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Abstract

The processing and analysis of colour images has become an important area of study and appli-
cation. The representation of the RGB colour space in 3D-polar coordinates (hue, saturation and
brightness) can sometimes simplify this task by revealing characteristics not visible in the rect-
angular coordinate representation. The literature describes many such spaces (HLS, HSV, etc.),
but many of them, having been developed for computer graphics applications, are unsuited to
image processing and analysis tasks. We describe the flaws present in these colour spaces, and
present three prerequisites for 3D-polar coordinate colour spaces well-suited to image processing
and analysis. We then derive 3D-polar coordinate representations which satisfy the prerequisites,
namely a space based on the L; norm which has efficient linear transform functions to and from
the RGB space; and an improved HLS (IHLS) space. The most important property of this latter
space is a “well-behaved” saturation coordinate which, in contrast to commonly used ones, al-
ways has a small numerical value for near-achromatic colours, and is completely independent of
the brightness function. Three applications taking advantage of the good properties of the IHLS
space are described: the calculation of a saturation-weighted hue mean and of saturation-weighted
hue histograms, and feature extraction using mathematical morphology.






1 Introduction

The number of applications requiring colour image processing and analysis is growing continu-
ously, in particular in the multimedia domain. Important problems currently under study include
the accurate reproduction of colours on different output devices [15], and the development of
reliable algorithms for processing colour images [24]. The development of these algorithms is
made more difficult by the vectorial nature of colour coordinates, as well as by the large number
of colour representation models available, allowing a certain colour to be equivalently encoded
by many sets of coordinates.

Representations of the RGB colour space in terms of hue, saturation and brightness coor-
dinates are often used. These representations suffer from some defects, such as the presence
of unstable singularities and non-uniform distributions of their components, as described by
Kender [16]. Nevertheless, they can be more intuitive than the RGB representation, and could
reveal features of an image which are not clearly visible in this representation. They do not have
all the good properties of the L*a*b* or L*u*v* spaces, but are simpler to calculate, and do not
require any calibration information. Even though the transformation from RGB to hue, satura-
tion and brightness coordinates is simply a transformation from a rectangular colour coordinate
system (RGB) to a three-dimensional polar (cylindrical) coordinate system, one is faced with
a bewildering array of such transformations described in the literature (HSI, HSV, HLS, etc.
[25]). This results in a confusing choice between models which essentially all offer the same
representation. Indeed, physicists have, as an aid to problem solving, been routinely converting
between rectangular and 3D-polar coordinate systems for many decades without similar model
choice problems. Is it not possible to achieve this simplicity in colour representation?

In this technical report, we first discuss the existing hue, saturation and brightness trans-
forms and their shortcomings when used in image processing or analysis (section 2). Section 3
describes, in terms of vector independence and vector norms, the prerequisites for a useful
3D-polar coordinate colour representation, and section 4 summarises the basic properties of the
RGB vector space used in the derivation of this representation. We present a geometrical deriva-
tion, in section 5, of an expression for calculating the saturation of an RGB vector. Sections 6
and 7 consider the consequences of restricting oneself to using respectively only the L, and L
vector norms in the derivation of the 3D-polar coordinates. An improved HLS (called IHLS)
coordinate system is then suggested in section 8. We give a brief comparison, in section 9, of
the distributions of the saturation and chroma expressions discussed. Efficient transformations
between the RGB space and IHLS system are presented in section 10. Finally, three applica-
tion examples using the suggested coordinates are given in section 11: the calculation of hue
statistics, saturation-weighted hue histograms, and feature extraction in colour images using
mathematical morphology.

2 Existing colour spacetransforms

In this section, we first review the standard definition of the terms used to describe colour
intensity (section 2.1). An overview of the method of converting RGB coordinates to 3D-polar
coordinates is then given (section 2.2). Lastly, we discuss the problems arising when using the

1



currently popular versions of these spaces in image analysis, and the reasons for which they
occur (section 2.3).

In the RGB space, colours are specified as vectors (R, G, B) which give the amount of each
red, green and blue primary stimulus in the colour. For convenience, we take R, G, B € [0, 1]
so that the valid coordinates form the cube [0, 1] x [0,1] x [0,1]. For digital images, these
coordinates are usually 8-bit integers, but it is easy to generalise from [0, 1] to any range of
values.

2.1 Brightness, luminance and lightness

The terms brightness, luminance and lightness are used to describe the intensity of a colour.
They are often used interchangeably, although they have specific definitions assigned to them
by the CIE (International Commission on Illumination). These standard definitions are [5, 22]:

Brightness: Attribute of a visual sensation according to which an area appears to emit more or
less light. This attribute is measured subjectively and has no units of measurement.

Luminance: Luminance is the luminous intensity per unit surface area, measured in the SI
units of candela per square metre (cd/m?). Luminous intensity (unit: Candela) is radiant
intensity (unit: watts/steradian) weighted by the spectral response of the human eye.
The luminance measure therefore takes into account that for three light sources which
appear red, green and blue, and have the same radiant intensity in the visible spectrum,
the green one will appear the brightest, and the blue one the dimmest.

In the international recommendation for the high definition television standard [14], the
following weights for calculating luminance from the (non gamma-corrected) red, green
and blue components are given:

Y () = 0.2126R + 0.7152G + 0.0722B (1)

Lightness: A measurement which takes into account the non-linear response of the human eye
to luminance. A source having a luminance of only 18% of a reference luminance appears
about half as bright [21]. The CIE uses lightness in their L*a*b* and L*u*v* spaces.

To avoid repeatedly writing out all three of these terms, we assume that luminance and light-
ness functions are part of the set of brightness functions, and hence are included when only
brightness functions are mentioned.

2.2 Overview of the transformation from RGB to 3D-polar coordinates

The basic idea behind the transformation from an RGB coordinate system to a hue, saturation
and brightness coordinate system is described by Levkowitz and Herman [17]. One first places
a new axis in the RGB space between (0,0,0) and (1,1,1). This axis passes through all the
achromatic points (i.e. those with R = G = B), and is therefore called the achromatic axis. One
then chooses a function L (c) which calculates the brightness, luminance or lightness of colour
c = (R, G, B). The form chosen for L (c) defines the shape of the iso-brightness surfaces. The
iso-brightness surface [ contains all the points with a brightness of /, i.e. all the points satisfying
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the relation {c = (R, G, B) : L (c) = [}. These iso-brightness surfaces are then projected onto
a plane perpendicular to the achromatic axis and intersecting it at the origin, called the chromatic
plane as it contains all the colour information. The hue and saturation or chroma coordinates
of each point are then determined within the plane, where the hue corresponds to the angular
coordinate around the achromatic axis?, and the saturation or chroma corresponds to a distance
from the achromatic axis.

To visualise the shape of the resulting space, the points of each iso-brightness surface [ are
projected onto a chromatic plane intersecting the achromatic axis at /. The solid correspond-
ing to a colour space is constructed out of the sub-regions of each chromatic plane containing
projected points. The form of this solid depends on the brightness function chosen, as is now
demonstrated for the HSV and HLS models (based on the discussion in [17]).

221 TheHSV model
The brightness function used in the HSV model is
LHSV (C) = max (R, G, B) (2)

To visualise the iso-brightness surface corresponding to brightness /, begin with the cube having
principal diagonal between (0,0, 0) and (l, ,). The iso-brightness surface consists of the three
faces of the cube which contain the vertex at (7, , 1), an example of which is shown in figure 1a.
When this surface is projected onto the chromatic plane, one obtains a hexagon. It is clear that
the surface areas of these hexagons are proportional to /, and hence the solid created by stacking
these hexagons is a hexcone. A vertical slice along the achromatic axis through the HSV colour
space is shown in figure 10a.

For completeness, we give the commonly used HSV model saturation and hue expressions

max(R,G,B)—min(R,G,B) .
Susv (€) = ex(R.G.B) if . max (R,G,B) # 0 3)
0 otherwise
undefined if SHSV =0
G—-B : —
Hygy (€) = max(R,G,B) ~miaBG.B) Tf f=max(R, G, B) 4)
2+ ma.x(R,G,B;g:glin(R,G,B) lf G = max (R: Ga B)
4 + (.G B) —mm(E.G.B) if B =max(R,G,B)
Hj,qy is multiplied by 60° to get a hue value Hygy in degrees.
2.2.2 TheHLS mode
The brightness function used in the HLS model is
R,G,B in(R,G,B
LHLS (C) — max( Y Y ) + mln( Y 7 ) (5)

2

1The fact that hue is an angular value, and therefore has a periodicity of 360°, is often ignored in colour
image analysis. One cannot simply take the minimum of the hue to be 0° and the maximum to be 360°, as these
coordinates correspond to the same point on the circle! Furthermore, even though the origin is traditionally chosen
to be in the red part of the hue circle, this does not imply that red is more important than the other colours. Further
discussion can be found in [13, 20].
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Figure 1: Example iso-brightness surfaces for two digital colour spaces in which the coordinates
are encoded using 8 bits. (a) HSV for I = 40. (b) HLS for [ = 20.

For brightness [, one can visualise the iso-brightness surface by starting from the cube with
principal diagonal between (0,0,0) and (21, 21, 2l) for I < 1/2, or with principal diagonal be-
tween (2 — 1,20 — 1,2 — 1) and (1,1, 1) for I > 1/2. The iso-brightness surface consists of the
six triangles inside the cube with edges formed by the lines between the point (,7,1) and the
six vertices of the cube which are not on the achromatic axis. An example of this iso-brightness
surface is shown in figure 1b. The projection of this surface onto the chromatic plane also re-
sults in a hexagon, except that for this model, the largest hexagon is found at I = 1/2. The solid
produced by stacking these hexagons is therefore a double-hexcone. A vertical slice along the
achromatic axis through the HLS colour space is shown in figure 10c.

For the HLS model, the hue calculated as for the HSV model (equation 4), and the com-
monly used saturation expression is

0 if max (R, G, B) = min (R, G, B)
max(R,G,B)—min(R,G,B) . 1
Surs = mZX(R,G,BHmin(R,G,B) if Lys < 5 (6)

max(R,G,B)—min(R,G,B)

2—[max(R,G,B)+min(R,G,B)] otherwise

2.3 Problems arising when using these spaces for image analysis

The HSV and HLS colour spaces were developed during the 1970’s for easy numerical spec-
ification of colours in computer graphics applications [26]. In this context, the hexcone and
double-hexcone shapes of the spaces are inconvenient, as it would be easy for a user to acciden-
tally specify coordinates which lie outside the colour gamut. As computers of the time were not
very speedy, additional checking to avoid this would have been unacceptable, so the solution of
expanding the colour spaces into cylindrical form was adopted. This is easily done by defining
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the saturation as the ratio of the actual distance of a point from the achromatic axis to the max-
imum distance for the corresponding brightness value. The HSV cone and HLS double-cone
are thereby expanded into cylinders. Vertical slices through these cylinders are shown in fig-
ures 10b for the HSV space, and 10d for the HLS space, to be compared with the slices through
the conic and bi-conic versions of the spaces in figures 10a and 10c respectively. Indeed, the
commonly used saturation expressions (equations 3 and 6) describe such cylindrically shaped
spaces. The dependence of these saturation measures on the corresponding brightness is easily
seen. For example, given the definition of brightness in the HSV space, the first level of the
HSV saturation expression (equation 3) can easily be rewritten as

_ min(R,G, B)

Lusv (€) ()

The HLS saturation can also easily be rewritten in terms of Lyps. These cylindrically shaped
colour spaces have unfortunately been adopted by the image analysis community (and imple-
mented in image analysis software?), leading to the widespread use of an unsuitable definition
of saturation.

To demonstrate the unsuitability of the cylindrically shaped spaces for image processing and
analysis, we use the colour image in figure 11a. This image was captured under slightly non-
uniform lighting conditions, so that not all the pixels which look white have RGB coordinates of
exactly (1,1, 1). The upper part of the image was then inverted by subtracting the values in each
of the R, G and B channels from the maximum possible values (i.e. 255 for this 8-bit image).
The HSV saturation image calculated from this colour image is shown in figure 2b. The lower
part of this saturation image, corresponding to the white region in the initial colour image, has
a saturation of around zero, as expected. However, some of the black pixels in the upper part
of the colour image are shown as being fully saturated. This patently contradicts the definition
of saturation, which states that saturation should be low for almost-achromatic colours, and
zero for greylevels. The reason is that some of the black pixels have small non-zero R, G or
B components. The expansion of the HSV cone into a cylinder (demonstrated in figures 10a
and b) results in these pixels getting artificially high saturation values. One therefore has the
ridiculous situation where some of the black pixels are shown as being more highly saturated
than the colourful regions that they surround. Because of the double-cone shape of the HLS
colour space, its expansion into a cylinder produces spurious high values of saturation in both
the high and low brightness regions, as shown in figure 2c. This is particularly noticeable for
the orange region at the bottom of the image, on which two of the white letters are shown as
having saturation values equal to the surrounding orange colour.

This demonstrates that two of the common assumptions about these models are not true
when the cylindrically shaped versions are used:

1. Saturation is defined as the chromaticity of a colour, so that pixels which appear black,
white or grey should have a lower saturation than colourful pixels. As was shown in the
example above, pixels which appear black or white often have maximal saturation values
when one of the cylindrically shaped spaces is used.

2Software already used by the author which implement cylindrically shaped colour models include: Matlab
release 12.1, Aphelion 3.0, Optimas 6.1 and Paint Shop Pro 7.
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Figure 2: 3D-polar coordinate components of figure 11: (a) Luminance. (b) HSV model satu-
ration. (¢) HLS model saturation. (d) The suggested saturation measure.

2. Itis often said that these spaces separate chrominance (hue and saturation) and brightness
information. However, use is made of the brightness function to normalise the saturation
in the cylindrically shaped spaces (as shown in equation 7). It is clear that the saturation
values therefore depend critically on the brightness function chosen (demonstrated by the
large differences between figures 2b and c).

We now consider two cases of the confusion that the cylindrical forms of the colour spaces
can cause. Demarty and Beucher [7] applied a constant saturation threshold in the cylindrically
shaped HLS space (figure 10d) to differentiate between chromatic and achromatic colours. This
threshold can be represented by a vertical line on either side of the achromatic axis in figure 10d,
and it is clear that this does not correspond to a constant saturation. Demarty [6] later improved
the threshold by using a hyperbola in the cylindrical HSV space (figure 10b), which corresponds
to a constant threshold in the conic HSV space (figure 10a). Smith [27] makes the assumption
that the cylindrical HSV space is perceptually uniform when a Euclidean metric is used, but
upon examining figure 10b, one sees that a certain distance in the high brightness (top) part of
the space corresponds to a far larger perceived change in colour than the same distance in the
low brightness part of the space. Such an assumption is almost certainly truer in the conically
shaped version of the space. This problem also affects the quantisations of the cylindrical HSV
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space in which an equal number of saturation bins are used in the high and low brightness
regions of the HSV space. Almost imperceptible colour changes in the low-brightness region
are quantised into the same number of bins as highly-visible changes in the high-brightness
region.

2.4 Removal of the brightness dependence of the saturation expression

The simplest way of avoiding the disadvantages tied to the cylindrically shaped spaces is to
remove the brightness normalisation from the saturation expressions, hence reverting to the
original shapes of the spaces. Removing this brightness dependence from the saturation for the
HSV model is simply done by multiplying equation 3 by the brightness Lysv, giving

SNC = max (R, G, B) — min (R, G, B) (8)

where the superscript “NC” indicates that this is the non-cylindrical version. For the HLS space,
removing the brightness dependence is slightly more complex due to its double-cone shape.
The non-cylindrical saturation is

1
Shts = Surs [1 -2 ‘5 — Lyrs

] (9)

which after some manipulation also reduces to equation 8. The equivalence of these non-
cylindrical saturation expressions is tantalising, and we show that it is in fact derivable from
the basic definition of saturation in section 5.

3 Vectors, normsand independence

We now define clearly what the notions of vector space, norm and independence contribute to
colour image representations. In the following, the RGB space is modeled by the Euclidean
space R?, with its projections, orthogonality, etc., but we equip it successively with different
norms, including amongst them the Euclidean norm.

The vector space notion associates a point ¢ = (R, G, B) to the vector o¢. It defines:

e The sum of a number of vectors as being the vector made up of the sum of the vector
components.

e The product of a vector and a scalar as being obtained by multiplying each component of
the vector by the scalar.

Note that these operations transform vectors into vectors, and not into numbers. We know
that every vector can be uniquely written in terms of its components for each system of axes.
Therefore, starting from the unit cube with coordinates0 < R < 1,0< G<land0< B <1,
we define the diagonal between (0,0,0) and (1,1,1) as the achromatic axis, and the plane
intersecting the origin and perpendicular to this axis as the chromatic plane, which contains
all information on the colour. Hence, the point ¢ can be written as 5 = a# + o + ob, or
equivalently as o¢ = ¢, + o¢,, Where ¢, and c, are the projections of c onto respectively the
achromatic axis and the chromatic plane.



Can we therefore say that the vectors c, and c,, which are orthogonal, are also independent?
The response depends on the meaning which we attribute to the adjective “independent”. If we
refer to a possible link between the two projections c, and c,, they are obviously not indepen-
dent: the points of low brightness always have low colour saturation. But the independence can
also signify something else, for example that the parameters that we associate with c,, (satura-
tion, hue) don’t affect those associated with c4. In this case, if two differently coloured points
c and ¢’ have the same projection c,, they have the same saturation and the same hue. In order
to have a colour representation adapted to image analysis, we therefore propose the following
prerequisite:

First prerequisite: Two distinct points which have the same projection onto the chromatic
plane, have the same chromatic parameters.

We could go further and require that two points which have the same projection onto the
achromatic axis have the same intensity. However, this would limit one to symmetric functions
of R, G and B, excluding notably weighted expressions such as the luminance (equation 1).

Another useful concept on which we now base our discussion is that of the norm. It asso-
ciates a parameter, which we call &, with every vector. This parameter is zero or positive, and its
magnitude becomes larger as point ¢ moves further away from the origin, i.e. £ (Ac) = X¢ (c),
in which A > 0 is a weighting factor. Furthermore, the norm links the addition of vectors to that
of numbers by the classic triangular inequality

§(e+c) <E(c) +£(c) (10)

which says that the norm of the mean vector between c and ¢’ cannot be larger than the average
of the norms of ¢ and of ¢’. For example, two projections onto the chromatic plane which are far
from the achromatic axis, but opposite each other, represent colours which are highly saturated.
The vector mean of these two colours is, however, achromatic. It therefore makes sense that its
norm should not be larger than the norms of the original colours, and hence that the inequality
of equation 10 should be satisfied. Lastly, it is equivalent to say that the vector c is zero or that
its norm is zero

c=0&¢(c)=0 (11)

When this last condition is not satisfied, we refer to a semi-norm. We note that in the triangular
inequality 10 the two ‘+” symbols do not have the same meaning: the first is with respect
to vectors, and the second with respect to numbers. The same is true for the two zeros in
equation 11.

We will consider in more detail the norms L and L., and the semi-norm max — min (proof
that it is a semi-norm is given in appendix B). Use of the L, norm leads to conversion formulae
which are quadratic and rather difficult to invert. Conversely, the distance associated with this
norm is the Euclidean distance, which is well-known and convenient to work with.

The L; norm has already made its appearance in colour space conversions, but without
announcing itself as such. We see it for example in [3] and [9] for the achromatic axis, and
in the standard triangle colour model [17]. Its associated distance is less intuitive than the
Euclidean distance, but faster to implement and usually just as precise. We note lastly that,
given variables R, G, B > 0, every quantity aR + 3G + B, with weights «, 8,y > 0 is still
an L, norm on the achromatic axis. This leads to the second prerequisite:
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Second prerequisite: The brightness parameters associated with colour vector ¢ and with its
projection ¢, must be norms.

In addition to the two prerequisites already mentioned, it is convenient to introduce a third
constraint, less fundamental and suggested by practical experience. It is extremely convenient
if one is able to return to an RGB space image representation at the end of an image processing
task, which leads us to propose the third prerequisite:

Third prerequisite: Every system for the representation of colour images must be reversible
with respect to the RGB standard.

If we examine the HLS system in the light of the first two prerequisites, the basic reasons for
the criticisms presented in section 2.3 become clear. In the HLS system, neither the saturation
nor the brightness are norms, and in addition, there is no independence between the achromatic
axis and the chromatic plane: it’s almost impossible to develop a worse colour space.

One can show the lack of independence by considering the points ¢ = (/4,1/4,0) and
¢’ = (Y/2,1/2,1/4), which both project onto the same point c, on the chromatic plane. Their
HLS saturations are given by % as their brightness values are < /2. The first has an HLS
saturation of 1 and the second of 1/ (the latter point has a smaller saturation as its brightness
value is higher than that of the other, we once again come across a problem in the commonly
used cylindrical form). Not only does this representation create artificial differences between
points, but it fails to discriminate between points which are different: all points with brightness
< 1/2 and with min = 0 have the same saturation.

To show that the brightness L = w does not satisfy the triangular inequality, we can
use the points ¢ = (1/2,1/2,0) and ¢’ = (0, /2, 1/2), both having HLS brightness values equal to
1/4, while the brightness of ¢ + ¢’ is equal to 3/4. Finally, the HLS saturation is not a norm either,
as the points ¢ = (1/3,2/3,1/3) and ¢’ = (2/3,1/3,1/3) both have saturation of 1/3 while their sum
has a value of 1 (the term max — min, on the other hand, stays the same).

4  Propertiesof the space under consideration

In the RGB unit cube, the achromatic axis is placed between the points (0,0,0) and (1,1,1),
and contains the colours for which R = G = B. The chromatic information is entirely encoded
in the chromatic plane, perpendicular to the achromatic axis and intersecting it at the origin.
Every vector c of the RGB unit cube is decomposed into the vectorial sum of its projections cy
onto the achromatic axis and c,, onto the chromatic plane

c=cq+¢p (12)

in which all chromatic information is encoded in the vector c,. We adopt the notation in which
all the vectors projected onto the chromatic plane take a subscript p. Hence r,, and g, represent
respectively the projections onto the chromatic plane of the pure red vector r and pure green
vector g.

The chromatic plane is shown in figure 3a, and we proceed to draw the reader’s attention
to some of the important features shown in this figure. The hexagon surrounds the regions into
which points in the RGB cube are projected, and the circle circumscribing the hexagon has
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Figure 3: (a) The chromatic plane. (b) The red-yellow sector of the hexagon on the chromatic

plane. The lower vertices correspond to the colours red (at the left) and yellow. The angle H

takes values between 0° and 60°.

a radius of ? If we limit the points projected onto the plane to only those with a specific
brightness, then the hexagon has an area smaller than or equal to the one shown. A point c
projected onto the chromatic plane has coordinates

Cp:[(QR—G—B),(QG—B—R)’(2B—R—G)} (13)
3 3 3

The projections onto the chromatic plane of pure red r = (1,0,0), yellow y = (1,1,0) and
green g = (0, 1, 0) have coordinates

2 1 1 11 2 12 1
rp (3: 3: 3): yp (3a3, 3), gp ( 3a3a 3) ( )

The RGB unit cube is shown in figure 4. We point out some useful correspondences between
regions of the cube and their projections onto the chromatic plane. Points for which R > G form
the half-space limited by the plane owy which contains r in figure 4. Its points are projected
onto the half-plane limited by y,b, and containing r, in figure 3a. Similarly, the points for
which G > B form the half-space limited by ow (cy) which contains g (figure 4), with points
projected onto the half-plane limited by r, (cy), and containing g,. Lastly, the points such that
R + B — 2G = 0 form the plane passing through the achromatic axis and the line R + B = 0
in the plane orb. This plane cuts the chromatic plane along the line parallel to r,b, passing
through o.

With respect to colour, the RGB cube is divided into six sectors delimited by the six planes
each containing the achromatic axis and one of the three R, G' and B axes or one of the diagonals
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Figure 4: The RGB unit cube. The italic numbers indicate the edges corresponding to the six
sectors into which the RGB cube is divided.

in the squares in B = 0, R = 0 or G = 0. The following equation gives the sector of a colour
based on the order of magnitudes of the RGB coordinates

/

if
if
if
if

R>G>B
G>R>B
G>B>R
B>G>R

(15)

it B>R>G
it R>B>G

Gl W N+~ O

\

The cube edge corresponding to each sector is indicated by the italic numbers in figure 4.

We now assign a polar coordinate system to the chromatic plane, taking the vector r,, as the
origin of the angles. The angular values increase as one moves in an anti-clockwise direction.
Every point (i.e. every vector) ¢ of the RGB unit cube can be equivalently written in terms of
RGB Cartesian coordinates, or 3D-polar coordinates (||cq|| , ||c,]| 5 6)-

One nevertheless has different equations for converting from one system to the other de-
pending on whether one uses the L, or L; norm. For the L, norm

lell® = IRI” + IGII” + | BII (16)

and for the L; norm, one has
| = |R| + |G| + | B (17)

The differences are large enough that we study more precisely, in sections 6 and 7, the advan-
tages and disadvantages of the two approaches.
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Finally, for the semi-norm § = max — min, we find for vector ¢ = (R, G, B) and its
chromatic projection c, of equation 13,

d(c) =6(c,) =max(R,G,B) —min(R,G, B) (18)

which means that this semi-norm is exclusively chromatic (it does not see variations in the
brightness).

5 Geometricderivation of a saturation term

The saturation and chroma measurements are associated with the length of the vector c,,. Their
definitions are:

Chroma: The norm of c, is used, as done by Carron [2] (who uses the L, norm). It assumes
its maximum value at the six corners of the hexagon projected onto the chromatic plane.
The shape of the resultant space obtained by piling up the hexagons is a hexcone or
double-hexcone.

Saturation: For the saturation, the hexagon projected onto the chromatic plane is slightly de-
formed into a circle by a normalisation factor, so that the saturation assumes its maximum
value for all points with projections on the edges of the hexagon. The shape of the resul-
tant space is therefore a cone or double-cone. Poor choice of this normalisation factor has
led to some of the less than useful saturation definitions currently in use.

We now geometrically derive a saturation coordinate which does not suffer from the disad-
vantages enumerated in section 2.3 and is therefore much more useful in image processing and
analysis. This derivation is based on the one for the Levkowitz and Herman GLHS model [17].

5.1 Basic saturation formulation

To calculate the saturation of a colour represented by a vector ¢ in the RGB space, we begin
by considering the triangle which contains all the colours which have the same hue as c (iso-
hue triangle), shown in figure 5a. The achromatic axis always forms one of the sides of this
triangle. The vector L (c) = [l (c),l(c),(c)] gives the position on the achromatic axis in
RGB coordinates of the brightness value associated with c. The iso-brightness line associated
with c is the intersection of the iso-hue triangle and [ (c) iso-brightness surface, and hence
passes through L (c) and c. By definition, all the iso-brightness lines in the triangle are parallel.
The point with the same hue as c lying furthest away from the achromatic axis is labeled q (c).
This point necessarily lies on one of the edges of the RGB cube.

Traditionally, the saturation is defined as the fraction given by the length of the vector from
L (c) to c, divided by the length of the extension of this vector to the surface of the RGB
cube. This definition produces a space in the form of a cylinder. We call this type of saturation
a cylindrical saturation. The problems inherent in the use of this saturation definition have
already been described in section 2.3.

In order to keep the conical form of the space, it is necessary to change the definition of
the saturation. In figure 5a, instead of dividing the length of the vector from L (c) to ¢ by
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Figure 5: (a) Diagram used in the derivation of a general saturation expression. (b) Diagram
used in the derivation of the simpler saturation expression. Both diagrams show the triangle
which contains all the points with the same hue as c.

the length of its extension to the edge of the cube, we divide it by the length of the vector
between L [q (c)] and q (c). This is the longest vector parallel to the iso-brightness lines, which
necessarily intersects the third vertex q (c) of the triangle. We therefore have the following
general definition of saturation

L9 —cl
7= Lla©l —a@I

which gives the natural conic or bi-conic form to the 3D-polar coordinate colour space, and
which additionally is independent of the choice of the brightness function. A proof of this
independence is presented in appendix A. This saturation calculated for figure 11a is shown
in figure 2d. It is clear that the defects associated with the cylindrically shaped HSV and HLS
models are not present. The colourful regions always have saturation values higher than the
surrounding monochromatic background. Furthermore, one would obtain the same saturation
values irrespective of the brightness function used.

(19)

5.2 A simple expression for the saturation

In this section, we use equation 19 to derive a very simple saturation expression. For this deriva-
tion, we choose the iso-brightness surfaces to be parallel to the nearest side of the RGB cube
which intersects the origin (which we are free to do due to the independence of the brightness
and saturation). This is the B = 0 plane for sectors 0 and 1, the R = 0 plane for sectors 2 and 3,
and the G' = 0 plane for sectors 4 and 5. The brightness function producing such iso-brightness
surfaces is

L (c) = min (R, G, B) (20)
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At first, we consider only sector 0, which contains point ¢ = (R, G, B) as shown in figure 5b.
The brightness vector of c is L (c) = (B, B, B), due to ¢ being in sector 0. We project ¢ onto
the B = 0 plane resulting in point c, which is the same distance from the origin as L (c) is from
c. The coordinates of c, are therefore (R — B, G — B, 0). We then construct the line between
h and ¢, in the B = 0 plane parallel to the cube edge between r and y, forming two similar
triangles with vertices o, h and ¢, and o, r and q (c). The following relation is therefore valid:

lo—cgll _ llo—h]
lo—a(e)l| [lo—r]
The term on the left is simply the definition of saturation given by equation 19. On the right,

lo—r|| = 1, and as the coordinates of h are (R — B, 0,0), |lo — h|| = R — B. Hence the
saturation S = R — B, which in sector 0, is equivalent to

(21)

So = max (R,G, B) —min (R, G, B) (22)

The derivation is easily done for the other five sectors to show that equation 22 is valid for
them all. The simple saturation expression obtained for the non-cylindrically shaped HSV and
HLS spaces (section 2.4), is therefore obtained from the general saturation definition. The
max — min expression is in fact a semi-norm, as proved in appendix B. We return to this
saturation expression in section 8, in which we suggest an improved version of the HLS space.
We first consider the consequences of strictly imposing either the L, or L, norm on the RGB
space.

6 Theframework of the L, norm

We expect this norm to be the best adapted to the problem, as it is based on the Pythagorean
theorem, which interprets the norm in terms of vector lengths. In addition, the scalar product
which accompanies it is an indispensable tool for calculating angles.

The conversion equations from the RGB coordinate system are easy to determine. We call
the norms of the vectors projected onto the achromatic axis and the chromatic plane respectively
M, and Cs, both these norms being scaled to the range [0, 1]. The angle 6 is called H,. By using
relation 16 and figure 3a, the following can be derived
1/2

M, = = [R2+G2+BQ] (23)

Cy = \f el @9

= (R*+G’+ B>-RG - RB - BG)’ (25)

=

Note that C, is a measurement of the chroma, as it is simply the norm of ¢, multiplied by a
constant. We can convert this chroma into a saturation by applying equation 19 in the chromatic
plane, where it is equivalent to

C
Sy = gnf’” (26)
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in which Sy, is the distance from the origin to the edge of the hexagon for a given hue H, that
is, the maximum value that can be taken by the norm of a projected vector ||c,|| with hue H.
The red-yellow sector of this hexagon is reproduced in figure 3b, in which the upper vertex is
at the origin (0, 0, 0), the lower left vertex is the projected red vector r,, and the third vertex the
projected yellow vector y,. It is simple to show using figure 3b that

V2
25sin (120° — H)

for 0° < H < 60°. To make this equation valid for the values of H € [0°,360°), it is sufficient
to replace the H in the equation by

H* = H — k x 60° where k € {0,1,2,3,4,5} so that 0° < H* < 60° (28)

Smax = (27)

Note that this saturation expression (equation 26) gives exactly the same values as the max — min
expression, as they are both derived from the same definition.

The calculation of the angle 6 in figure 3a is done in terms of the scalar product between the
vectors ¢, and r,, as

6 = arccos [M] (29)
[l eyl

R—1G—-3iB
1
(R?2 +G? + B2 — RG — RB — BG)?

in which r,, - ¢, indicates the scalar product of the two vectors. The possible values for § are
between 0° and 180°, and it is therefore necessary to expand this range of values by using

H2:{360 -0 ifB>G

= arccos (30)

0 otherwise (31)

Formally, the problem is solved. The variables M,, Cs, S, and H, are expressed in terms
of R, G and B. Nevertheless, irrespective of the theoretical equivalence of the two systems,
the inverse transformation is not simple. It is desirable to simplify this pure L, norm system
either by using another norm, which is considered in the next section, or by using a mixture of
different norms, discussed in section 8.

7 Theframework of the L; norm

In this section, we continue to use the same vector space, with the decomposition ¢ = ¢, + ¢4,
but we assign the L; norm to the vectors of the space.

7.1 Brightness and chroma

Because the R, G and B coordinates are greater than or equal to zero, the L, norm (equation 17)
of the vector ¢, is simply the sum of the R, G and B components. As we wish the value of the
brightness to be in the range [0, 1], we take it to be the arithmetic mean of the components of c

Mlzé(R+G+B) (32)

15



We note that if two points ¢ and ¢’ have the same projection ¢, on the achromatic axis, we have
lcc’| = 0, and by application of the triangular inequality one finds that M, (c) = M; (c').
The chroma C is defined as being proportional to the L, norm of the vector c,, that is

1
Cr=7[2R~G = B|+[2G - B~ R| + 2B~ R~ G]| (33)

The constant ensures that the chroma values lie in the range [0, 1], as the expression within the
parentheses has a maximum value of 4 obtained when two of the components have an extremal
value, and the third has the opposite extremal value. The saturation is zero when R = G = B,
I.e. when the point c lies on the achromatic axis.

In order to remove the absolute values, linked to the choice of the L; norm, from equa-
tion 33, it is necessary to find the maximum, median and minimum of (R, G, B), which we
denote as max, mid and min. As equation 33 is symmetric in terms of R, G and B, it is
sufficient to adopt a convention, for example

1>R>G>B>0 (34)

and, in the calculation, to replace R by max, G by mid and B by min. When the component
order in relation 34 is true, the first term of equation 33 is positive and the third is negative. The
second term, which has a variable sign, distinguishes between two cases:

1. if B+ R > 2@, or equivalently M; > G, then

Ci =5 [(R=G)+ (R~ B)| =5 (R—My) )
2. if B+ R < 2@, or equivalently M; < G, then
Ci=5[(R=B)+ (G- B =5 (M, ~ B (39)
For B + R = 2@, we find for both forms:
max — min =R — B = %Cl (37)

The hue, being an angle, is calculated in the same way as for the L, norm, using equations 30
and 31.

In summary, despite the presence of two cases for the saturation, the transformation equa-
tions 32, 35 and 36 make up a linear system much simpler than in the case of the L, norm. The
hue calculation is the most complex, and we now develop an approximation of the trigonometric
hue.

7.2 Simplified calculation of the hue in the L, space

The following approximation is largely based on the approach presented in [17]. Firstly, we
limit ourselves to vectors having R > G > B and non-zero chroma. Their projections onto the
chromatic plane form the triangle or,y, in figure 3a. Because the hue origin is the vector r,, the
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angle 6 in figure 3a varies from 0 to #/3 in radians, or conventionally from 0 to 1. To approximate
0, we begin with the hue-fraction equation in the HLS system, that is H = ma‘jfnin, and we
transpose it mutatis mutandis, that is to say by replacing max — min, which corresponds to
the saturation in the HLS system, by our corresponding L; norm chroma expression (differing
only by a factor) and taking into account the duality of the two chroma expressions. More
precisely, because the line r,g, is parallel to the line rg in the B = 0 plane, when ¢ varies
from 0 to 1, the point v of the B = 0 plane describes the half-diagonal rz, and its projection
v,, describes the segment r,z, of the chromatic plane. The point x, the intersection of the plane
R + B + 2G = 0 (which contains the achromatic axis) and the line rg, divides the two zones
having different chroma definitions. In the projection, the point x = (2/3,1/3,0) gives the point
x,, Which corresponds to the value § = /2.

As the value max — min of the HLS system corresponds to the saturation, we replace it here
by the L; norm chroma C;

14
Ci
We have ¢ = 0 forr = (1,0, 0). The factor £ is determined by the condition of having ¢ = 1/2 at
x = (%/3,1/3,0), which gives ¢ = 3/s. When R + B < 2@, the duality suggests the replacement
of G—-BbyR—-G,andpby1— ¢, or

3R-G
v=l-17g

In fact, at point x,, the chroma C takes the same value of 2 in the two modes, and we find
¢ = /2. Finally, at the extremity of the range of #, we see by using point y or point z, that

=1.

7 We can reduce equations 38 and 39 which define ¢ to a single equation by making use of
the critical element R + B — 2G. We find

B+ R—-2G=C1(1-2p) (40)
which demonstrates the equivalence relations

¢=—(G-B) (with R+ B >2G) (38)

(with R + B < 2G) (39)

B+R-2G > 0<=0<¢p<-= (41)

1
B+R-2G < 0&=5<p<1 (42)

A simple numerical experiment has shown that the maximum difference between this hue ap-
proximation ¢ and the trigonometric hue is the same as for the approximation suggested in [17],
that is 1.12°.

7.3 Colour space conversions in the L; space

The preceding results lead to the following conversion formulae for the conversion (R, G, B) —
(M17 017 QO)

M—l(R+G+B)
3

=1(2R-G-B)=3(R- M) if B+ R > 2G 43)
—%(R+G—2B):%(M1—B) if B+ R <2G
¢:%_B+2%_2G
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When B + R > 2@, or equivalently, when 0 < ¢ < /2, the transformation is inverted as

R= M + %Cl

G=M —3C+ %CHQD (44)
B = M1 — %01 — %CHD

andfor B4+ R < 2G (orl2<p <1)as

R:M1+C1—§0190

G = Ml — lC’l + %CND (45)

B = Ml - 501
The domain on which the equations are defined 1 > R > G > B > 0 (without the achromatic
axis) corresponds to the tetrahedron oryw in the figure 4. The coefficients of system 43 were
chosen so that My, C; and ¢ vary between 0 and 1, which does not necessarily mean that
they always correspond to points inside the tetrahedron. The following equivalence relation is
nevertheless easily verifiable

2 2
1>R>G>B>0 G <M <1-3G (46)

In practice, this condition is not too limiting, as it is simple to prevent operators applied to
vector c, expressed as (M;, C1, ) from giving a result outside the RGB cube.

The last case to study is that in which the vector c lies on the achromatic axis, i.e. the case
for which R = G = B. The system 43 is no longer valid, as we introduce a division by zero,
and must be replaced by

M, = % (R+ G+ B)
C, = 1(2R-G-B)=i(R+G-2B) (47)
Ci(1-2¢) = B+R-2G
which shows that ¢ is indeterminate. This does not mean that it is impossible to find the colour
c, but that the chromatic intensity C (1 — 2¢) is zero.

7.4 Conversions to the complete digital cube

We move from one sector of the RGB cube to another by adding to ¢ the sector number given
by A (c) of equation 15. The hue is therefore approximated by

H =M\()+¢)k (48)

of the same structure as in the HLS system. The coefficient & determines the working units:
k = 60 for degrees, and k£ = 42 to get resulting values between 0 and 252 which fit into 8-bits.

In parallel to the conversion from ¢ to H,, it is convenient to rewrite the brightness and
saturation in terms of max, mid and min functions, which leads to the replacement of system 43

by

1
M, = 3 (max +mid + min) (49)
3 (max —M;) if max+min > 2mid
_ B >
@ = { 2 (M; —min) if max+ min < 2mid (50)
1  max+ min —2mid
O 5)
1
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This system of equations is also valid for 8-bit RGB values, and the resulting coordinates are
encodable on 8-bits if £ = 42 is used. It is important to notice that for 256 discrete R, G and
B input levels, C; takes values which are multiples of ¥2 (i.e. 512 discrete levels between 0 and
256). Care should therefore be taken when rounding off these values for an 8-bit representation.

For the inverse transformation, the value of H; gives, via ), the order of magnitude of R,
G and B and the value of kp. Based on whether k¢ is < k/2 or > ¥/2, we use system 44 or 45
replacing R, G, and B by the components ordered according to the value of A, and replacing ¢

by k.

8 Themax — min semi-norm and an improved HL S space

We now return to the HLS system and suggest an improvement which overcomes the disadvan-
tages linked to the classic saturation definition. We will refer to this space as the improved HLS
or IHLS space. In fact, it is not necessary to modify the HLS space much in order that it be
compatible with the three prerequisites. It is sufficient to pass from its cylindrical version to
the conic version, which is done by replacing the HLS saturation by the function max — min.
A proof that this quantity is a semi-norm is given in appendix B. We now briefly consider the
three components of the IHLS system.

8.1 Saturation

The semi-norm Sy, = max — min obviously satisfies the first prerequisite on the independence
of the projection onto the chromatic plane. Adding to point c a vector parallel to the achromatic
axis simply reduces to adding the same constant to every component of the (R, G, B) vector,
which does not modify the value of max — min. In particular, in the RGB space, the vector ¢
and its projection c, on the chromatic plane have the same value for max — min.

On the other hand, this semi-norm is not invariant by projection onto the achromatic axis,
in contrast to L; and L,. As the point c approaches the achromatic axis, the value of S, gets
smaller, becoming zero when c is on the achromatic axis. The projection c; of the vector ¢
onto this axis always has a value of zero for the semi-norm Sy. It is therefore impossible to
build a representation based only on this semi-norm, which is blind to brightness. However, we
see also that for all the vectors in the chromatic plane (and only for these vectors), the quantity
max — min becomes a norm. This is why we use it for the saturation, complementing it by
taking the L, or L, norm on the achromatic axis.

8.2 Brightness

The L; and L, norms, and max — min semi-norm which we have studied all guarantee the
first prerequisite on independence: two different points ¢ and ¢’ having the same projection c,
onto the chromatic plane have the same saturation and the same hue. As this property remains
valid independent of the norm chosen on the achromatic axis, one can easily replace M in
equation 23, or M, in equation 32 by some weighted mean A (which is still a norm)

M (R,G,B) = aR+ G + B wherea+ [ +v=1 (52)
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or even by a non-linear estimator, provided that it is a norm. The hue circle remains the same,
giving the same weighting to the three fundamental colours, as does the saturation, even if this
is not the case for the brightness which replaces M; or M.

8.3 Hue

For the hue, we have developed an exact trigonometric expression, given by equations 30 and
31, and a simpler approximate form given by equation 51. Both these hue formulations still
show evenly spaced spurious high values in the hue histogram when one converts from an RGB
space containing discretely spaced values [16]. However, with the trigonometric hue formula-
tion, it is easy to remove or reduce the height of these histogram spikes by calculating a hue
histogram only for pixels having a saturation above a chosen threshold [10]. With the approxi-
mation, removal of the spikes is more difficult. Due to the high speed of modern computers, it
is highly recommended that the exact trigonometric form be used.

9 Comparison of the saturation and chroma for mulations

We compare the distributions of three of the saturation and chroma formulations discussed in
this report: the max — min saturation expression (equation 22), the L, norm chroma (equa-
tion 24), and the L; norm chroma (equation 50). These distributions are shown in figure 6.

To calculate the distributions, we start with a 256 x 256 x 256 RGB cube with a point at
each set of integer-valued coordinates. For the max — min and L, norms, the saturation (and
chroma) values of each point are calculated (as floating point values), and then rounded to the
nearest integer. Histograms showing the distribution of these integer values (256 levels) are
shown in figure 6.

The L, chroma measure has an inbuilt quantisation pitfall. When R, G and B are integer-
valued, then the L, norm A, is always a multiple of Y5, and therefore max — M, and M; — min
in equation 50 are also multiples of /3. As both of these expressions are multiplied by 32 when
calculating the chroma, C is always a multiple of Y. In other words, R, G and B values
quantised into 256 levels produce values of C; quantised into 512 levels. The rounding of a
floating point value of C; to the nearest integer therefore behaves extremely erratically, as the
%2’s are sometimes rounded up and sometimes down, depending on whether their floating point
values are just above or just below 0.5, thereby producing many spurious peaks and valleys in
the histogram. For the L, chroma distribution in figure 6, the values of C; were first multiplied
by 2 to get a series of integers between 0 and 512, and then adjacent pairs of histogram bins
were combined to produce the 256 bin histogram shown.

The max — min saturation distribution is regular and symmetric around the central his-
togram bin because of the normalisation coefficient which deforms the hexagonally shaped
sub-region of the chromatic plane into a circle. Conversely, the L, chroma has a rather irregular
distribution due to the discrete space in which it is calculated. It also decreases very rapidly as
one approaches higher chroma values because it is calculated in the hexagonally shaped sub-
region of the chromatic plane. The L; norm chroma approximates the L, chroma well (if the
guantisation effects are taken into account), and the histogram is more regular.
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Figure 6: The saturation and chroma histograms.

10 Transformationsto and from the IHL S space

Two efficient algorithms to calculate the luminance, trigonometric hue, chroma and saturation
from RGB coordinates are given here. We emphasize that identical 3D-polar coordinate values
are produced by both algorithms. The inverse transformation, from IHLS to RGB coordinates,
is also derived.

We have chosen to use luminance because of its psycho-visual properties. Due to the inde-
pendence of the brightness and the saturation, one is free to replace the luminance Y with an-
other amplitude measure (brightness, luminance or lightness). The given inverse transformation
algorithm, however, only works for amplitude measures which are linear combinations of the R,
G and B coordinates. For other brightness definitions, such as those involving min (R, G, B)
or max (R, G, B) functions, the inverse transformations are more complicated, and will have to
be derived.

MATLAB routines implementing the following transformations are available at http://
www.prip.tuwien.ac.at/ hanbury.

10.1 RGBto IHLS

Two algorithms for producing exactly the same IHLS coordinates are presented, the second
algorithm being easier to invert than the first.
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10.1.1 Thesimplest implementation

For the simplest implementation, one calculates an amplitude measure (equation 1, 2, or 5), the
saturation using equation 22, and the hue using equations 30 and 31. We have therefore used
an L, norm for the luminance, the max — min norm for the saturation, and the scalar product
of the L, norm for the hue.

Y(c) = 0.2126R+ 0.7152G + 0.0722B (53)
S(c) = max(R,G,B)—min(R,G,B) (54)
R-1G-1B
H'(c) = arccos 2 2 - (55)
(R? + G? + B> — RG — RB — BG)?

360°— H' if B>G
Hc) = { H' otherwise (56)

10.1.2 An alternative

An alternative way of arriving at exactly the same IHLS values is now presented. It is based
on the algorithm suggested by Carron [2]. The changes with respect to Carron’s version are
the extension to calculate the saturation from the chroma, and the use of luminance instead of
brightness. It is also similar to the IHS system described by Pratt [23], except for a change in
the hue origin and a different saturation definition. It still uses the L; norm luminance expres-
sion, but an L, norm for the saturation. This algorithm allows a more straightforward inverse
transformation to be derived as it contains no max or min functions.
The first step is to calculate the luminance Y and two chrominance coordinates

Y 0.2125 0.7154 0.0721 R
G l=| 1 -5 3 G (57)
C, 0 — 3 @ B

followed by the calculation of the chroma C' € [0, 1] (this chroma is equal to the chroma C;
derived in the framework of the L, norm in section 6)

C=,/C2+C2 (58)

and the hue H € [0°, 360°]

undefined it C=0
H = { arccos (%) if C#0andCy <0 (59)
360° — arccos (%) if C#0andCy >0

We derive from equations 24, 26 and 27 the value of the saturation S € [0, 1]
_ 2C'sin (120° — H)
- V3

S (60)

in which

H* = H — k x 60° where k € {0,1,2,3,4,5} so that 0° < H* < 60° (61)
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10.2 Inverse transformation from IHLS to RGB

To transform colours represented in the IHLS coordinate system obtained using either of the
algorithms of section 10.1 to RGB coordinates, one first calculates the chroma values from the
saturation values (using equation 60)

V38

— 62
¢ 2sin (120° — H*) (62)

where H* is given by equation 61. From the chroma, one calculates
C: = C cos(H) (63)
Cy, = —C sin(H) (64)

For the case where the hue is undefined: C'; = C; = 0. Finally, the inverse of the matrix used
in equation 57 is used to obtain R, G and B

R 1.0000 0.7875  0.3714 Y
G | = | 1.0000 —0.2125 -0.2059 Cy (65)
B 1.0000 —0.2125 0.9488 Co

11 Application examples

Three applications in which the use of the suggested IHLS model is advantageous are described.
The first is the calculation of hue statistics, for which better results can be obtained by utilising
a weighting by saturation values. This saturation weighting is then applied in the calculation of
hue histograms. We finally show an example in which the saturation plays a dominant role in a
mathematical morphology operator.

11.1 Colour statistics

In a 3D-polar coordinate colour space, standard statistical formulae can be used to calculate
statistical descriptors for the brightness and saturation coordinates. The hue, as has been pointed
out, is an angular value, so circular statistical descriptors [8] should be calculated for it.

11.1.1 Huestatistics

We initially summarise some of the standard circular statistics formulae. Given n hue values

H;,i =1,...,n, the mean direction H is the direction of the resultant vector of the sum of n
unit vectors having directions H;. This direction is given by
— B
H = arct — 66
arctan (A) (66)
where
A=) cosH;, B=) sinH, (67)
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and the necessary care to taken to expand the output of the arctan function to the range [0, 360°].
The mean length of the resultant vector is

— VA?+ B?

po YA TD (68)

n

The value of the mean length is in the range_[o, 1] and can be used as an indicator of the disper-
sion of the data (similar to the variance). If R = 1, all the H; are coincident. Conversely, a value
of 0 does not necessarily indicate a homogeneous data distribution, as certain non-homogeneous
distributions can also result in this value.

11.1.2 Saturation-weighted hue statistics

The calculation of statistics based only on the hue, described above, has the disadvantage of
ignoring the close relationship between the chrominance coordinates (hue and saturation). For
weakly saturated colours (greylevels), the hue value is unimportant. Indeed, for zero-saturated
colours, the hue value is meaningless. We can take these different levels of importance into
account in the statistics by weighting the hues by their corresponding saturations.

Given n pairs of values, the hue H; and its associated saturation S;, we proceed as before,
except that instead of finding the resultant of unit vectors, the vector with direction H; has length
S;. The hues associated with small saturation values will therefore have less influence on the
direction of the resultant vector. This weighting is simply done by replacing equation 67 by

Ag = ZS} cos H;, Bg= ZS} sin H; (69)

and replacing A and B in equation 66 by Ag and Bg. We denote by H g the resultant saturation-
weighted hue mean. The mean length (equation 68) becomes

— /A% + B?
Rs = Y=n——<— it
Zi:l SZ

In practice, for images which contain only strongly saturated colours, there is not a signifi-
cant difference between the values of weighted and unweighted hue means. Figure 11b shows
an image in which this difference is important. As is visible in figure 7a, the saturation of the two
brown cells is higher than the saturation of the surroundings. For this image, the unweighted hue
mean is H = 326.9°, and the saturation-weighted hue mean is Hg = 19.7°. To show the differ-
ence, thresholds on the hue band image were calculated for the intervals [H — 20°, H + 20°]
and [Hg — 20°, Hg + 20°], and these are shown in figures 7b and 7c respectively. On examin-
ing these images, it is clear the the saturation-weighted hue mean corresponds to the hue of the
most highly saturated regions, the two cells, whereas the unweighted hue mean is skewed by
the hues associated with the surrounding low-saturation regions.

11.2 Hue histograms

Hue histograms are often used as an image feature for retrieval of colour images from databases.
In these histograms, one generally wishes to exclude achromatic and near-achromatic pixels, for
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Figure 7: (a) Saturation of figure 11b. (b) Pixels of figure 11b with hue values in the interval 20°
on each side of the non-weighted hue mean [H — 20°, H + 20°]. (c) Pixels of figure 11b with
hue values in the interval [Hg — 20°, Hg + 20°] around the saturation-weighted hue mean.

which the hue has little meaning. As the traditional (cylindrical) saturation is essentially use-
less in discriminating between achromatic and chromatic colours in the low-brightness part of
the HSV space, a number of heuristics, summarised by Stokman and Gevers [29], have been
used. Tico et al. [30], for example, suggest using the standard deviation of the R, G and B
coordinates in conjunction with a fuzzy membership function containing two user-specified pa-
rameters, to calculate a weight differentiating between chromatic and achromatic colours, the
basic idea being that the more colourful (higher saturated) pixels receive higher weighting in the
hue histogram than the less colourful (lower saturated) ones. The saturation measurement sug-
gested in this report can be directly used as such a weight. In building the saturation-weighted
hue histogram for the specific case of the hues having been rounded to the nearest integer, the
total in bin 0 (6 € [0°,1°,...,360°]) of the histogram is simply calculated as

Wy = Spbon,

where the sum is over all the pixel positions z in the image, H, and S, are respectively the
hue and saturation at point x, and 4;; is the Kronecker delta function. A saturation-weighted
brightness histogram can be calculated analogously by using the inverse weighting (1 — S;),
thereby privileging the low saturation (achromatic) pixels. An alternative saturation weighting
for the hue, which shifts the hue values around the circle, is described in [11], where it is used
in the context of colour ordering for mathematical morphology.

11.3 Mathematical morphology and the lattice approach

The application of mathematical morphology to colour images is difficult due to the vectorial
nature of the colour data. The most commonly adopted approach is to use one of the vector
orders suggested by Barnett [1]. The lexicographical order is convenient as it imposes a total
order on the vectors, thereby ensuring that there are no pairs of vectors for which the order is
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Figure 8: (a) Luminance of figure 12a. (b) Saturation of figure 12a. (c) The top-hat — the
Euclidean distance between the corresponding pixels in figures 12a and b.

uncertain, contrary to the marginal and reduced orders [4]. The use of a lexicographical order
directly in the RGB space requires that one of the colours red, green or blue be arbitrarily ele-
vated to a dominant role. The more homogeneous 3D-polar coordinate representation can avoid
this disadvantage. It is often suggested that using a lexicographical order with a brightness mea-
sure at the top level gives the “best” results [18, 19], although certain problems (one of which
is shown in this section) can be solved by the use of a lexicographical order with saturation at
the top level.

Consider the colour image in figure 12a, in which we have given ourselves the task of
extracting the grey lines between the mosaic tiles. The luminance image in figure 8a shows
that some of the tiles have a lower luminance than the grey lines, whereas others have a higher
luminance. In the saturation image of figure 8b, one sees that the saturation of the grey lines is
almost always lower than that of the more colourful tiles. We therefore choose the following
lexicographical order between any two vectors in 3D-polar coordinates v; = (Y;, S;, H;)

Si > Sj
V; > Vj if or S; = Sj and Y; > Y; (70)
OI'SZ':S]' and K:Y; and HZ—H0<H]—H0
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where the symbol - on the last level represents the acute angle between two angular values, i.e.
g 10i =0 if 160; — ;] < 180°
01 . 0_] - { 3600 _ |01’ _ 0]‘ lf ‘HZ _ 9]‘ Z 1800 (71)

The variable H, on the third level of the lexicographical order is the position of the origin of
the hue circle. As the third level of a lexicographical order is hardly ever used in practice [12],
its value does not have much effect on the results. Applying a morphological closing using this
order with a square structuring element of size 5 x 5 pixels to figure 12a produces figure 12b, in
which one sees that the tiles have been expanded to cover the grey lines. Finally, a form of top-
hat [28] is calculated by determining the Euclidean distance (in 3D-polar coordinates) between
the corresponding pixels of figures 12a and 12b to give the greyscale image in figure 8c, in
which the pixels with highest greylevels correspond to the features we wish to extract.

The use of the Euclidean distance in this space does not imply that it is in any way percep-
tually uniform. Nevertheless, the magnitudes of the Euclidean distances give a good indication
of the magnitudes of the colour differences. In many imaging applications, especially in mul-
timedia, one does not have access to the calibration data necessary to convert to a perceptually
uniform space, such as the CIE L*a*b* space. This colour difference approximation could
therefore be useful in these cases.

The lexicographical order with saturation at the first level is useful in situations where one
wishes to distinguish between colourful and non-colourful objects or regions. This could be,
for example, in the isolation of a non-saturated phase amongst several others in geological or
biological applications, or the extraction of colourful blobs from a grey background.

12 Conclusion

The 3D-polar (hue, saturation and brightness) coordinate colour representation systems cur-
rently in use are often unsuited to image processing and analysis. The principal reason is the
artificial expansion of the natural (conic or bi-conic) shapes of these spaces into cylindrical
form, by dividing each saturation value by the maximum saturation possible for the associated
brightness. While this cylindrical shape is convenient for colour specification or choice appli-
cations, it is completely unsuitable for image processing and analysis for the following reasons:

e Colours which appear almost achromatic can receive high (or even maximal) saturation
values.

e Because the saturation normalisation depends on the brightness function, these two coor-
dinates are not independent.

e Comparison between saturation values is meaningless, as each saturation is normalised
by a different factor.

We present three prerequisites for 3D-polar coordinate colour systems to be suitable for
image processing and analysis, and then derive systems using the L, L, and max — min norms.
Transformation systems to and from the L; norm space and the improved HLS (IHLS) space
are presented. The L, space transformations are linear and include a linear approximation of
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the hue. This space should therefore be used if very efficient transformations are required. The
IHLS space is more suited to image analysis tasks, as it permits a wide choice of brightness
functions and does not approximate the hue. Any 3D-polar coordinate system is very closely
tied to the RGB space, being simply a different representation of it. It therefore does not have
any of the good properties of the L*a*b* or L*u*v* spaces, such as perceptual uniformity. Its
advantages are that the conversion algorithm is very simple, and that no colour calibration data,
such as the white point coordinates, are required. This calibration data is usually not available
in multimedia applications, for example.

Three applications demonstrating the good properties of the suggested saturation measure
are given. The calculation of statistics of the hue weighted by the saturation and the determina-
tion of the saturation-weighted hue histogram use the fact that the suggested saturation measure
is always small for near-achromatic colours. The mathematical morphology application takes
advantage of the ability to do comparisons between the saturation values.

In summary, much confusion and incompatibility between results in colour image process-
ing and analysis could be avoided by the use of the suggested 3D-polar coordinate system.

A Proof of the independence of the proposed saturation and
the brightnessfunction

We give a proof of the independence of the brightness and saturation, stated in section 5. Con-
sider the triangle shown in figure 5a, which contains all the points with the same hue as c. This
triangle is reproduced in figure 9 to facilitate the following proof.

Proposition A.1. The proposed saturation definition

L@
* =Ll —a©]

(72)

is independent of the choice of the brightness function.

Proof. Refer to figure 9. The iso-brightness lines between L [q (c)] and g (c) and between L (c)
and c are by definition parallel. By adding the line between f and ¢ which is parallel to the line
between w and q (c), we create two similar triangles with vertices f, ¢, L (c) and w, q (c),
L [q (c)] respectively. We hence have the relation

[L(c)—cll _ lf—c]
[Lia(©]—a(e)ll [lw—-alc)ll

(73)

This relation is true for any brightness function, as long as the iso-brightness surfaces it produces
are parallel. Hence, the proposed saturation definition is independent of the brightness function.
0]
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w= (1,1,1)

L(c)

Llac)

a(c)

0=(0,0,0)

Figure 9: The triangle of figure 5a which contains all the points having the same hue as c. The
achromatic axis is at the left, between the points o and w.

B Proof that max — min isa semi-norm

Proposition B.1. In a vectorial space E of finite dimension n and in which the vector x has
coordinates {z;,1 = 1,2,...,n}, the quantity
§(x) = max(x)— min (x) (74)

= max{z;,i=1,...,n} —min{z;,i =1,...,n} (75)
IS a semi-norm.

Proof. Firstly we observe that for any set of values z; € |—oo, +00[, 1 < i < n, the quantity ¢
cannot be negative. For every x € E, we obviously have 6 (Ax) = Ad (x). It remains to show
the validity of the triangular inequality associated with each pair of points (x,x’) in E by the
relation

d(x+x') <6 (x)+6(x) (76)

We first show that
max (x + x') < max (x) + max (x') (77)
Take for the nth coordinate the one which maximises x + x’, i.e. max (x + x') = z, + z}, >
z;+xt, 1 =1,...,n. Itisobviously not possible to have z,, < z; and z!, < %, withi =1,... n.
Suppose therefore, for example that max (x) = z,, and max (x') = /; foranindexj € 1,...,n.

It follows that
max (x +x') = 2, + 7;, < 2, + 2; = max (x) + max (x') . (78)

One can prove in exactly the same way that min (x + x’) > min (x) + min (x’), from which it
Is possible to establish inequality 76 by subtraction, which completes the proof. O
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(a) Conic HSV (b) Cylindrical HSV (c) Bi-conic HLS (d) Cylindrical HLS

Figure 10: Slices through the conic and cylindrical versions of the HSV and HLS colour spaces.
The brightness increases from bottom to top, and the saturation increases from the centre (achro-
matic axis) outwards. Colours to the right of the central achromatic axis have hues of 0°, and

colours to the left have hues of 180°.

Figure 12: (a) Colour image (size 544 x 360 pixels). (b) A morphological closing of image (a)
using a lexicographical order with saturation at the first level.
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