Chapitre XXV : Tessellations aléatoires

Pondérations Variétés poissonniennes E.F.A. stables pour la réunion Doublets poissonniens E.F.A. booléen-poissonnien Tesselations de Voronoï et de Johson-Mehl

Moments en Nombre et en Mesure

• Deux façons de pondérer :

C' est l'histoire du boucher qui vend du pâté d'alouette, et qui annonce : **''Excellent pâté** *mixte*: **''50% alouette**, **50% cheval...** '' puisqu'il y met une alouette pour un cheval.

Quand on établit la statistique de tailles de particules (*i.e.* longueur, aire ou volume selon la dimension), on peut compter chacune d'elles - soit pour *un*, ce qui conduit à l'histogramme f(t), de moments E[t^k],

- soit proportionnellement à sa taille, avec histogramme g(t), de moments $\mathcal{M}[t^k]$.

Or

 $\mathbf{f}(\mathbf{t}) = \mathbf{g}(\mathbf{t}) / \mathbf{t}.\mathcal{M}[\mathbf{t}^{-1}] \qquad \text{et} \qquad \mathbf{E}[\mathbf{t}^{k}] = \mathcal{M}[\mathbf{t}^{k-1}] / \mathcal{M}[\mathbf{t}^{-1}].$

• La démarche en nombre place donc l'accent sur les *petits* objets (donc aussi sur le bruit), alors que g(t) est plus sensible aux *grandes* tailles.

Poids, Echantillonnage et Stéréologie

• Echantillonnage:

En échantillonnant l'espace selon une grille régulière, on pondère automatiquement les objets *en mesure*.

Il en va de même lorsqu'on décide d'extraire le grain qui contient l'origine.

• Stéréologie :

Considérons des objets convexes, et mesurons la proportion d'aire $P(l,\alpha)$ de leurs érodés linéaires de taille l, et de direction α . Soit P(l) la moyenne en α . Alors :

dans \mathbb{R}^3 : $\mathcal{M}[v] = 2\pi [P(0)]^{-1} \int_0^0 l^2 P(l) dl$; dans \mathbb{R}^2 : $\mathcal{M}[a] = 2\pi [P(0)]^{-1} \int_0^0 lP(l) dl$.

On accède ainsi au volume moyen *en mesure* (mais pas à celui en nombre) à partir de sections planes, voire uni-dimensionnelles.

Tessellations Aléatoires

• Définition:

Soit X un ensemble fermé aléatoire (en bref : un E.F.A.) de \mathbb{R}^n . Quand X est :

i - connexe, *ii* - d' intérieur vide,

alors le complément X^c de X définit une *tessellation* aléatoire de \mathbb{R}^n . Les composantes connexes, ouvertes, Y_i de X^c s'appellent les *classes* de la tessellation.

• Exemples :

- dans R¹, le complément de points aléatoires;
- dans R², tout graphe planaire aléatoire;

- dans Rⁿ, les *variétés poissonniennes*, le modèle de *Voronoï*, et celui des *feuilles mortes*.

Droites Poissonniennes

- Dans l'angle $\{\alpha, \alpha + \partial \alpha\}$, on réalise des points poissonniens d'intensité λ
 - On trace les lignes $\perp \alpha$ et passant par les points de poisson ;
 - On répète le processus dans toutes les directions $\alpha \in (0,\pi)$ indépendamment ;
 - on prend la réunion X des lignes obtenues dans chaque direction ;
- X est alors une *réalisation* de droites poissonniennes (anisotropie possible si λ dépend de α , i.e. $\lambda \alpha = \lambda(\alpha)$).

Propriétés Elémentaires

• Schémas induits :

Sur toute ligne Δ , l'ensemble X induit des **points poissonniens** d'intensité :

$$\int_{\pi} \lambda \sin \alpha \, \mathbf{d} \alpha = 2\lambda$$

• Vue der 1:

Sachant que la droite de Poisson L coupe l'axe Δ en [x, x+dx], L admet la direction { $\alpha, \alpha+\partial\alpha$ } avec la probabilité $sin\alpha/2d\alpha$. Les directions ne sont donc pas uniformes (la pluie verticale mouille plus).

• Raréfaction des germes :

Les germes forment des points de Poisson *non* stationnaires (intensité λ/ρ), alors que les droites de Poisson elles mêmes *sont* stationnaires. Inversement, partant de points de Poisson dans R², si l'on place une droite d'orientation aléatoire en chaque point, l'espace est *haché menu*.

Moments

- Notations : Y := Polygone de Poisson (ou polyèdre dans Rⁿ) E(Y) = moyenne en nombre ; M(Y) = moyenne en mesure; var(Y) = variance en nombre ; ν(Y) = nombre spécifique de polygones
- Résultats généraux : E(Y) = 1 / v(Y) pour toute tessellation, $\mathcal{M}(Y) / E(Y) - 1 = var(Y) / E(Y)^2$ pour tout compact aléatoire.
- Pour les polygones de Poisson dans \mathbb{R}^2 : $\mathbf{E}(\mathbf{Y}) = \pi \lambda^2$; $\mathcal{M}(\mathbf{Y}) = \pi/2\lambda^2$; $\operatorname{var}(\mathbf{Y})/\mathbf{E}(\mathbf{Y})^2 = \pi^2/2 - 1 \simeq 4$.
- Pour les polyèdres de Poisson, dans \mathbb{R}^3 (intensité λ_3) Toute section plane engendre des droites poissonniennes :
 - intensité : $\lambda = (\pi/2) \lambda_{3}$.
 - -variance relative : var(Y)/E(Y)² = $4/3\pi^2 1 \simeq 12$ (très élevée)

Fonctionnelle Caractéristique Q(K)

K est toujours un compact *convexe*. *dans* \mathbb{R}^{-2} : $D_{\alpha}(K) = \text{diamètre de K en direction } \alpha$ $Q_{\alpha}(K) = \exp(-\lambda D_{\alpha} d\alpha)$ $Q(K) = \exp(-\int_{-\alpha}^{-\alpha} \lambda D_{\alpha} d\alpha)$

Comme le périmètre de K vaut précisément

$$U\left(K\right) = \int_{\pi} D_{\alpha} d\alpha \;, \label{eq:U}$$
 il vient

$$Q(K) = \exp[-\lambda U(K)].$$

Fonctionnelle Caractéristique Q(K)

• dans Rⁿ: hyperplans poissonniens

L'axe polaire décrit maintenant la demi sphère unité Ω de $\ensuremath{\mathbb{R}}^n$. Le diamètre moyen de K

 $\int_{\Omega} \mathbf{D}_{\omega}(\mathbf{K}) \, \mathbf{d}\omega := \mathbf{M} (\mathbf{K})$

est appelé sa *norme*. L'expression de la fonctionnelle devient alors : $Q(K) = \exp \{ -\lambda M(K) \}$ (1). Comme, de plus, la norme est additive pour la dilatation, *ie* M(K \oplus K') = M(K) + M(K'), on a:

 $\mathbf{Q}(\mathbf{K} \oplus \mathbf{K'}) = \mathbf{Q}(\mathbf{K}) \times \mathbf{Q}(\mathbf{K'})$ (2)

et réciproquement....[G.Matheron, 1975], d'où

Théorème: Un ouvert aléatoire Y contenant p.s. l'origine O est un polyèdre de Poisson si et seulement si la rel.(2) est vérifiée pour tous compacts K, K' contenant O.

Les polyèdres de Poisson sont amnésiques !

- Considérons un polyèdre de Poisson Y₀ et un compact K contenant tous deux l'origine, (*Ce faisant, nous passons d'une démarche en nombre* vers une démarche en mesure).
- Comme l'événement $K \oplus K' \subseteq Y_0$ équivant à $K' \subseteq Y_0 \ominus K$, (2) devient $Pr\{K' \subseteq Y_0 \ominus K\} = Pr\{K \subseteq Y_0\} \times Pr\{K' \subseteq Y_0\}$ ou, aussi bien : $Pr\{K' \subseteq Y_0 \ominus K / O \in Y_0 \ominus K\} = Pr\{K' \subseteq Y_0\}$

(Si Y_0 n' est pas vide, il "oublie" qu' il a été érodé X par K au préalable.).

• Dans l'espace à une dimension, on retrouve la classique absence de vieillissement :

Ecole des Mines de Paris (2000)

Exemples de Droites de Poisson

Par érosion, les plus petits polygones ont disparu, mais le rétrécissement de ceux qui restent contrebalance exactement cette perte.

E.F.A. stables pour la réunion, dans Rⁿ

Définition : On dit qu'un E.F.A. X est stable pour la réunion, ou \cup -stable si, pour tout entier k >0, il existe un réel λ_k tel que la réunion $X_1 \cup \cup X_k$ de k E.F.A. indépendants et équivalents à X équivaut elle même à $\lambda_k X$.

Théorème (G.Matheron): Un E.F.A. sans points fixes est U-stable ssi :

 $Q(K) = \exp \{-\Psi(K)\}$ $K \in \mathcal{K}'$

où Ψ est une capacité de Choquet telle que :

 $\Psi(0) = 0$ et $\Psi(\lambda K) = \lambda^{\alpha} \Psi(K)$ $\alpha > 0$.

Exemples :

- Hyperplans poissonniens; Variétés de Poisson de dimension n-k;
- Trajectoires du mouvement Brownien dans R³.

Trajectoires browniennes et capacité newtonienne

- Dans R³, l' E.F.A. associé à la capacité de Newton est engendré par les trajectoires de *particules Browniennes*.
- Cette capacité $\Psi(\lambda K)$ vaut, si K est :
 - le segment unité : 0
 - le disque unité : $2\lambda / \pi$
 - la boule unité :

...avec, dans tous les cas, $\Psi(\lambda K) = \lambda \Psi(K)$

- La figure montre la trace dans le plan d'une trajectoire brownienne 3D.
- Un E.F.A. stable peut être fractal *ou non*.

Section plane d'une trajectoire brownienne

λ

Doublets poissonniens (I)

• Définition (G.Matheron et Ph.Cauwe)

- Partir de plans de Poisson dans \mathbb{R}^3 (int. λ)
- Remplacer chaque plan par un doublet de plans distants de h, variable aléatoire de distribution $F_3(h)$

Doublets poissonniens (II)

• Distribution des distances entre doublets induits :

dans
$$\mathbb{R}^2$$
, $F_2(h) = 4/\pi \int_0^{h} u^2 (1 - u^2)^{-1/2} F_3(uh) dh$
dans \mathbb{R}^1 , $F_1(h) = 2 \int_0^{h} u F_3(uh) dh$

• Fonctionnelle Q(K):

-quand K est un segment de longueur d : $\exp(-\pi^{2}\lambda) \int_{0}^{d} [2-F_{1}(x)] dx \qquad (1)$

-quand K est un disque de rayon r :

$$\exp(-\pi^2\lambda/2) \int_0^r [2 - F_2(x)] dx \qquad (2)$$

• Application au broyage des roches

Corrélation entre les estimations de λ à partir des rel. (1) et (2), pour 30 types de roches.

E.F.A. booléen - poissonniens

- Ce modèle, dû à *F.Conrad et C. Jacquin*, ne conduit pas à une tessellation, mais seulement à un E.F.A.
- définition :
 - réalisation de droites de Poisson (intensité λ)

- restriction d'une réalisation d'E.F.A. Booléen (grain primaire X', intensité θ) à chaque polygone de Poisson.

• Fonctionnelle caractéristique ($K \in \mathcal{K}'$):

 $Q(K) = \exp\{-\lambda U(K) - \theta E [mes(X' \oplus K)]\}$

• Cette relation s'étend à Rⁿ en changeant le *périmètre* U(K) en *norme* M(K).

Deux simulations d'EFA booléen-poissonniens .

Exemple d'E.F.A. booléen - poissonniens

a) failles observées (photographie aérienne)

b) Simulation du modèle

Ecole des Mines de Paris (2000)

Voronoï et Johnson - Mehl

• Voronoi :

Cet E.F.A. se définit comme le squelette par zones d'influence de points poissonniens de Rⁿ

• Johnson - Mehl :

Ici, les germes de Poisson apparaissent *successivement* et croissent de façon isotrope

- Si un germe apparaît à un endroit déjà atteint, on le supprime ;

- Quand deux grains se rencontrent, leur croissance s'arrête dans la direction de contact.
- La croissance d'un grain est achevée lorsqu'il a atteint ses voisins dans toutes les directions

(les frontières sont des arcs d'hyperboloïdes).

Voronoi

Voronoï et Johnson - Mehl (II)

• Modèles étudiés par E.N.Gilbert, R.E.Miles, Ch.Lantuejoul, et A.Haas.

Sont indiquées ci dessous quelques moments de base des deux tessellations dans \mathbb{R}^3 , ainsi que leur comparaison avec les pavages réguliers de l'espace. On pose $v = \theta_3^{1/3}$

Paramètre	Voronoi	JMehl	Rhombododécaèdre
$\boldsymbol{\Theta}_1$	1.45 v	1.28 v	1.33 v
θ_2	$1.46 v^2$	$1.22 v^2$	$1.37 v^2$
$\mathcal{M}(L)$	$0.95 \ v^{-1}$	$1.10 \ v^{-1}$	
$\mathcal{M}(S)$	$1.04 \ v^{-2}$	1.50 v $^{-2}$	
$\mathcal{M}(V)$	1.24 v ⁻³	2.20 v $^{-3}$	

La densité du modèle iso-volumique du rhombo-dodécaèdre se situe entre les deux autres. L'étoile $\mathcal{M}(V)$ est la mesure la plus discriminante

Exemple de Johnson - Mehl

Structure microscopique d'alumine frittée, modélisable par une tessellation de Johnson - Mehl

Ecole des Mines de Paris (2000)

Cours de morphologie Mathématique XXV. 20

Tessellations quasi - périodiques

Modèle dû à Duneau et Katz :

- On le définit comme les sections de pavages Euclidiens périodiques par des sous-espaces de pentes irrationnelles .
- Par exemple, partant d'une trame carrée, on l'intersecte par une bande de pente irrationnelle α , et on projette cette restriction normalement à α .
- Autre exemple: les *pavés de Penrose*, qui sont obtenus par sections 2D de R⁵.

Exemple de segments pseudo-péridoques dans R¹

Exemples de tessellations quasi-périodiques

Exemples de quasi-périodicités mettant en jeu des pentagones réguliers (1er cas) et des carrés et des losanges (2ème cas).

Références (I)

(*Toutes les références ci-dessous, excepté la seconde, portent sur la première publication d'un travail original*)

- **R.E. Miles** (1964), Random polytopes. PhD thesis, Cambridge, England. *[première étude sur les hyperplans poissonniens]*
- **R.E. Miles** (1969), Poisson flats in Euclidean spaces, Part I. Adv. Appl. Prob. 1, 211-237. [*présentation de la première référence*]
- **F. Conrad** and **C. Jacquin** (1972), Représentation d'un réseau bidimensionnel de failles par un modèle probabiliste. Tech. Report, Centre de Morphologie Mathématique, Ecole des Mines, Paris. [*Modèle booléen-poissonnien, application en géologie*]
- **G. Matheron** (1975), Random sets and integral geometry. Wiley, New York. [*Caractérisation des hyperplans de Poisson, EFA stables*]

Références (II)

G. Matheron (1972), Quelques aspects de la montée. Tech. Report, Centre de Morphologie Mathématique, Ecole des Mines, Paris. *[Théorie des doublets poissonniens]*

- **Ph. Cauwe** (1973), Morphologie Mathématique et fragmentation. PhD thesis, Univ. of Louvain, Belgium. [*Application des doublets poissonniens au broyage des roches*]
- E.N. Gilbert (1961), Random subdivisions of space into crystals. Ann. Math. Statist., 33, 958 (1962). [*Résultats de base sur les polyèdres de Voronoï*]
- **C. Lantuéjoul** (1977), Sur le modèle de Johnson-Mehl généralisé. Tech. Report, Centre de Morphologie Mathématique, Ecole des Mines, Paris. [*Résultats de base sur les polyèdres Johnson-Mehl*]
- W.A. Johnson and R.F. Mehl. (1939), Reaction kinetics in processes of nucleation and growth. Trans. A.I.M.M.E, 135, 416.