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‘ Upper Semi Continuous Functions (G. M atheron, 1969) |

« TheclassF of theu.s.c. functionsf: E - R isnothing but that of those
closed setsCin F( EOR) such that:

- CoE,,
- OxeE, OteR: (xt)eC O {x}0O[o,t] cC.

 Thisclassisacompact family in F(EOR) . Hence, theopen setsin F are
the parts of F whose elementsf satisfy the two conditions:

X*(G)=sup{f(x),xeG}>b and inf{ X* (G),GODK}<a,
as G spansthe open setsof E and K its compact sets.

» A sequencef, convergestowardsf in F iff it satisfies the two conditions:

1) for all x € E, there existsa sequence X, — X in E such that the
sequencef (x,) - f(X) INR;

1) if a sequencex,, convergestowardsx in E , then the sequence
f . (X,) satisfies Limf_, (x,) <f(X).
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‘ U.S.C. Random Functions (G. M atheron, 1969) I

 Equip F with the o - algebra generated by itstopology, i.e. by the events
X% (G)=sup{f(x), xeG}>D.

« A Random u.s.c. function f isthen defined by providing the Measurable
Space ( F, o) with a probability P. Such probabilities do exist because F
IS compact.

 Just asarandom variableis characterized by itsdistribution function, a
Random Function f € (F, o, P) isdetermined by thejoint distributions

Pr{sup{f(x),xeB,} <A, ;..sup{f(x),xe€B,} <A, }

for nfinite, B; compact sets, and A, real numbers
( Choquet- Matheron theorem, interpreted here for Random Functions).
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‘ Equicontinuous Functions (Reminder) |

Modulus of Continuity ¢

With any function fOORE, (i.e.f: E - R), associatefunction ¢ : R, - R, as
follows:

b (h)=sup { F(X)-f(y)D x,y €E, d(xy)<h} .

Moreover, " fis uniformly continuous” < " lim, _, =0".
If so, then ¢ iscalled a Modulus of Continuity .

Equicontinuous Classes
Given ¢, afunction f issaid to be ¢ - continuous when

Of(x) - f(y)O<s ¢ [d(Xy)] forall x,yeE (1D

Thefunctionsthat satisfy Eq. (1) generatethe so called ¢ - continuous class.
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An Exampleof Modulus ¢
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‘ LatticesL, of Equicontinuous Functions |

 Theorem: For every modulus ¢, classL ;is a complete sub-lattice of R

Moregenerally, replace R by a Lattice T equipped with atopology that
- makes T compact;
- closestheorderingon T (i.e. X—» X,Y,-» Yy, X<y, X<vVy)
Lattice T issaid to be Compact and Close Ordered (in brief : C.C.O.)

* Theorem: Let E bea metric space, T be a totally ordered CCO-lattice, and d; be
a distanceon T such that

asxs<y<b inT [0 d;(xy)<d;(ab)

then theclassL , of the ¢ - continuous functionsf: E - T isa complete sub
lattice of TE.

e Corollary : Thetheorem extendsto any product 1{T,,i €1 } of T typelattices.
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‘ Dilationson RE functionsL attices |

In any lattice, the two basic oper ations ar e those which preserve either the
supremum ( namely the dilations) or the infimum (namely the erosions).

Thedilations & that map the functionslattice RE into itself admit arather
general form @ONy)=V{g,2+f(2), zeE}
where each point y € E isassociated with a structuring function g,.

In order to describethevariation of theg, over the space, introducethe
following Hausdorff type metrics:

Proposition : Let G be a family of numerical functions over a metric space E,
I/ which admit a common finite upper bound
11/ whose crosssections  X(g) ={y: d(y) =t} geg

are compact for all t € R\ {-o0}. If d, Standsfor thedilate of g by a circular
cylinder of radius p and height kp , then the mapping h: G®G—-R,

h(g,g)=inf{p:g=g,, g =g,} isadistanceon G
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‘ Dilations on L¢ Latticesl

We now wonder about theimage &(L,) of sub latticeL, under dilation o .

« Theorem: let 6: RE—RE beadilation whose structuring functions admit a
modulus of continuity ¢' i.e.

h(g.,9/)= ¢ [dixy)] X,y €E
Then dmapsL ,intothesublatticel 4. ., Of the (¢ +k)e¢'- continuous
functions.

e Particular cases:
— Eisaffine, and g, isthetranslateof g,. Then h( g, , g,) =d (x,y) and
(0 + k)¢’ = ¢ . Dilation 6 preserves each sub latticeL ;
— Theg, 's areflat of support K, i.e
g, (y) =0 when yeK, , g, (y) =0 when not
ThendmapsL, intoL ., .Inparticular,if¢'< |,then d preservesL,.

Thislatter case occurs, for example, when d istherestriction of a
trandlation invariant operator to a rectangular mask
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‘ Topologieson L, Lattices(l) |

In the usual CCO lattices, when the mapping X - vX from F(T) into
T iscontinuous, then X - AX is u.s.c. only (e.g. closed setsin R, or u.s.c.
functionsR - R ). Thedouble continuity isthus an exceptionally strong
property, and thefollowing criterion a corner stone:

Criterion ( from G.Matheron) : An algebraic lattice admits a necessarily

unique CCO topology such that v and A are both continuous iff for all sand
alltinT, s£t, onecan find two elements s and t' with

sOM, ; tOMs ; M, uUMs = T,
where M, ={z:zeT, z<st'} and Ms={z:zeT, z=25}.

Remarkably, the criterion demands no topological prerequisit, and treats
both questions of existence and of unicity.
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‘ Topologieson L, Lattices(I1) |

Owing totheabovecriterion , we may state

* theorem:Let L, bethelattice of the ¢-continuousfunctions from E into R,
( or more generally into a fully ordered CCO lattice T). Then, the unique

topology that makes L , CCO, with continuous v and A , isthe topology of
the pointwise convergence.

Proof: Letf,geL,,f#g.Thereexistsat |leat onexe E with (for ex.) the
strict inequalities g(x) <a<f(x) .Consider thetwo elementsf,and g, of L,

fo(y)=a-¢[d(xy)] and gly)=a+¢[d(xy)] UyeE
f isnot alower bound of g, sincef(x) > a, hencef O M 9, . Similarly, we
haveg UM (,. Moreover, any functions € L, iseither g, (if s(x) <a), or
>f, (if s(x) <a).Thecriterion applies, and the topology isidentified by
observing that L, belongsto both classes of theu.s.c. and |.s.c. functions m

. Corollary : thetheorem remainstrue when T isreplaced by any product
M{T ,i€l}of T typelattices.
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‘ Continuity of the Increasing Operatorsl

The consequences of the theorem on increasing mappings are
considerable. Inthe"flat " case, for example, we have:

e Theorem: Let 0 bethedilation by the (variable) ¢'- continuous
Structuring Element K. Then, for each modulus ¢ , the mapping 4 from
L, into L., iscontinuous. The continuity extendsto all finitesup's,

Inf's, and composition products of such dilations.

Similar results may be obtain for linear mappings. For example:

e Proposition: Let g(dh) be a measure such that fEEg(dh)Ds 1.Then the
convolution by g mapseach L, into itself, and is continous.

Consequently, all half residuals (i.e. the differences" identity minus
mapping ") of the above increasing operator s are continuous.
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‘ Random ¢ -Continuous Functions |

Given modulus ¢ , thelatticeL, isa compact sub-classof the
family F of the u.s.c. functionsfrom E into R.

e Therefore, the events
X*(G)=sup{f(x), xeG}>Db

that generate the g-algebra on F admit asimilar meaninginL, , and
the compactnessof L, ensuresthat there exist Probabilitieson the
Measurable Space (L, ,0).

« Moreover, we draw from the above theorems that, as soons as they
admit a modulus of continuity, dilations, erosions as well astheir finite
sup's, inf 's, and composition products do preserve ¢ -continuous
Random Functions, with possible changes of moduli ¢ .

* Notethat the expression of Choquet Functional isleft unchanged .
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‘ Application to sampling |

Given adigital imagef ,
— what isthe minimum number of values of f which suffices for
estimating f everywhere with an accuracy ¢, ,
— and where must we locate the sampling points ?

Consider f asarealization of a ¢ -continuous random function, and
Introduce the following local version of modulus ¢ :

¢.(h) = E[sup{[f(x)-f(y) | yeB,(h)}] (3)

Let h,(d) bethelargest inverseof ¢.(h), i.e. thevalue of the maximum
disc centered at x and such that the variation, in the sense of Eq. (3) is
<¢.Sinced =¢,isfixed, h (¢p) = h(x) becomesa function of x only.

The goal comes back to construct agrid whosevariable spacing fits
with function h. We shall start from the four corners of thefield.
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‘ Example of Sampling (1) |

(1) Inverse modulus Digitization of (1)
( car example) with a constant accuracy
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‘ Example of Sampling (11) I

Initial | mage Sampled Image
( 65 536 pixels) ( 15 892 pixels)
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