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1 Introduction

The short remarks that follow are just a comment to the Sergio Faria’s talk
last month, who gave an overview of his current work on morphological optimi-
sations. The representation theorems of mathematical morphology decompose
any operator 6 (resp. increasing operator, resp.opening) into a supremum of
hit-or-miss mappings (resp. of erosions, resp. of adjunction openings). Such
decompositions suggest a use of hit-or-miss operators, erosions and adjunction
openings as universal bases for image processing. In this way of thinking, every
problem of image processing should be solved by means of a training test of im-
ages/solutions, plus an adequate union of erosions (or hit-or-miss, or adjunction
openings), whose structuring elements should derive from some optimisation.

Unfortunately, the implicit analogy with the vector space structure that
underly this approach does not resist to a more accurate examination. The
unions involved in such representations are not countable, so that when we pass
to digital versions, combinatorial explosions occur inevitably. For example, the
operator " suppress all particles of areas smaller than 10007 yields billions of
adjunction openings, since it requires the family of all structuring elements
whose area is equal to 1000. Then, a technique to get around this trouble
consists in restricting the possible stucturing elements to those that are inluded
in a window of a given size, in E (for sets) or in E®T (for numerical functions).
But by so doing one restricts also the class of possible operators, hence their
efficency. In particular, by reducing the size of the window to value one, as it
is generally made, one implicitely decides to ignore every feature larger than
the noise. In such cases, even if Matheron or Banon-Barrera theorems are still
called upon, they are no longer used. The approaches are simply based on that
a union of erosion is increasing, a union of adjunction openings is an opening,
and a union of hit-or-miss operations is anything...

However, the principle of optimising a decomposition of operations remains
a good idea, and if for computational reasons the window has to be kept down,
one can think to composition products between the general operators 6 and more
specific ones, such as the connected over-filters 1. The latter, which depend on
few parameters, should compensate the spacial narowness of €, while introducing
nice features. In the following we try and develop such an approach, after having
recalled the two representation theorems, by erosions and by hit-or-miss, of the
translation invariant case.

2 Binary representation theorems

The importance of erosions and dilations, for sets and functions, is best illus-
trated by the following theorem which is due to Matheron([2], p.218). Define
the kernel V() of a translation invariant operator ¢ on P(R™) by

V() ={AcP(R")| O ey (A)}.



Where O designates the origin of the coordinates.

Theorem 1 (G.Matheron) Let 1) be an increasing translation-invariant opera-
tor on P(R™). Thent can be decomposed as a union of Minkowski substractions,
and, likewise as an intersection of Minkowski additions. More precisely

¥(X) = $(X) = U{X O B, B € P(R"), B € V(®)}. 1)

Banon and Barrera [1] have extended Matheron’s result for operators which
are not necessarily increasing and shown that any translation invariant mapping
0 : P(R™) — P(R") is a supremum of hit-or-miss mappings. This transforma-
tion, which turns out to be historically the first morphological operator [3], is
defined as

X®(A,B)=U{he E|A, C X and B, C X°} = (X0 A)N(X°O B).

where A, B C R™ are structuring elements. The hit-or-miss operator is equiva-
lently be written in the following way

X®(A,B) =U{he R"| A4, C X C By},

which avoids the use of a complement.Obviously, there exists the following re-
lation
X©(A,B)=X®(A,B°.

For A, B C R™ we define the "interval” [A, B] as
[A,B] ={X e P(R") | AC X C B}
and the bi-kernel W (1) of operator ¢ as
W (¥) ={(A,B) € P(R") x P(R") | [A, B] SV ()} .

Theorem 2 (Banon-Barrera) Let ¢ be an arbitrary translation-invariant op-

erator on P(R™) of bi-kernel W (¢) . Then we have
P (X)=U{X®(A,B)| (4 B)cW({)} (2)

3 Representation theorems for numerical func-
tions

How can we extend Banon-Barrera theorem to functions? First of all, the points
of the space have to be replaced by the pulse functions:

izt(y) =0 if w#y

Secondly, we have to avoid a hit-or-miss formalism that involves a comple-
ment, since this set operator does not extend to numerical functions.This can



obtained by using the ® form of the hit-or-miss mapping, namely by introducing
the following operator, for g,¢g’ < F(R™)

folg,g)=V{ine € F(R") [ gn < f+t < g,}.
associated with each z € R® and t € R .

Finally, generalizing the previous set oriented case, define for each pair g, ¢’ €
F(R")

e the "interval” [g,¢’] as
9.9 ={feF(R")|g<f=<d}
e the kernel of an operator 6 : F(R™) — F(R™) as
V() ={g e F(R") | O <0(0)}
e and the bi-kernel W () of the operator 1 as
W (0) ={(9,9') € F(R") x F(R") | [9,9'] SV (0)}.

Theorem 3 Let 6 be an arbitrary translation-invariant operator on F(R™).
Then
0(f)=Vv{felsd)|(94)eW®)} (3)

Proof. 7> part’ : Let iy € f ® (9,9") for some(g,g’) € W(6). Then
gn < f+t<g}, hence f-r, —t € [g,¢'] TV (0). Therefore O € 0 (f_p —1t), and
by translation-invariance of 0, ip € 0 (f).

"< part’: Letip, € 0 (f), thatis, O € 0 (f_p, —t). Then[f_r —t, f_p — 1] €
W (6). In addition, it is obvious that iny € f ® (fop —1t, fon —t) and thus
hev{fe(gd)|(g.g)eW @)} u

Remark that the theorem treats the set oriented case via the supporting
functions. Note also that if operator 6 is increasing and g € V(6), then
(g,4+00) € W () and since X ® (A, B) is decreasing with respect to ¢/, we have

f©(g,+) = f ©g, and formula (3) reduces to 6 (f) =U{f©g| g€V (0)}.
So Banon-Barrera’s theorem indeed generalizes Matheron’s one.

Both theorems admit a dual form with respect to complement. Let us show
for exemple the dual statement of Matheron’s thorem in the set case, by intro-
ducing the operator #* that derives from 6 by duality, i.e.

6% (X) = [0 (X°)]° or as well §(X) = [0* (X°)]°
Then, relation (1) is equivalent to
0(X) = U{(X°OB)|BeV(@)}'=n{(X°0B)°|BeV(#)}°
0(X) = n{XaB|BeV()}.
This last form gives a dual statement for Matheron’s theorem, according to

which any increasing and translation invariant mapping is decomposable into
an infimum of Mankowski additions.



4 Composition products

Firstly, we recall two notions :
1/ an operator v is connected, for connection C, when

Vy € E: Cyp(A) = [UCi(A),i € I|U[UC;(A), 5 € J] 4)
2/ a mapping 0 does not create connected components when
Cy0(A) #0D=3Tyec A: C,0(A) =C,0(4) (5)

where C,(%) stands for the connected component at point = € E.

From now on, symbol 1designates a connected over-filter (i.e.) is connected,
increasing and ¥ > 1) and 6 a mapping that does not creates connected
components

Proposition 4 Let v be a connected over-filter on P(E) and let 6 be an oper-
ator on P(E) that does not create connected components.
There we have

Yo > = Yoy > 0y (6)
Proof. Given A € P(E), suppose that 18 > 1 and let © € 0(A). Since
x € Cy0(A) then, according to relation (5), there exists y € Y(A) such that
Cp0y(A) = C,09(A). Now, the over-potence of ¥ and the inequality V8 >
imply that
y € P(A) Cp(A) C pa(A).
Therefore Cy1p01h(A) is non empty, and since ¢ is connected, relation (4) implies
y € CyOy(A) C Cyipdy(A),
i.e. finally x € Cz0y(A) = Cyby(A) C Yoyp(A). |

The requirement 6 > 1 may be fulfilled in several ways. Here are three
possible inputs

« 0>
e 0 is extensive ,ie. 6 > 1T
e 0 =1V 0y, where 6y and ¢ do not create connected components

The condition (5) of non creation of connected components is not very de-
manding. Start from an arbitrary mapping 6oP(E) — P(E) and suppress the
connected components of 0g(A) that miss A; the result defines the following
mapping 6 :

0(A) = 0o(A)\ U {Cy [00(A)] | = € E, Cr(Bo(A)) N A =0}

which, by construction, satisfies condition (5).



When ¢ = v is a connected opening, the anti-extensivity of v yields 6+ >
~6~, and implication (6) becomes

>y = Oy=10. (7)
If, in addition, operator 6 is increasing, then we have

70 > v — Oy =0y <~90.

5 Idempotent upperbounds

The most useful case occurs when 6 > 1. Firstly we have

0 > ¢y > 9,

which provides a lower bound for 6. Secondly, the composition product 6
inherits of the over-potence property of 1, and induces an idempotent operator.
More precisely, we can state the following

Proposition 5 Let {¢; ,i € I} be a family of connected over-filters, and let
{6;,1 € I} be a family of operators that do not create connected components. If
for each index © we have 0; > 1, then all products 8;1; as well as the supremum
V{0;1;,1 € I } are over-potent.

Proof. The inequality 8; > 1, and the over-potence of 1, imply that 0;1,0;¢0; >
V0:0; > 0., and relation (6) that 0;1,0;4, > 6;1; so that the product
01, is over-potent. Similarly, for every ig € I, the supremum V{0;v;,i € I }
satisfies the inequalities

{VOih; H{VO i} > Oigths {VOihs} > ¥ {VOit;}
Z wio{\/eid}i} Z wio{\/eﬂl}i} 2 %91'01/11-0 Z 91-0%0
hence {VO;¢, }{VO;,} > {VO;ip;}.

Given one product 81, we now consider the class C closed under supremum
and self composition generated by 6, i.e. the intersection of all classes closed
under V and self composition that contain #1.We will study the structure of
class C by adopting the same type of approach as Matheron did for generating
filters,

Proposition 6 Let be 61 be the composition product of two operators as de-
fined in the previous proposition, and let C be the class closed under V and self
composition generated by 6. Then class C admits a larger element & which is
idempotent, and satisfies the relationships

§=0p& =08 = ¢

Proof. All the elements of C are over-potent. By closure under V, the
supremum mapping

§=V{n,neCt (8)



is iteslf an element of C, hence £ > £. But C is closed under self composition,
so that €& belongs to the class, and according to rel.(8) £ < &, which results
in the idempotence of £. Moreover, by over-potence of 61, and since & is the
mazximum element of the class, we find & = £ . Then we have, on the one hand
Y€ = YOYE > OYE = £, and on the other one & = Y& > Y& > €, hence the
equality &€ = Y&, and also £ = P& =05, m

In digital spaces, equation (8) reduces to the idempotent limit of 6 under
iteration, i.e.

§ = [0y]"

for n large enough. In particular that when v is an opening, i.e.t) = =y, then the
condition v < 6 is equivalent to v < v and from rel.(7) we draw

6 Conclusion

This brief analysis aims to open the door to variants in hit-or-miss optimisations.
Such variants have been constructed in order to compensate the narowness of the
supremum 6 of hit-or-misses by composing it with a connected filter ¢ involving
possible larger sizes. Optimisations can be reached by several ways from the
starting points suggested above. One can use the double inequality

Y < 0 < Yoy

and minimise the distances between ¥(f) and 8y (f) for a training set. Alter-
natively, one can try and obtain the idempotent limits before any optimisation,
or even work directly with the product 6y as a unique entity to optimise. Fi-
nally, one can consider 6 in a piecewise manner as made of several suprema 6; of
hit-or-misses, each being associated with an over-filter 1;, and then apply the
optimisation to Vé;1,.
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