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1 Introduction

Up to now, when we where dealing with numerical functions, we have system-
atically considered the lattice ﬁE of all possible functions from some space E
into the totally ordered lattice R (or Z, or into anamorphoses of R or Z).This
allowed us to work with a lattice where the V and the A are the numerical ones
at each point x € E, and to postpone the discussion about the pertinence of
such a lattice. However, such a framework is obviously too general. The nu-
merical functions on R™, for example, carry number of exotic specimen that are
irreductible to any digitization.

In this chapter, we propose two reductions that reflect two points of view
on the physical word. Firstly we can base the approach on some disymmetry
between foreground and background so that very narrow crestlines sharp peaks,
and vertical cliffs be well represented. By so doing, we obtain the lattice of the
upper semi continuous (in brief u.s. c.) functions that transposes to numerical
functions the closed sets of the binary case. It permits to generalize Poisson
points into Poisson pulses for example.

The second reduction puts the emphasis on the digitability of the functions
and of the operations under study. This demands the continuity of both func-
tions and operators. The goal is not trivial because the class of the continuous
functions does not form a complete lattice. For example, the infimum of all
functions {z%, 0 <z <1, « € Z4} is not a continuous function. We shall have
to be more restrictive and focus on the classes of w-continuous functions.

Which lattice suits the best for representing grey tone images? We just saw
that the extreme generality of R” involves too many teratological functions,
so that the whole class must be reduced as soon we want to structure it. For
example, the requirements for a stochastic version require conditions compact-
ness that cannot be fulfilled by lattice KE, but which are satisfied by the lattice
of the upper semi-continuous functions ([7], pp.468-469). More generally this
lattice is convenient in all situations when the processing reduces to dilations



Figure 1: Umbra U(X) of a set X C RxR

(e.g. testing random functions). On the other hand, it is not closed under sub-
straction: the difference of two u.s.c. functions may be not continuous at all,
and operators such that the top-hats mappings do not apply the lattice into it-
self. Finally, the lattices of w-continuous functions are both regular enough and
self-dual for the opposite (i.e. f € L, < —f € L) so that they seems to be the
general model to digital situations that refer to an underlying Euclidean space
(video processing, microcopic images, tomography, etc..). But these lattices are
incompatible with that of the semi-continuous functions: nobody is perfect !

2 Upper semi-continuous functions

2.1 Comments on functions and umbrae

Is it possible to identify the function lattice R, or some of its sub lattices, with
a class of sets in the product space E ® R? This question will be expressed in
a more precise way if we introduce the notion of an umbra.

Definition 1 With every set X of the product space E ® R there corresponds
the set U(X) of E ® R defined by the relation to every function f : E — R
(and more generally to see Fig.1),

UX)={(z,2) cE®R, 2<7,(2,2)€ X} UE_,.

In particular, when set X is the graph of a function f : E — R the associated
umbra becomes

U(f) ={(z,2) e E®R, f(z) <2}UE_«
Figure 1 illustrates this definitionAlthough we have
f<g <= U(f)cU) ,

the correspondence ”function - umbra” is not a bijection (an umbra and its
topological closure can yield the same function, see exercise n® 8-1 below)).



Figure 2: A function without a maximum (it is not u.s.c.).

2.2 Lattices of semi-continuous functions

Definition 2 Given a topological space E, a numerical function f : E — K;is
upper semi-continuous (u.s.c.) when its umbra U(f) is a closed set in E ® R.

The use of semi-continuity appears as soon as extrema are involved in the
analysis under study, at least in continuous cases. For example (Fig. 2), could
we extract the maxima of the following function f: R — R :

f@) = 1—22 when 0 < |z| <1,
710 when |z| > 1orz =0 ?

Actually, the maximum of such a function, although it is bounded, does not
exist. Conversely, as soon as we refer to the “maximum” of a function over a
continuous space, we implicitely introduce the requirement that it is u.s.c. (or
lower semi-continuous when looking for minima).

The class F,, of the upper semi-continuous functions f : E — R forms a
complete lattice. In this lattice, the inf of a family {f;} is the function which
admits, at each point x € R?, the numerical inf of the f;(z)’s, but the sup is
the function whose umbra is the topological closure of the union of the umbrae
of the f;’s. We have

inf fi = {f €7, UT(H) =V},
swp fy = {f € R UH(H) = JUM),

a notation which shows that the lattice F,, and that of the closed umbrae can
be identified . As a matter of fact, lattice F,, turns out to be the most direct
transposition of the closed sets to numerical functions. The pulses, which belong
to lattice F,, , are sup-generating co-primes, but not strong ones. Lattice JF, is



distributive, and infinite A-distributive, but not infinite \/-distributive. For the
classical Choquet toplolgy on closed sets, lattice F,, is CCO.

In 1969, G. Matheron used the identificationbetween s.c.s. functions and
umbrae to extend his random closed sets theory to the upper semi-continuous
functions from an L.C.D space FE into R [3]. He proved that the class F, is a
compact family of the closed sets of E ® R. The topology on F, is obtained
as the restriction of Matheron topology, as dfined in chapter 2, to this specific
class. Consequently, the open sets in F,, are generated by the parts of F,, whose
elements f satisfy the two conditions:

X7 (G)=sup{f(z),x € G} >b and inf{X;(G),GODK}<a (1)

as G spans the open sets of E, and K its compact sets (a,b € K). When both
E and R are equipped with a metric and that d stands for the product metric
on E® R, the topology defined by relations (1) results in the following criterion
of convergence

Criterion 3 A sequence {fn} converges towards f in Fu if and only if for all
z,t € E®R, the sequence d[(x,t),U(fn)] converges in Ry .

The expression of this criterion of convergence via the umbrae is geometri-
cally more intuitive than the general formalism by means of neighorhoods and
sub-sequences. We shall no nlonger develop this topology but indicate only three
worthwhile results that must be quoted. They hold on cross sections, increasing
mappings and Minkowski addition respectively.

e The upper semi continuous functions f € F, can be characterized by their
cross sections

Xi(f)y={z: f(z) >t} —o0<t<+o0
which are closed and monotonically decreasing sets of E, i.e.
t'<t=Xy 22X, and ¢ Tt=Xp|X;.

Conversely ([7], p.426), any stack {X;, —oo < ¢t < +oo} of closed sets

)

satisfying these two conditions generates a unique u.s.c. function f with

f(z) =sup{t:z € X;} z€E.

e An increasing mapping ¥ on F, is upper semi-continuous if and only
if f, | f in F, implies ¥(f,) | ¥(f).Here the adjective "upper semi-
continuous" concerns of course the mapping under study. This property,
that derives from prop.1-2-4 in [4], orients us towards samplig techniques
by covering.



o If g € F,, is a structuring function whose all cross sections are compact
(except possibly at —o0), then the Minkowski addition f — f®g from F,
into itself is continuous, whereas the Minkowski substraction f — f &g is
upper semi-continuous only.

However, the limits of Lattice JF,, are rapidly reached. Class F, is not closed
under difference, and does not allow us to model the residuals. Also, in lattice JF,
, the infinum A f; is identical to numerical inf, whereas the supremum \/ f; is the
topological closure of the numerical supremum; hence the symmetry between \/
and A is lost. This is the reason why Minkowski addition, but not subtraction, is
continuous. Now one cannot design an experiment able to bring to the fore such
a distinction. In practice, one passes from a dilation to an erosion of function f
by replacing it by —f, or by m — f, and negation is continuous. Is a continuity
that no experiment will never distinguish from semi-continuity a worthwhile
property of the model? Finally, F,, is not a vector space, and this is a pity, for
linear techniques in image analysis are of barycentric type (e.g. convolution).
But is it possible to construct a function lattice, sufficiently regular and which
should accept some linear operations?

3 (Gauges

Consider an arbitrary metric space E of distance d (R™,Z"™, or conditional.
versions of these spaces, planar graphs, etc. ).With any numerical function f
from space E into R R (or into 7 ) one can always associate a second function, w
say, from R4 into R4 as follows:

wr(h) =sup{|f (z) — f(y)] y€E, dx,y) <h}. (2)

Clearly, equation (2) results in an increasing positive function. More pre-
cisely, it characterizes the gauge of function f. Remember [1] that a mapping
w: Ry — Ry is said to be a gauge, if it is increasing and when we have

w(o)=0 and wu+v) <w(u)+w(v) (sub-additivity)  (3)

)
Indeed, let |f (z) — f(y)| be an element involved in the supremum wy (u + v)
of Eq (2), then d (z,y) < u+wv and there exists a closed ball B (u) (resp By, (v))
of radius w and centre x (resp. radius v and centre y) such that B, (v)NB (v) #
(). Then for any point z € B, (u) N B, (v), we have that

[f (z) = f(2)] < w(w) and |f(z) = f(y)| < w (v)

and by triangular inequality |f (z) — f(y)| < w (u) +w (v). Then, by taking the
supremum of the left member over  and y in E, under the condition d (z,y) <
u + v, we obtain the sub-additivity inequality (3).



To prove the converse, we must start from a given gauge w and exhibit a
numerical function b : E — R that satisfies Eq.(2). Take for b the quantity

b(z) =wldg (0, z)) rxeFlE

where w is the given gauge. We derive from the increasingness and the sub-
additivity of w that

wld(o,y)] <w[d(o,x) +d(z,y)] <w[d(o, )] +wld(z,y)]

ie.
b(z) —b(y) <w(d(z,y))
as well as the similar inequality obtained by interchanging = and y, so that we
can finally write
b(x) = b(y) < w(d(z,y)). (4)

Therefore we can state the following

Theorem 4 Given a metric space E and a numerical function f : E — R, the
quantity w defined by the equation

wy(h) = sup{|f () = f(W)], 2,y € E,d(z,y) < h}.

is a gauge. Conversely, given a gauge w, there exists always a numerical function
f: E — R that satifies this equation.

Geometrically speaking, the sub-additivity condition (3) amounts to be a
concavity reduced to the triplets (z,y, z) of coordinates that involve the origin
(see exercise 8-2 below). Also, it is noticeable that Eq.(2) applies to both con-
tinuous or discrete spaces. Actually, when the gauge is continuous at the origin
it serves to bridge the gap between the two cases (see section 6 of this chapter).

The gauge assiociated with function f allows us to express a nice property
of finitness. Indeed the sub-additivity implies taht for all positive integers k we
have w (ku) < kw (u). Therefore if w (u) is finite for some v > 0 and simulta-
neously f(z) < oo for some point x, then the finiteness of f(z) extends to the
whole space FE

{Bu>0;3x € E:w(u) <ooand f(z) <o} < {Vhe E, f(zx+h) < oo}.

The gauge characterization involved in theorem (4) suggests to regroup the
families of functions depending of a same gauge as follows

Definition 5 Given a gauge w, the set of functions f : E — R such that
wy <w

is called the w-gauge class and is denoted by G, .



Clearly, the w-gauge classes reduce as gauges w decrease, and we have
w1 < w2 = Gu1 C Gue.
More generally they all satisfy the following three obvious properties

Proposition 6 Consider the set of all w-gauge families of functions f : E — R.
Then

i) the constant functions are the only elements to be common to all w-gauge
classes;

i1) each class G,, is closed under vertical translation

ac€Rand f€G, =a+ f€q,
i1i) each class G, is symmetrical

feGue—fecd,

4 Gauges Based Lattices

4.1 Gauges and Numerical Lattices

Given a lattice £, a subset £’ C L is said to be a sub-lattice of £ when L' is
closed under the supremum and the infinum of £, and admits the same two
extrema as L. Then all concepts or mappings defined for £, and which involve
uniquely sup and inf, have a meaning over £’. We will see now that such a
property is satisfied by the w-gauge families.

Theorem 7 Given a metric space EE and a gauge w, the class G, of the w-gauge
. = ) —=E
functions from E into R is a sub-lattice of R .

Proof. Let {fi,i € I} be a family in G, ; put f =\ fi. If f(x) = +oo for
some z € FE, then f = 400, hence { belongs to G, . If, f(z) < 400, then f(y),
which is bounded by

wld(z,y)] + f(z)

is finite, and we can write, for all z,y € E :

fy)—f(z) <wld(z,y)] andaswell f(z)—f(y) <wld(z,y)].

A similar result may also be obtained for A f;, which achieves the proof. [ ]

Theorem 7 is classically presented in the Lipschitz framework (see for ex. a
proof in [1]). The property it states owes more to the compacity of R than to
its complete ordering, and this point is less known. As a counter example, take
0 <a<b<1andthelattice L = {z:z€R,—co<z<a or b<z<l1}.



Consider the family of Lipschitz functions f; : |—00,a] — Ldefined by f; (z) =
x —e; withg; | 0. For x =a and y = a — o, (o > 0), we have d(z,y) = « but

\/ Fi@) =6\ i) =a—z bence |\/ fi(2) = \/ fi ()] =b—a+a>al

Remark that no possible continuity of gauge w intervenes in the proof of
the theorem. This provides it with a large degree of generality that can be
maintained in the next result, about the topology of the the gauge based lattices.

4.2 Topology for the Lattices G,

The criterion (??) will now allow us to derive the \/ and A continuities for the
G, lattices when the arrival space is R, and next when it is (]R) , n a finite
positive integer.

Theorem 8 Let E be a metric space, w be a gauge and G, be the lattice of
the w-gauge functions from E into R. Then the unique topology that makes G,
CCO, with continuous \/ and \ is the topology of the pointwise convergence.

Proof. Consider two distinct functions f and g of G, with f £ g. There
exist at least one point « € E and a real member a with (for example) the strict
inequalities

g(z) <a< f(z)

Introduce the two following elements fy and gg of G,:
foy) =a-wld(z,y)]  goy) =atwld(zy)] vyeE (5

Function f does not belong to the lower bounds of gg, since f(z) > a, i.e.
f ¢ M9, Similarly, we have g ¢ My,. Moreover, any function s € G, is either
< go (when s(z) < a) or > fo (when s(z) > a), so we can write M9 UMy, = L., .
Therefore criterion ?? applies, and lattice G,, is CCO with continuous \/ and
N\ for a certain topology. One can find out this topology by means of a general
characterization [5], but in the present case, it suffices to observe that G, is
a compact sub-lattice of the upper semi continuous functions, sub-lattice on
which both topologies of Matheron and of the pointwise convergence coincide.
Now, the \/ is continuous for the first one, hence also in the pointwise sense.
Similartly, G, is a compact sublattice of the lower semi continuous function,
hence / is continuous in the pointwise sense, which achieves the proof. ]

This result extends to w-gauge functions f : E — R a theorem already estab-
lished by G. Matheron in the Lipschitz case [theorem 6.5 in [5]]. The extension
may be pursued further. First, space R may be replaced by any compact segment
S C R. Clearly, the w-continuous functions from F into S form a compact quasi
sub-lattice of G, (”quasi” because the extreme elements are not preserved). The
proof may be reproduced integrally for them. Also, Z may be substituted for R
and any subset of Z for S. Second, the theorem extends to product lattices.



Corollary 9 Theorem 8 remains true when@ is replaced by any product T =
I1{7;,j € J} of closed subsets T; of R or of Z.

Proof. As previously, consider two distinct functions f and g of 7, i.e.
f={f, j€J} and g = {g;, j € J} . There exists at least one label v € J
such that f, # g,, with f, () > g, (2), strictly, for a point = € E. Lattice 7,
enters the framework of theorem 8, which determines two distinct functions f,
and g,, from equations 5. Let then fo be the function £ — 7 whose label v is
equal to fy,, and whose all other components f;, j € J, j # v coincide with
the inf in the corresponding lattice 7;. Similarly, define go to be the function
equal to gy, for j = v and equal to the sup in 7; for all j # v. The criterion of
proposition 77 is still satisfied for fo and gg, which results in the corollary. m

5 Numerical Lattices Characterization

The three properties of proposition (6) depend obviously on the Euclidean met-
ric on the arrival space R, but are true for any distance on E, and their expres-
sions do not involve this underlying distance on E. Conversely, if we take for
FE an arbitrary space that does not need to be metric, and if we assume only
the three conditions of proposition (6) are axioms to be satisfied for a numer-
ical lattice 7 of functions f : E — R, what are the characteristics of 7 ? We
will treat this problem by following an approach partly sketched in ([5], p.133).
With each point g of E associate the function

Py = VIS FET, flzo<0)} (6)

which belongs to 7. From axiom %), function f = 0 belongs also to 7, hence

Py (o) = 0 and p, (y) > 0.

Then from axiom 4¢),we have for all a € R

V{f:feT, flzo<a)}=a+p,,.

Moreover, we have p,(y) = p,(z) = p(z,y). Indeed, let f be a function that
participates to the supremum p,. Put ¢ =0 — f(x) and g3 = p,(y) — f(y). By
axiom i), any function f + max(e1,e2) + €, with £ > 0,belongs to lattice 7, so
that when ¢1,e2 and ¢ | 0, we obtain

0=A{f(z) s fET, fy) = p(v)}-
By multiplying the two members by -1, and applying axiom 4ii), we find 0 =
V{f(z) ; feT, fly) > —p,(y)}, or equivalently (axiom i))

p(y) =V{f(z); feT, fly)>0}=p,(z)

Take now an arbitrary, but fixed, function f € 7 and consider the quantity
f(xo) + pg,- It is equal to f(xg) at point zg, and > g everywhere else. Hence
we have

f=MF(@o) + puyr w0 € E} = V{f(20) = pry» 70 € E} (7)



the second equation deriving from the first one by duality (axiom :7)). Therefore,
lattice 7 is generated by the prime elements a + p, , as well as by the co-prime
elements a — p,,

P = {a+p,, acR, x9cE}
Q = {a—p,, acR, xcE}

It is easy to see that lattice 7 satisfies the conditions of criterion (?7): when
f and g are different, with f £ g, there are at least one point zg € E and a
real member a with g(zo) < a < f(2). Then the two functions fo = a — p,,
and go = a+p,, play the same role as in Eq (5). Therefore the unique topology
for which the V and the A operations are continuous is that of the pointwise
convergence. We can state the following

Theorem 10 Let E be an arbitrary space. Fvery family of mappings f : E — R
which is a numerical lattice,T say, and which satisfies the three conditions of
proposition (6) is CCO with continuous V and A for the topology of the pointwise
convergence.

This lattice is both sup-generated by the co-primes {a—p, ,a € R, xq € E}
and inf-generated by the primes {a + p, , a € R, xq € E}, where p,, = V{f:
feT, flwo<0)).

Equations (7) can be interpreted geometrically by considering the familly
{—=ps, x € E} as a structuring function of associated dilation §, and erosion ¢,,.
Then the two equations (7) indicate that all functions f € 7 are both dilated
by 4, and eroded by ¢, (hence open by ¢, 6, and closed by é,¢,). In particular
each p,, which is an element of 7, is thus open and closed by itself. This point
is illustrated by figure (3) in the translation invariant case.

When space E is metric, the gauge of lattice 7 admits an expression as
suprema of p(z,y), since we have

w(h) = Vip(z,y), d(z,y) <h}

In the euclidean space R™ in particular, if we assume lattice 7 to be closed under
translation and rotation, then p(z,y) = p(0,d(y — )) i.e. since w is increasing,
w(h) = p(0, k). To summarize, we can state the following

Proposition 11 Lattice T is the image of lattice R” under dilation 0, by
function p, as well as the image of under erosion ¢, by —p i.e.

T =6,R") = ¢,(R")

In particular, when E is the Euclidean space R™, then lattice T is generated by

all suprema of translates of the gauge w(h) = p(0,h) over the space R™ © R,
and, equivalently, by all infima of translates of —p over the space R™ ® R.

10
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Figure 3: Function b is a 1-D gauge. The super-graph of b is generated by the
union of the super-graphs of the translates of b,and the sub-graph of b by the
union of the sub-graphs of its opposite translates.

Clearly, theses results are still valid in the digital case, mutatis mutandis,
i.e. among others by choosing a translation invariant metric on Z™.

The above characterization theorem (10) is strong because it does not sup-
pose any property to space E, but in compensation we have no mean to control
the level of regularity of the lattices it deals with. Since space F is not a pri-
ori equipped with a metric, we cannot compare function p, with a pre-existing
gauge w. Now, some lattices 7 may contain hightly irregular elements. Take for
example the class of all functions f : R! — R such that 0 < |f (z) — f(y)| < 1.
They satisfy the conditions of theorem (10), therefore the V and the A are con-
tinuous operators. Nevetheless the function f(x) = 0 when z is rational and
f(z) = 1 when not, belongs to the lattice, although it has no physical meaning
(there is no experimental means to sample such a function). The same example
shows also that translation is not a continouous operator in the lattices satis-
fying theorem (10). Take for example the function f(x) = 0 when z < 1 and
f(x) =1 when x > 1, and the sequence f,(z) = f(z+ 1). As n — oo we have
Full) = 1# f(1) =0.

The case of this lattice example teaches us still more. Clearly it admits for
gauge the function w(h) = 0 for h = 0 and w(h) = 1 for h # 0. Therefore neither
the presence of a gauge, nor the existence of continuous V and A prevent the
lattice form higly irregular elements. We have to look for another idea, and we
will reach the goal by imposing some continuity condition to the gauges.

6 Moduli of continuity

In fact we wish that, when space E is metric, all functions of the lattice 7 under
study be correctly approached when we sample them. If a stands for the grid

11
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Figure 4: a) Video image ; b) Corresponding modulus w, for the digital square
metrics.

spacing, we want to be able to estimate all values f(z),z € E, f € T with an
error that tends towards zero with spacing a. Formally speaking, this means
exactly that the gauge wy of lattice 7 must be continuous at the origin.This
leads to the following definition

Definition 12 When the gauge wy; of a function f is continuous at the
origin then it is called a modulus of continuity. The family of all functions
f:E — R(orZ) whose moduli wy are smaller than a given gauge w is said to
be equicontinuous of modulus w, or w-continuous, and is denoted by the symbol

Lo .

Not only each function f € L, is uniformly continuous, but this uniform
continuity is of the same type for all the f € £, . Indeed, according to a classical

result, lattice £, is a compact sub-space of R” for the topology of the uniform
distance (Ascoli ’s theorem, p.99 in [1]). The modulus of continuity describes, in
some sense, the degree of regularity of the function f under study. This approach
can be compared with the use of the variogram, or the covariance, in the order
two analysis. But, unlike the variogram, which provides the quadratic mean
of the variation between two points, here we take into account the maximum
absolute difference. One can see from Fig.4 how the range of w reflects the sizes
of the features in f, and its asymptote their dynamics.

The most usual prototypes of classes L, are the Lipschitz families, and
also the first ones historically speaking (H. Lebesgue introduced the moduli of
continuity in 1910, but R. Lipschitz had proposed condition (8) half a century
before). Each Lipschitz class is obtained by taking for w a constant value k > 0,
so that we have

|f (z) = f(y)] < kd(z,y) (8)

12



All above properties of the w-gauge classes G, are of course still valid for the
w-continuous classes £, , with in addition the following one

Proposition 13 For each modulus w, if function f € L, 1is finite at point
x € E, then it is finite everywhere.

Proof. The sub-additivity of the modulus, added to its continuity at the
origin, imply that modulus w(h) is finite for h < co. Therefore when f(x) < oo,
then f(y) < oo for all points y € E. m

Moreover, for every lattice £, , and on any compact sub-set X of E, the
pointwise convergence of a sequence f,, of functions towards function f is equiv-
alent to the uniform convergence, and to Matheron topology convergence of
criterion (3). Also, in the Euclidean cases, translation and rotation are contin-
uous operation: things become really more regular.

7 Dilations and Increasing operators

—E
We will now study the dilations that act on the lattice R of the numerical

functions from E into R. As we saw in chapter 1, the lattice R is sup-generated
by the pulse functions u, ., = € E,t € R:

uz(y) =t when y=2z and wu,,=—oo0 otherwise,

and every function f € R” admits a decomposition
f:\/{uz,t ’ z€E ’ tSf(Z)}

Let 6: R — R” be a dilation on R". The transforms & (uz,¢) of the pulses are

in turn sup-generators in the space image ¢ (R ) since

6f =\/{8(uss), 2€E, t<f()} feR"

It is more convenient, here, to introduce the reciprocal structuring function gy ¢,
namely

Gy,t (2) = 6(uzyz (v)) Y,z € E

In the following, we shall focus on the dilations whose structuring functions
commute with translation on R, i.e. such that

9zt = Gz,0 +t (Wlth 9> = gz,O)-
Then the expression of the dilate at point y € E reduces to
6 () =\ {wE + (=) , z€E} (9)
All the dilations encountered in practice are particular cases of the last repre-

sentation (9).

13



7.1 Dilations on £,

We now focus on the sub lattice £, of the w-continuous functions on R, and
we wonder about the image 6(L, ) of £, under a dilation of the type Eq.
(9). Pertinent results are obtained when the variation of the g,’s over space E
is provided with a certain regularity, that we will formalize when space E is
metric.

Proposition 14 Let G be a family of numerical functions over a metric space
E

7

i/ which admit a common finite upper bound
it/ whose cross sections

Xe(g)={y:9ly) 2t}  g€g

are compact, for all t € R\ {—oo}.

If g, stands for the dilate of g by a circular cylinder of radius p and height
kp, i.e.

90 (2) =sup{g(y), v € By(2)} + kp
Then the quantity
hg,g)=inf{p:9<g, ¢ <g,} 99€G

is a Hausdorff type distance on G.

[easy proof].

Consider now a structuring family {g.,x € E}, which is supposed to satisfy
the two conditions of proposition 14, and whose variation over E is governed by
a modulus of continuity «’, i.e.

h(ge, gy) < W' [d (2, y)] r,yeE (10)
we may state [8][9]:

Theorem 15 Let E be a metric space, and § : R - R” be a dilation on the

—E
lattice R, whose structuring functions {g,x € E} admit a modulus of conti-
nuity w’ (i.e. satisfy 10). Then & maps the sub-lattice L, of the w-continuous
functions in the sub-lattice L4 ryowr of the (w+ k) o w'-continuous functions.

Proof. Let f € L, . Put h(gs,9y) = h. At point y, we have:
(0f) () = sup {f(2) + 94(2), 2 € E}.

But gy(z) < sup{gz(u),u € Br(z)} + kh (Hausdorff distance) and f(z) <
f(u) + w(d(z,u)). Hence, we have

(
Of)y) < swi{f(u)+gz(u) +tw(d(zu)) ; z€Bp(u)ucE}+ kh
< sup{f(u) + gz(u),+u € E} +w (h) + kh = (0f)(x) + w(h) + kh

and the similar inequality, by interverting  and y. Finally:

[01) () = (0f)(@)| < w(h) + k(h) < (0 + k) ow'(d(z,y))
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7.2 Particular cases

1. Suppose E to be affine and take for g, the translate by vector x of the
structuring function g associated with the origin. Then h(g, ,gy) = d(z,y)
and (w+ k) ow’ = w. The dilations that are translation invariant preserve
all equicontinuous lattices L, .

2. Take for g, a flat structuring function, of compact support K, i.e.

9= (y) = 0 when yekK,
g: (y) = —oo when not

Then the expression 9 of a dilation reduces to

6f) () =V {F (2) 2 € Ky} (11)

where the geometrical role of the (variable) structuring elements {K,,y € E}
appears clearly. The dilations of the type 11, which are said to be flat, exhibit
a number of remarkable features. For a flat dilation ¢ of structuring elements
{K,,z € E}, with

h (sz Ky) S w/ [d (.%', y)] ’

where h is the set-oriented Hausdorff distance, the theorem proves that any w-
continuous function is transformed into a w o w’-continuous one. In particular,
when ' < Identity, § maps every L, into itself. This case occurs for example
when F is affine and K, = Ko+ z,2 € F (translation invariance), or also when
K, ={Ky+z} N Z where Z is a rectangular window.

Theorem 15, which has been stated for dilations admits by duality a similar
version for erosions, and of course extends to any inf of dilations which have
the same modulus w’. Another instructive feature concerns the structuring func-
tions, for which no continuity is required. For example, the two conditions of
proposition 14 may be satisfied by upper semi continuous functions.

7.3 Continuity and increasing operators

For the sake of pedagogy, we will treat the "flat” case only, which the most
used in applications.

Proposition 16 Let E be a metric space (distance d), K : E — K(E)\( be a
structuring element such that

h[K(x), K(y)] < o' [d(z,y)]

(h, Hausdorff distance) for some modulus &', and let § : E — R be the dilation
of structuring element K. Then, for each modulus w, the mapping § : Ly, Leow:
s continuous.
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Proof. Given an arbitrary point x € E, consider a family f, in £, with
fn — f for the pointwise convergence. We draw from theorem 8 that

Vfe @)y € En(2)} = \/{f(v),y € K (2)}.

Since point  is arbitrary in E the pointwise convergence of d( fy,) results, hence
the continuity of 9.
|

Corollary 17 The class generated by finite sup, inf and composition product of
dilations and erosions whose structuring elements admit a modulus of continuity
is composed of continuous increasing operators. When all the moduli of the
structuring elements are anti-extensive, then these increasing operators each
map L, into itself.

[Easy proof].

Despite the assumption of finiteness (which could be overcome by supple-
mentary hypotheses of compactness for the K’s), this corollary ensures the
continuity for a comprehensive number of operators in Mathematical Morphol-
ogy, and among others for the morphological filters (openings, closings, their
products and the alternating sequential filters). It shows, a contrario, that
semi-continuity arises from rapid variations of the structuring elements, but
not from the substitution \/ — A.

We conclude this section by brief comments about linear operators on the
L., . Concerning convolution, one easy proves the following

Proposition 18 Let g(dh) be a measure such that [ |g(dh)| < 1. Then the
convolution by g maps each L, into itself and is continuous.

Consequently, all the half residuals of the operations (i.e. the difference
between a function and its transform) described by corollary 17 map each L,
into itself and are continuous (e.g. the top hat mappings). An approach with
variable kernels g(dh) could be developed in a way similar to what we did for
dilations. It should lead to similar results.

8 Exercises
8.1 1) Threshold Mapping and Semi-continuous Functions

The threshold mapping defined as follows:

() () = { f(@) when f(z) 21, (12)

—oo  otherwise.

This operation is shown on Fig. 5.
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Figure 5: The threshold mapping .

In set terms, the transformation ) consists in intersecting the umbra U(f)
by the closed half space

El = {(m,y),m € E,Z 2 1}7
and in taking the umbra of the result:
UW(f) =UEiNU(f)]UE . (13)

Show by means of an example that the limit of the thresholds of a converging
sequence of functions is not the threshold of the limit function.

[ If functions and umbrae were equivalent, then the two algorithms (12) and
(13) should give the same result. Let’s try and apply the two algorithms to the
sup of the following family (see Fig. 6):

file) = 1-=1/i when |z| <1,
file) = —o0 otherwise.

If the sup f of this family is understood in the sense of the function lattice, it
is equal to:
fl)y =1 when |z| <1,
{ f(z) = —oo  otherwise,

and according to the rel.(12), ¢ f = f. But if the sup is understood in the sense
of the umbrae lattice, i.e.

U(f) = UU(f»,

then from rel.(13), we derive U[¢(f)] = F—wo, i.6. V2 € E,¢f(z) = —c0. In
other words, in the Euclidean case, the function lattice and the set oriented
lattice of umbrae are not equivalent at all. Nevertheless, in the discrete case of
functions f :Z™ —Z, the two approaches coincide and one can transpose the
way of reasoning from sets to functions.]
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Figure 6: The family of functions (f;).

8.2 2) Gauges and concave functions

The aim of this exercise is to determine a geometrical condition that a given
function must fulfill to be a gauge. Firstly we remind the definition and a
property concerning the concavity of a function.

Definition 19 A finite numerical function, defined on an interval D of R is
concave when its subgraph in the product space R? is a convex set, i.e. when

f(aaz1 + agza) > a1 f (x1) + cof (x2)

for all a1, a0 > 0 such that cipo0 =1

To say that f is concave is equivalent to saying that the function w

IO

- (where x # y) (14)

w (z,y)
is decreasing with respect to each of the variables. Geometrically speaking, rel.(14)
amounts to saying that for any triplet (z,y,2) € D with z < y < z, the point
(y, f (y)) of R? lies above the segment of extremities (z, f (u)) and (z, f (2)), as
depicted in figure 7a.

Every increasing and concave function w such that w (o) = 0 is a gauge, since
the convexity rel.(14) implies that

wu+v)—w(o+v) <w(u) —wl(o) (15)

Conversely, the sub-additivity condition is less demanding and turns out to
be a concavity reduced to the triplets (z,y,2) of coordinates that involve the
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Figure 7: a)Concave function b)Example of a gauge that is not concave.

origin. For example the function

wu) = u 0<u<l1
ww) = 1 1<u<?
w(u) = u/2 u>2

which is non concave (see fig.7b) satisfies rel.(15) and is continuous at the origin,
hence is a modulus of continuity.

However, the restricted concavity of rel.(15) is already informative. It rejects
for example all functions w (u) where the behaviour near the origin is u®+0 (%),
as soon as a < 1.

8.2.1 Lipschitz class on an arbirary space

This exercise, due to G. Matheron ([5], p. 131), prolongates theorem (10). We
still assume that the three properties of proposition (6) are satisfied for some
lattice 7, and we suppose in addition that if f(z) < oo, f € 7 , then for all
points y € E we have f(y) < oo.

1- show that p,(y), as defined by relation (6) is equal to d(z,y) = di(z,y) V
do(z,y) with

di(z,y) =Ma:aeRLVfeT, f(x) < fly) +a}

2-Prove that d is a distance on E, and derive that lattice 7 is Lipschitz for
distance d,i.e.
feT =|f(z)—fly)l <d(z,y)
8.3 Sampling and w—continuity

This exercise, due to J. Serra [9], deals with subsampling. Starting from the
datum of a digital image f, what is the minimal number of values of f to be
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Figure 8: a) sampling zones derived from the inverse modulus » b) sampled
image obtained from pattern a)

kept in order to estimate it everywhere with a given accuracy, and where must
we implant the sampling points?

Consider f as a realization of a w-continuous random function, and introduce
a local version of the modulus w by associating, with each point z, the maximum
variation of f over the closed ball B,(r) of radius r and centered at point x:

we(r) = E [max{(0nf — f) (z) ; (f — enf) (x)}] (16)

where dp, and ep, are the dilation and the erosion by ball By,.

Second, consider the larger inverse ry (w) of wy (r). The value 7, (w) is the
size of the maximum ball centered at z such that the variation, in the sense of
Eq. (16) is < w. Set accuracy w to a fixed value, wg say; hence ry, (wg) = r(x)
becomes a numerical function of = only. The sampling protocol is then achieved
by a downstream approach which allocate a sample density inverse to function
.

For a numerical illustration, start from a digital image of 2! x 2! pixels (Fig.
2), with i = 8. The largest possible grid G(i) has a spacing 2! = 256, and four
points at the four corners of the image. The gray scale ranges over 256 levels,
and the accuracy wy is fixed to be equal to 10 levels. The cross section

X(i)={z:r(z) <2°}
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of r, corresponds to the flatest zones of the image under study. So they are
sampled with the largest grid, i.e. reduced to the set

Y (i) = X(i) N G(i)

The points of Y (7) admit a certain zone of influence k(¢), such that the di-
late 0p(;y [Y'(7)] indicates the portion of the space ”"known” from sampling Y'(i).
Iterate, by putting

X(@i—1) = {z:h(z) <271} \ Sy [Y(0)]
Y(i-1) = X@-1)NG(i-1) :

Function k(i) is calculated to be < 2¢ and to make contiguous the zones of
influence, as ¢ varies. For square grids, for example, one can take:

k() + k@@ —1) =2" 1.

These conditions lead to a pixel reduction by four in the example of fig. 2.
In terms of data compression, such a result is acceptable, but not outstanding.
However, by extending the samples in their respective zones of influence, one
generates the new image f*shown in Fig. 2b, so that for all treatments
designed by corollary 12 (anti-extensive case), we still have

Emax|(yf) (z) = ($f7) ()] <wo

which is not a trivial result.

8.4 Robust Lattices

Independently of the CCO topology of R, introduce an ecart dr on R, such that
x; — x in R implies dr (z; ,z) — 0. This ecart will be said to be robust for R,
when for all pair {a;} and {b;}, ¢ € I of elements of R, the two inequalities

dT {\/ ai,\/bi} S sup {dT (ai,bi)}
dT {/\ ai,/\bi} S sup {dT (ai,bi)}

are true [8].
1- Show that ecart dr is robust if and only if we have

a<z<y<b in@édT(m,y)ng(a,b)

2- Show, by means of a counter example, that the CCO topology of R is an
unavoidable requirement for the previous result.

2-Prove that theorem 8 remains valid when ecart | f (z) — f(y)|is replaced
by dr (z,y).
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