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Hausdor ff Distance |

« E isametric space of distance d, and K ' is the class of the non empty
compact sets of E. Put :

d(x,Y)=inf {d(x)y), YEY }; XEE YeX'
Thenthemapping K X K — R,
p(X.Y)=max{ supd (x,Y);supd(x,Y)}  (Eq. 1)
Isadistance, called «Hausdorff Distance», on K .

e By introducing the dilation o, by the compact ball B, (x) of centre x and
radiusA , I1.e.

0, (X) = U{B, (x), xeX}
(Eqg. 1) takes the following form

pX,Y)=inf{A: X< (Y);Y<Sd (X))} .
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| First Haudor ff Geodesic |

o |f it exists, ageodesic between X and Y will be a shortest segment [X,Y]
in space K (E), i.e. afamily { Z, , 0O<a<1} of non empty compact
Interpolatorsfrom X , fora=0, toY, for a=1.

e Proposition (1rst geodesic in K ') : Every pair (X,Y) in K (E), from
haudorff distance p apart, admits the following geodesic:

{ Z4=04p (X) N Qy_qyp (Y) ; O=<a=1 }

e SetZ, turnsout to be the intersection of the dilates of X and of Y by the
balls of radil ap and (1- a) p respectively.

In particular, in Minkowki case, X®B(p/2) N Y®B(p/2) is the midway
set between X and Y.
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Two Examples of Midway Sets |

Comments: In both examples, the geodesic has a swelling effect. In the second
one, two fine and horizontal segments are interpolated by athick vertical lens!

Questions: 1/ Should it be possible to approach separately the relative positions
of X and Y, and their shape differences ?
2/ |sthe above geodesic the unique one ?
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Trandation Effect onZ

e ¢

Asthetwo sets diverge, their geodesic Z, becomesless and less significant .
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| Reduced Hausdorff Distance |

 Reduced space : Let E be a compact sub-space of R" or Z" . We will
approach locations and shapes separately, by considering the quotient
space K, of K * for the equivalence under translation (Notation : X,
stands for the trandate of X by vector a) . Put

p,(X,Y)=inf{ p(X,,Y,), uveE} Eq(2.

Since space E is compact, there exists at least one pair (X,,Y,) for which
P = p,; , and thisyields the following result

* Proposition (1rst geodesic on K, ) : The mapping introduced by Eq.(2)
defines a distance on the quotient space /K, . Moreover, for every pair of
compact sets X,Y , the geodesic in K, is nothing but the (non reduced)
geodesic of X_,Y, inK 'i.e

{ Z,=X,©Bap n Y, & B(1l-a)p ; O<a<l }

In practice, a matching of the centresof X and Y is sufficent.
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Reduced Distance : an Example |

ceRRY

* The geodesics were computed when the centers of gravity of X and of Y
were superimposed (on thefigure, set Y is shifted for display reasons).

e Thethreeintermediary Z, correspondto o ={ 0.25; 0.50; 0.75 }
 Theresidua swelling effect is more acceptable.
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| Haudor ff Geodesic for Convex Sets (1) |

A second way to improve the geodesics is suggested by the convex sets.

« Convex case: Take for E the Euclidean space R", and focus on the metric
sub-space C "< K ' of the convex compact sets. then we have:

* Proposition ( Geodesicson C ' ): let X and Y be two convex compact sets
in R", then the interpolators {C, } form a geodesicin space C .

{Cy}t={(1-a)Xe®aY, O<ax<l}

B Examples of
geodesics C,

J. Serra | SMM*98 Hausdorff Geodesics 8



Properties of geosdesic C,

e Unlikethefirst geodesicZ, , C,
commutes under trandation,
I.e. when X is shifted by a, then
C, (X,Y) isshifted by a.a;

e Over C ,geodesic C, isaways
smallerthanZ_  1.e.C, < Z_ ;

e Themapping C,: R"XR"—R"
Isincreasing ;

« ButwhenX andY arenotinC’
then C, isno longer ageodesic !
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o

| ncreasingness
of Geodesic C,
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Second Haudor ff Geodesic : General Case |

e Proposition ( Second Geodesic on K ') : Every par (X,Y) in K (E),
from haudorff distance p apart, admits the following geodesic:
{ 2470, (X) N0y (Y)N(Ll-a)X®0aY,; O<a<l };

Hence, by comparison with the first geodesic Z, = &, (X) N &y_q, (Y) ,
we now have:
Z,=2,NC,

e Comment : 1/ Here, not only X and Y are not necessarily convex, but
space E itself is no longer supposed to be Euclidean.
2/ Since C, commutes under transation, the above reduced approach
Is still valid : given the pair (X,Y) and their optimal translates (X_,Y ),
family {Z', (X,.,Y,); 0<a<1} isageodesic on the reduced space K, .

J. Serra | SMM*98 Hausdorff Geodesics 10



|Comparison between C_, and Z, N C“l

(1) shapes and sizes

4 L1 Ly

Pseudo- geodesic C,, : the snhape evolution is not well caught.

series C,

series

e c ‘.t Z'=2,NC,

Reduced 2nd geodesic Z ', : both swelling effect and shape
evolution are improved.
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Comparison between C, and Z_, N C, |

N S

ap o

o SetY
Z,NC,
_ Interpolators

When one input at least is not convex, then C, is no longer a geodesic (e.g.
C, (X, X)isnot X) andyieldsless satisfactory resultsthan Z, N C,

. Interpolators

(I1) Connectivity
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Comparison between C, and Z_, N C, |

(I11) Connectivity

However, the nice previous
connectivity preservation
falls when as soon as
homotopy becomes more
complicated.

(a) (b) two chromosoms ;

(c) (d) basic threshold of the
bending ;

(e) Midway set according to
the 2nd geodesic Z, N C,
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Comparison between C, and Z, N C, |

(IV) Increasingness

Unlike C, , geodesicZ, N C,
ISnot increasing.

Practically, what happens if
we interpolate the homolog

pairsindividualy (eyesand .
mouth) ? Young ghosts smiling,
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Comparison between C, and Z, N C, |

(IV) Increasingness

When the involved shapes are
not too tortuous, then
INncreasingness is preserved.

Here, eyes and mouth have
been interpolated by using

geodesic Z, N C; .and midway brother
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| Hausdor ff Distance by Erosionsl

Basically, the swelling effect arises because Hausdorff distance is not a self-
dual notion. A first step to offset this weakness consists the following :

e Dual Hausdorff Metric : Consider the subclass of K ° made of regular
compact setsi.e. whose elements A satisfy the equality

A=A
then the non negative number
o(X,Y) =inf{A:g (X)CY ; & (Y)=X}
defines aHausdorff Distance by Erosions on the regular class.

* Euclidean case : Below, we will focus on the class ‘A of setswhich are
— regular in acompact subspace E of R" or Z";
— finite unions of digoint connected sets.
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|nter polations for Nested Sets |

Consider an ordered pair (X,Y) of setsin AA(E) , e.g. with X<Y.

e Median element : A point m lies at a distance <A from X iff
me(X®AB) ; similarly, by regularity of Y, mliesat adistance >A from
Y¢ iff me (YeAB) ; hence set

M(X,Y)=U{(XeAB) N (YeAB) ,A =0} (Eq. 3)
characterizes a median element such that
1/ XEMCY ;

2/ 0M is the locus of the points equidistant from X and from Y¢ ( the
SKIZ of XUY€, inLantugoul’ssense) ;

3/ dl theinvolved distances are smaller or equal to

L=Iinf{A:A=0,(XeAB) N (YeAB)c#01}. (EQ. 4)
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Median Element and Haudor ff Distances |

« Compacity : Because of the assumptions of regularity and of finitude, the
median e ement M (X,Y) belongs to A(E) , and there exists at least one
point zondM such that B(z) hits both X and the closure of Y¢.

e Proposition (Median element and distances) : Given X,Y in A(E) , the
median element M (X,Y) is a Haudorff dilation distance from X and
X® | B and also at Hausdorff erosion distancefromY and Yo U B.

Note that 1n these results, none of the distances between X and Y intervenes

« Weighted element : By intoducing two weightsa and (1 - a) in Eqg. 2 we
generalize M (X,Y) asfollows:

M (XY)=U{(X®eaAB)Nn(Ye (1-a)AB),A =0} O=<ax<l
to which is associated the minimum value p(a), with sup, { p(a) } = p(X,Y).
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| Examples of Median Elements |
Initial sets -

Midway set C, - Middleelement M, . Middleelement M, .

( commutes under after shift of one set
trandation )
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| Another Example |

Conlusions:

1/ the M  'sare not geodesic sets : the midway between X and M, <(X,Y) isnot
Mo2s(X,Y) ;

2/ the trandlation dependence isworse for theM , ’s thanfortheZ' 's;

3/ but (X,Y) =M , (X,Y) Isincreasing, hence it extends easily to numerical
functions ( see F. Meyer, S. Beucher and J.R. Casas works on the subject ) .
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