4. This particularly high
value explains the large disparity of the sizes considered in simulation)].

7 Poisson tesselations

The random function which is studied here-below comes from the ” turning band
method”, a method from G. Matheron, and is constantly used in fractals con-
struction. It is instructive for several reasons, not only as an application of
Poisson lines, but also as a mean and variance-free example of a model, and
that can only be reached through its increments. Consequently, we will also
wonder about the meaning of the induced experimental covariances (critics also
from G. Matheron, in his theory of regionalized variables).

1. In R, a Poisson tesselation is defined as follows. Given a realization of
Poisson points {x1,7 € I'}, we consider the function f, constant betwen two con-
secutive points, and which jump by s; at point x; , where the s; are independent
random variables, with a mean 0 and a variance o2.

Simulate f when the jumps value +1 with a probability 1/2, and when Pois-
son density varies from 1 to 10.

[Procedure steps, with n < 40 ; when n increases, notice the fluctuations
for larger and larger ranges].

2. Prove that the random function f has no mean nor variance, whereas the
increment | f(x 4+ h) — f(z)| is stationary , with a zero mean and with a variance
equals to 202 |h| so that the variogram of f is y(h) = o2 |h|

[We find 202 |h| by poissonizing the number of jumps on [0, h]].

3. For h > 0, we know that the variogram of order one, v, (h), is given by
Y1(h) = E|f(h) — f(0)| = 2/7T/0 {[1 —expAh(cosu —1)/ul}du (1)
By a direct proof, show that

for small b~y (h) ~ 2Xh — 4X3h® + ¢(h?) (2)

for large o ~v{(h) ~ ()\h/7r)1/2 (3)

Measure the v}s for the above simulations of ex. 7.1. Why does the observed
linear behaviour continues on quite long distances ?



[In order to set the limited expansion near the origin (2), assign the prob-
abilities P,, to the upwards jumps and P’,, to the downwards ones, with P, =
P’,, = e M(\h)" /n!l. For small h, we have

which leads to relation (2). The lack of second order terms explains the quasi-
linear experimental behaviour. For large values of h, set 6 = (\h/2)*/2. The sum
of the positive jumps tends towards the variable 62 +Y40, and the negative jumps
one towards -0° + Y0, where Y is the reduced normal variable, hence

(k) ~0E Y, —Ya| = (Ah/m)"/* .

Thus, v, which was initially proportional to v, is finally proportional to its
square Toot).

4. Build rectangular Poisson tessalations, by summing the simulations of
horizontal and vertical bands of the first question (two different densities A\; and
A2 have to be considered). Measure the v, (h) in the direction 7/2. Interpret.
What happens when these directions increase ?

[We come back to the previous case, and note that jumps on a diagonal seg-
ment of length h admit a decomposition into two independent families of positive
and negative jumps, with the same Poisson parameter (A + A\2)h/2v/2.Up to
factor \/2, this results in the sum of an horizontal and a vertical component for
v, as well as for v; when h is small and h large. Finally, as these characteristics
do not depend upon the number of directions, they remain valid under averaging
of Poisson bands in all directions of the space : mumerous fractal reliefs are
simulated on this principle].

5. Critics of the ”finitary” mathematician to the above approach : 7 What
does a infinite random function f mean ? You will ever have finite means to
build it, which will lead to finite numbers as well. So, please, keep your subtleties
and variograms for yourself, and use a covariance as everyone else does”.

Well, let’s try for a realization f of vertical Poisson bands, that we intersect
by a segment of lenght L, and whose direction is orthogonal to the banding.

(a) Estimate the hypothetical covariance C'(h), which in fact does not exist
here, from the experimental quantities

m* = (1/I) /0 f@)dz and  C*(x,y) = (F(z) — m*)(F(y) — m").
By putting

L—h
C*(h) = (1/L — h) /O C*(a + h, z)dx (4)



Show that for h>0
E[C*(x + h,2)] = 2L/3 + (2* + (2* + 1?))/L — 22 — 2h (5)
and, by integrating in x, derive
E[C*(h)] = L/3 — 3/4h + 2h* /3L (6)

Calculate the mean of the experimental variogram and covariance on several
band simulations. Comment on the results.

[An apparent variance E[C*(0)] = L/3 is found, depending on the length
L of the segment considered. It is a pure artefact, since the true variance is
infinite. Although there is no covariance (the variogram is linear), the biases
introduced by this procedure of estimation result in an apparent confirmation
of the existence of a covariance (with a range!). It will be noted also that the
stucture of the phenomenon is extremely distorded: not only is the straight line
replaced by a parabola, but even the slope at the origin is changed (3/4 instead
of 1) Thus C*(h) represents almost nothing of the true structure]

(b) Show that the experimental variogram

2y*(h) = (1/L— h) /0 Cf@t+h) - f@)2de (7)
has an expectation

Ely*(h)] =~(h) = |h|

and does not run into the same bias problem as C*(h).Comment

[We observe that the experimental variogram of relation (7) does not involve
any cumbersome mean value (so that E(v*(h) = ~(h)); it is linked to C*(h) by
the expression.

L—h

2C*(h) = —24"(h) + (L)L — hym™+(1 /L — h) / (F(z) — m*]? da

h

which introduces a variance in right member. When the experimental vari-
ance of a phenomenon increases with the size of the zone investigated, without
tending towards a horizontal asymptote, it is not wise to fit the structure un-
der study with a stochastic model possessing a covariance. However, in such a
case, the variogram still exists and its estimation is significant. Consequently it
provides o safer method than the covariance.]

8 Poisson partitions

The model here-under was initially proposed by F. Conrad (1972) in order
to describe aerial photographs of geological cracks as those presented in the
course. But the approach by ”mixed” random set, on which the model is based,



is extremely general and applies to any set or random function in R™. We shall
limit ourselves here to R2.

1. Let X; be a tesselation and X5 a R.A.C.S. of the euclidian plane. Let us
build a realization X7 of X : each polygon is kept or rejected, independently of
the others, with a probability p. Affect the restriction of a distinct realization
in X5 to each remaining polygon II. The union of these portions, together with
X7, may be considered as the realization of a random closed set A.

Denoting by Q the characteristic functional of A, prove that the following
relation (1) is satisfied for any connected compact set K

QK) = Qu(K) [g +p Q2(K)] (1)

where q = 1-p, and where Q; and Q> stand for the characteristic functionals
of X7 and Xj respectively.

[If K misses X%, then it is contained in a single polygon I1, therefore we can
equivalently say that K misses A, or misses the restriction X5 NI, or again
misses X35. This leads to the relation (1)].

2. Let X; and X5 be two tesselations of isotropic Poisson lines in the plane,
with respective densities A; and Ag. The relation (1) becomes

Q(K) = exp {—Mu(K)} g + pexp {=dou(K)}] (2)

where u is the perimeter. Simulate A in a square grid, and check relation (2).
When p = 1, is Q(K) different from the Poisson lines functional ? What is the
explanation ?

[We can use the procedure lines 2, which directly builds A according to the
square grid isotropy, or start as well from a simulation diags, richer in direc-
tions, and then simulate A polygon after polygon. Take a Mg at least twenty
times larger than A1, and for K a square or an hexagon with side k. Q(k) is es-
timated by the procedure binerotest. Denote, when setting on semi-logarithmic
coordinates, that log Q(k) looks like two successive segments, whose angle is all
the larger as p is small).

3. Similarly, draw a simulation A where X, is a boolean R.A.C.S., and
another one where X5 is a random function of Poissons tubes.
[In the latter case, we will get X o by dilating the simulations diags by cones].

9 A few point models

1. Order two analysis. The points models that follow are stationary and gener-
ally admit a covariance measure C(dx), which can be decomposed into the sum
of a Dirac measure and a function g(x)

C(dz) = mé(dzx) + g(x)dz (1)



The mean number of points Zg in the borelian set B is
m(Zg) =m a(B)

and the covariance between the numbers in B and in B’ is
C(Z5.2p) =ma BB+ [ [ 1s@lowoe—ndedy ()
2 R

In the isotropic case, there is a simpler way to reach g from experiments.
Note H(r), the average number of points which are included in the disc of radius
r, centered on a point x; (not counted), which is itself part of the set model. By
taking for B’ the disc of radius ds centered x;,and for B the disc (r, x;) minus
B’, relation (2) becomes :

C(ZB,ZB/):27rdx/0rg(s)sds (3)

But, this covariance is nothing else than the centered version of mH (r)
C(ZB, ZBI) =F [ZB - m(ZB)] [ZBI - ’ITL(ZB/)] =m [H(T) — 7r7"2m] dx (4)
where the primitive [H(r) — wr?m] of sg(r) is experimentally accessible.

Write a computing procedure for H(r)
[Procedure pp, for ”point packing”].

2. Anisotropic Poisson points. Work again with procedure points and
divide the simulation by setting in a memory the random points (x;, y;) and
in the other (x;, y;/2). To which extend does the affinity of ratio 1/2 make
the simulation more anisotropic from a visual point of view ? Interpret by
calculating the number of points which are included in the flat (sides 2,1) and
long (side 1,2) rectangles.

[Only the density varies, here doubles. Such thing as Poisson points cannot
be anisotropic /]

3. Measure the primitive H(r) for Poisson points simulations, and for the
centres in the model of disc doublets. Derive g(s) and explain. Calculate H(r)
for the germs centers in the hierarchical sets derived from the boolean model.

[For Poisson points with a density X\, we find, in square grid H(k) ~ \(k +
7)? and in heragonal grid H(k) ~ \(3 k* + 3 k + 1), which duly corresponds
to Poisson law variance, and implies g(s) = 0. In case of doublets from d
apart, H(r) undergoes a thrust, at distance d. In hierarchical cases, clustering
situations (rose, flake) lead to an additional increase of H(r), and repulsive
ones (hard, disjoint) to a decrease, followed an asymptote in both cases. The
range of function H(r) - mr2m corresponds to the average size of the interactions
between points].
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4. Calculate H(r) for the set of points generated by the crossing of isotropic
Poisson lines, with an intensity A. Derive the measure g(r) = 4\®/r. Simulate
such a process and calculate its H(r). Give an interpretation.

[We will simulate a process wich is close to the model, but easier to im-
plement, by considering two realizations of lines U diags, and by intersecting
them. A linear increase of H(r) is noticed, unlike all the other point processes
considered until now. In theory, if z; is a point of the set, the disk B(r, x;)
includes, on the one hand, lines intersections different from those which de-
fine z; (average number 7r2\2, see ”Poisson lines” exercice), and, on the other
hand, the points of the two lines that intersect at point x; (average number 8Xr ).
Consequently, H(r) = mr2)\* + 8Ar, and

/ sg(s) ds = 4X3/r therefore  g(r) = 4X3/r ]
0

5. Regionalized density. In this last exercice, we come back to image pro-
cessing. Let f be a numerical function of the plane. Simulate Poisson points
with a variable density f. Apply the simulation by chosing for f a grey tone
image. Explain.

[Procedure regpoints. This simulation is explained as the binarization of
the numerical grey image, whose quality is all the smaller since the involved
gradients are steeper and steeper].
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