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Upper Semi Continuous Functions (G. M atheron, 1969)Upper Semi Continuous Functions (G. M atheron, 1969)

• The class F of the u.s.c. functions f : E → → → → R is nothing but that of those 
closed sets C in F( E⊗⊗⊗⊗ R ) such that:

- C ⊃⊃⊃⊃ E-∞∞∞∞ ,
- ∀ ∀ ∀ ∀ x ∈∈∈∈ E,   ∀ ∀ ∀ ∀ t ∈∈∈∈ R  :       (x,t) ∈∈∈∈ C   ⇒     ⇒     ⇒     ⇒     {x} ⊗ ⊗ ⊗ ⊗ [[[[∞∞∞∞, t ]  ⊂⊂⊂⊂ C.

• This class is a compact family in F( E⊗⊗⊗⊗ R ) . Hence, the open sets in F are
the parts of F whose elements f satisfy the two conditions :

X+
f (G) = sup { f(x) , x ∈∈∈∈ G } > b   and inf { X+

f (G) , G ⊃⊃⊃⊃ K } < a , 
as G spans the open sets of E and K its compact sets. 

• A sequence fn converges towards f in F iff it satisfies the two conditions:
i)  for all x ∈∈∈∈ E, there exists a sequence  xn → → → → x in E such that the 

sequence fn(xn) → ) → ) → ) → f(x) in R ;
ii ) if a sequence xnk converges towards x in E , then the sequence 

fnk(xnk)))) satisfies  Lim fnk(xnk) ≤ ) ≤ ) ≤ ) ≤ f(x). 
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U.S.C. Random  Functions (G. M atheron, 1969)U.S.C. Random  Functions (G. M atheron, 1969)

• Equip F with the σ σ σ σ - algebra generated by its topology, i.e. by the events

X+
f (G) = sup { f(x) , x ∈∈∈∈ G } > b .

• A Random u.s.c. function f is then defined by providing the Measurable 
Space ( F, σ σ σ σ ) with a probability P. Such probabilities do exist because F
is compact.

• Just as a random variable is characterized by its distribution function, a
Random Function f ∈∈∈∈ ( F, σ σ σ σ , P) is determined by the joint distributions

Pr { sup{ f(x) , x ∈∈∈∈ B1 } < λλλλ1 1 1 1 ; ....; ....; ....; ....sup{ f(x) , x ∈∈∈∈ Bn } < λλλλn }
for  n finite, Bi compact sets , and λλλλn real numbers
( Choquet- Matheron theorem, interpreted  here for Random Functions).
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Equicontinuous Functions (Reminder)Equicontinuous Functions (Reminder)

Modulus of Continuity ϕϕϕϕ
With any function  f∈∈∈∈ RE, (i.e. f : E → → → → R), associate function ϕϕϕϕ : R+→ → → → R+ as
follows :

ϕϕϕϕ (h) = sup {  f(x) - f(y)    x, y ∈∈∈∈ E,   d (x,y) ≤≤≤≤ h }  .

Moreover, " f is  uniformly continuous "  ⇔ ⇔ ⇔ ⇔ " lim ϕ →0ϕ →0ϕ →0ϕ →0 = 0 " .
If so, then ϕϕϕϕ is called a Modulus of Continuity .

Equicontinuous Classes
Given ϕ,ϕ,ϕ,ϕ, a function f is said to be ϕϕϕϕ - continuous when

 f(x) - f(y)  ≤   ϕ [  ≤   ϕ [  ≤   ϕ [  ≤   ϕ [ d (x,y) ]         for all x, y ∈∈∈∈ E (1)

The functions that satisfy Eq. (1) generate the so called ϕϕϕϕ - continuous class.



J. Serra Worshop on Random Sets                                                          C.M.M. October 1996  5

An Example of Modulus ϕϕϕϕAn Example of Modulus ϕϕϕϕ

60

70

80

90

100

110

120

130

0 5 10 15 20 25 30 35

"c:\mmw\car.dat"

Video Image Corresponding Modulus ϕ ϕ ϕ ϕ 
( square metrics)



J. Serra Worshop on Random Sets                                                          C.M.M. October 1996  6

Lattices Lϕϕϕϕ of Equicontinuous  FunctionsLattices Lϕϕϕϕ of Equicontinuous  Functions

• Theorem : For every modulus ϕ ϕ ϕ ϕ , class Lϕϕϕϕ is a complete sub-lattice of RE

More generally, replace R by a Lattice T equipped with a topology that
- makes T  compact;
- closes the ordering on T  (i.e. xi→ → → → x , yi→ → → → y , xi ≤≤≤≤ yi ⇒  ⇒  ⇒  ⇒  x ≤  ≤  ≤  ≤  y )

Lattice T is said to be Compact and Close Ordered ( in brief : C.C.O.)

• Theorem : Let E be a metric space, T be a totally ordered CCO-lattice, and dT be
a distance on T such that

a ≤≤≤≤ x ≤≤≤≤ y ≤≤≤≤ b    in  T    ⇒⇒⇒⇒ dT (x,y) ≤≤≤≤ dT (a,b)

then the class Lϕϕϕϕ of the ϕ ϕ ϕ ϕ - continuous functions f: E → → → → T is a complete sub 
lattice of TE.

• Corollary : The theorem extends to any product Π Π Π Π { Ti ,i ∈∈∈∈ I } of T type lattices.
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Dilations on  RE functions LatticesDilations on  RE functions Lattices

• In any lattice, the two basic operations are those which preserve either the
supremum ( namely the dilations) or the infimum (namely the erosions).

The dilations δδδδ that map the functions lattice RE into itself admit a rather 
general form (δδδδf)(y) = ∨∨∨∨{ gy(z) + f(z) ,  z ∈∈∈∈ E }
where each point y ∈∈∈∈ E is associated with a structuring  function gy.

• In order to describe the variation of the gy over the space, introduce the 
following  Hausdorff type metrics :

Proposition : Let GGGG be a family of numerical functions over a metric space E,   
i/ which admit a common finite upper bound  
ii/ whose cross sections Xt(g) = { y : g(y) ≥≥≥≥ t }               g ∈∈∈∈GGGG

are compact for all t ∈∈∈∈ R\ {-∞∞∞∞}. If gρρρρ stands for the dilate of g by a circular 
cylinder of radius ρ ρ ρ ρ and height kρρρρ , then  the mapping h: GGGG⊗⊗⊗⊗G→G→G→G→R+

h(g , g') = inf { ρ :ρ :ρ :ρ : g ≤≤≤≤ g'ρρρρ ,  g' ≤≤≤≤ gρρρρ }}}} is a distance on GGGG
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Dilations on Lϕ ϕ ϕ ϕ LatticesDilations on Lϕ ϕ ϕ ϕ Lattices

We now wonder about the image  δδδδ(Lϕϕϕϕ)  of sub lattice Lϕϕϕϕ under dilation δ .δ .δ .δ .

• Theorem : let δδδδ : RE→→→→RE be a dilation whose structuring functions admit a
modulus of continuity ϕϕϕϕ' i.e.

h( gx , gy ) ≤  ϕ≤  ϕ≤  ϕ≤  ϕ' [ d(x, y) ]     x , y  ∈∈∈∈ E
Then δδδδ maps Lϕϕϕϕ into the sub lattice L (ϕϕϕϕ + k)◦◦◦◦ ϕϕϕϕ'  of the (ϕϕϕϕ + k)◦◦◦◦ϕϕϕϕ'- continuous 

functions.

• Particular cases :
– E is affine, and gx is the translate of g0 . Then h( gx , gy ) = d (x,y) and

(ϕϕϕϕ + k)◦◦◦◦ϕϕϕϕ' = ϕ ϕ ϕ ϕ . Dilation δδδδ preserves each sub lattice Lϕϕϕϕ ;
– The gx 's  are flat of support Kx i.e.

gx (y) = 0 when  y∈∈∈∈Kx , gx (y) = 0 when not
Then δδδδ maps Lϕ    ϕ    ϕ    ϕ    into L ϕϕϕϕ ◦◦◦◦ ϕϕϕϕ' . In particular, if ϕϕϕϕ' ≤≤≤≤ I, then δδδδ preserves Lϕϕϕϕ ....

This latter case occurs, for example, when δδδδ is the restriction of a 
translation invariant operator to a rectangular mask
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Topologies on Lϕ ϕ ϕ ϕ Lattices (I)Topologies on Lϕ ϕ ϕ ϕ Lattices (I)

In the usual CCO lattices, when the mapping X→ → → → ∨∨∨∨X from FFFF(T) into
T is continuous, then X→ → → → ∧∧∧∧X is u.s.c. only (e.g. closed sets in R , or u.s.c.
functions R → → → → R ). The double continuity is thus an exceptionally strong 
property, and the following criterion a corner stone :

• Criterion ( from G.Matheron) : An algebraic lattice admits a necessarily
unique CCO topology such that ∨∨∨∨ and ∧∧∧∧ are both continuous iff for all s and
all t in T, s!!!! t , one can find two elements s' and t' with

s ∉∉∉∉ Mt' ;    t ∉∉∉∉ Ms' ; Mt' ∪∪∪∪Ms' =   T  ,
where  Mt' = { z : z ∈∈∈∈ T ,  z ≤≤≤≤ t' }    and    Ms' = { z : z ∈∈∈∈ T ,  z ≥≥≥≥ s' } .

Remarkably, the criterion demands no topological prerequisit, and treats 
both questions of existence and of unicity.
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Topologies on Lϕ ϕ ϕ ϕ Lattices (II)Topologies on Lϕ ϕ ϕ ϕ Lattices (II)

Owing  to the above criterion , we may state

• theorem :Let Lϕ  ϕ  ϕ  ϕ  be the lattice of the ϕϕϕϕ-continuous functions  from E into R,  
( or more generally into a fully ordered CCO lattice T). Then, the unique
topology that makes Lϕϕϕϕ CCO, with continuous ∨∨∨∨ and ∧∧∧∧ , is the topology of
the pointwise convergence.
Proof: Let f,g ∈∈∈∈ Lϕϕϕϕ , f ≠≠≠≠ g .There exists at leat one x∈∈∈∈ E with (for ex.) the
strict inequalities g(x) <<<< a < < < < f(x) .Consider the two elements fo and go of Lϕϕϕϕ

fo (y) = a - ϕ ϕ ϕ ϕ [d(x,y)]       and       go(y) = a + ϕ ϕ ϕ ϕ [d(x,y)]       ∀∀∀∀ y ∈∈∈∈ E
f is not a lower bound of g0 since f(x) > > > > a, hence f ∉ ∉ ∉ ∉ M g

o . Similarly, we
have g ∉ ∉ ∉ ∉ M fo . Moreover, any function s ∈∈∈∈ Lϕ  ϕ  ϕ  ϕ  is either ≤ ≤ ≤ ≤ go   (if  s(x) ≤≤≤≤ a), ο), ο), ο), οr 
≥≥≥≥ fo (if  s(x) ≤≤≤≤ a) ) ) ) .The criterion applies, and the topology is identified by 
observing that Lϕ  ϕ  ϕ  ϕ  belongs to both classes of the u.s.c. and l.s.c. functions !!!!

• Corollary : the theorem remains true when T is replaced by any product
Π Π Π Π { Ti ,i ∈∈∈∈ I } of T type lattices.
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Continuity of the Increasing OperatorsContinuity of the Increasing Operators

The consequences of the  theorem on increasing  mappings are
considerable.  In the "flat " case, for example, we have :

• Theorem : Let  δδδδ be the dilation  by  the (variable) ϕϕϕϕ'- continuous   
Structuring Element K. Then, for each modulus ϕ ϕ ϕ ϕ , the mapping δδδδ from 
Lϕ    ϕ    ϕ    ϕ    into L ϕϕϕϕ ◦◦◦◦ ϕϕϕϕ' is continuous. The continuity  extends to  all  finite sup's,
inf's, and composition products of such dilations.

Similar results  may be obtain for linear mappings. For example:

• Proposition: Let g(dh) be a measure such that ∫∫∫∫E g(dh)    ≤ 1.≤ 1.≤ 1.≤ 1. Then the
convolution by g maps each Lϕ ϕ ϕ ϕ into itself, and is continous.

Consequently, all half residuals ( i.e. the differences "identity minus
mapping ") of the above increasing operators are continuous.
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Random ϕϕϕϕ -Continuous Functions Random ϕϕϕϕ -Continuous Functions 

Given modulus ϕϕϕϕ , the lattice Lϕ    ϕ    ϕ    ϕ    is a  compact sub-class of the 
family F of the u.s.c. functions from E into R.

• Therefore , the events
X+

f (G) = sup { f(x) , x ∈∈∈∈ G } > b
that generate the σσσσ-algebra on F admit a similar meaning in Lϕϕϕϕ , , , , and
the compactness of Lϕ    ϕ    ϕ    ϕ    ensures that there  exist Probabilities on the 
Measurable Space ( Lϕϕϕϕ , σ ) ., σ ) ., σ ) ., σ ) .

• Moreover, we draw from the above theorems that, as soons as they
admit a modulus of continuity, dilations, erosions as well as their finite 
sup's , inf 's , and composition products do preserve ϕ ϕ ϕ ϕ -continuous 
Random Functions, with possible changes of moduli ϕ ϕ ϕ ϕ .

• Note that the expression of Choquet Functional is left unchanged .
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Application to samplingApplication to sampling

• Given a digital image f ,
– what is the minimum number of values of f which suffices for

estimating f everywhere with an accuracy ϕϕϕϕo , , , , 
– and where must we locate the sampling points ?

• Consider f as a realization of a ϕ ϕ ϕ ϕ -continuous random function, and
introduce the following local version of modulus ϕ ϕ ϕ ϕ :

ϕϕϕϕx(h)  =  E [ sup { |||| f(x) - f(y) | | | | y ∈∈∈∈ Bx (h) } ]           (3)

• Let hx(ϕϕϕϕ) be the largest inverse of ϕϕϕϕx(h), i.e. the value of the maximum
disc centered at x and such that the variation, in the sense of Eq. (3) is
≤ ϕ ≤ ϕ ≤ ϕ ≤ ϕ . Since ϕ ϕ ϕ ϕ = ϕϕϕϕo  is fixed, hx(ϕϕϕϕ) = h(x) becomes a function of x only.

• The goal comes back to construct a grid  whose variable spacing  fits 
with function h. We shall start from the four corners of the field.
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Example of Sampling (I)Example of Sampling (I)

(1) Inverse modulus
( car example)

Digitization of (1)
with a constant accuracy
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Example of Sampling (II)Example of Sampling (II)

Initial Image
( 65 536 pixels)

Sampled Image
( 15 892 pixels)


