Morphological Operators on the Unit Circle

Allan Hanbury and Jean Serra

Centre de Morphologie Mathématique Ecole des Mines de Paris 35, rue St-Honoré 77305 Fontainebleau cedex E-mail: {Hanbury, Serra}@cmm.ensmp.fr

The unit circle

- In image analysis, one often has to treat data distributed on the unit circle
- Two examples are:
 - The hue band of colour images
 - Images describing directional texture

Hue band

Colour image - "The Virgin", P. Serra

(16th century)

Hue band

The red and violet colours are separated by a large discontinuity, even though they are visually "similar"

Directional texture

Greyscale image 272x608 pixels

Angle image (size 13x33) calculated with a neighbourhood of size 32x32, moved by 16 pixels

Morphology on angle images

We would like to use mathematical morphology on these angle images (i.e. with pixels distributed on the unit circle)

Problem:

- The unit circle has no order of importance and no dominant position
- Hence it is impossible to construct a lattice on the unit circle, unless assigning it an arbitrary origin.
- We aim to develop some rotationally invariant morphological operators

Two possible solutions

Circular centred operators (operators which bring into play a difference)

Indexed Partitions

Circular centred operators

- Given a unit circle C with centre o
- We choose an arbitrary origin a_0 , and indicate the points a_i by their curvilinear coordinates between 0 and 2π from a_0 .
- Given two points *a* and *a*', the value of the acute angle *aoa*' is indicated as $a \div a' = |a - a'|$ if $|a - a'| \le \pi$ $a \div a' = 2\pi - |a - a'|$ if $|a - a'| \ge \pi$

This relation provides a complete ordering of the points on C

$$a_i \quad a_j \quad \text{if} \quad a_i \div a_0 \ge a_j \div a_0$$

or if $a_i \div a_0 = a_j \div a_0$ and $a_i - a_0 \le \pi$

Gradients (reminder)

- In \mathbb{R}^d , to determine the modulus of the gradient, at point x, of a numerically differentiable function f, one uses $2g(x, r) = \lor \{ |f(x) - f(y)|, y \in S(x, r) \} - \land \{ |f(x) - f(y)|, y \in S(x, r) \}$ where S(x, r) is a small sphere centred at xwith radius r. The gradient is the limit of g as $r \rightarrow 0$.
- In the two-dimensional digital space Z^d,
 S(x, r) is replaced by the unit square or
 hexagon K(x)

Images with values on C

$\blacksquare a : E \rightarrow C$ is the angle image

■ As the definition of the gradient involves only increments, it is transposed to *a* by replacing |a(x) - a(y)| by $|a(x) \div a(y)|$

$$2(\operatorname{grad} a)(x) = \lor \{ | a(x) \div a(y) |, y \in K(x) \} - \\ \land \{ | a(x) \div a(y) |, y \in K(x) \}$$

Example

Hue band

Example

Hue band

Ordinary Hue Gradient

Example

Hue band

Ordinary Hue Gradient Angular Hue Gradient

Circular-centred top-hat

■ Opening by adjunction (erosion, dilation): $\gamma_{B}(x) = \sup \{ \inf [f(y), y \in B_{i}], i \in I \}$

where $\{B_i, i \in I\}$ is the family of structuring elements which contain point *x*

■ The top-hat is therefore:

 $f(x) - \gamma_{B}(x) = -\sup \{ \inf [f(y) - f(x), y \in B_{i}], i \in I \}$

As there are only increments of the function *f* around point *x*, we can transpose to functions of circular values *a* as we did for the gradient:

 $(\text{th } a)(x) = -\sup \{ \inf [-(a(x) \div a(y)), y \in B_i], i \in I \}$

Hue band

Top-hat example

Hue band

Hue band

Morphological centre

- The classic morphological centre is used if one has *n* numerical values $t_i \in R$, and a number *t* which we wish to bring closer to the t_i
- It is defined as $\kappa(t) = \wedge t_i$ if $t \leq \wedge t_i$ $\kappa(t) = t$ if $\wedge t_i \leq t \leq \forall t_i$ $\kappa(t) = \lor t_i$ if $\lor t_i \leq t$

Circular case

- On the circle, it is not always possible to say whether a value *a* is exterior (superior or inferior) to the *a_i*.
- The following four diagrams illustrate this:

We use the following definition to exclude the fourth case

- A family $\{a_i, i \in I\}$ of points on a unit circle are ω -grouped when

 $\vee \{ (a_i \div a_j), i, j \in I \} \leq \omega \leq \pi$

- To characterise a group of points using their coordinates, we use
 - The family {a_i, i ∈ I} of points on a unit circle forms an ω-group if and only if one has
 ∨ { a_i, i ∈ I } ∧ { a_i, i ∈ I } ≤ ω
 for an arbitrary origin a₀, or for the origin a₀ + π

Angular morphological centre

- To move a point *a* closer to the points a_i , do the following:
 - If there is an ω -group ($\omega \le \pi$) and *a* is outside the group, replace *a* by the extremity of the group closest to *a*
 - If there is no group, or if a is inside the ω -group, leave it unchanged
- Examples:

Two possible solutions

Circular centred operators (operators which bring into play a difference)

Indexed Partitions

Partitions (reminder)

- \blacksquare *E* designates the work space
- The set $\Pi(E)$ is provided with a connection X
- We consider the family Δ_0 of partitions of *E* for which all the classes are connected
- It involves applications $D : E \to \Pi(E)$ such that for all points *x* and *y* in *E*:
 - $-x \in D(x)$ [Every point belongs to a partition]
 - $-x \neq y \Longrightarrow D(x) = D(y) \text{ or } D(x) \cup D(y) = \emptyset$ [partitions can't overlap]
 - $D(x) \in X$ [the partitions are connected]

Lattices of partitions

Given two partitions, not necessarily with connected classes, the inclusion relation $D(x) \subseteq D'(x)$ for all $x \in E$

defines an order relation, which engenders a lattice

- For partitions of connected classes in ∆₀, this order relation remains valid, but the associated lattice is different
- All families {D_i, i ∈ I} of connected partitions have in Δ₀ a largest minorante D with its class at point x written as

 $D(x) = \gamma_x \ \left[\ \cup \ D_i(x) \ , \ i \in I \ \right]$

■ The largest majorant is the smallest set which is the union of the classes of D_1 , and of D_2 , ..., etc., and which contains point x

Indexed Partitions

We now limit ourselves to a finite number N of partitions, and associate a label from 1 to N with each partition. These ensembles associated with indices are called phases. The indices are usually associated with some property (colour, direction, etc.)

- As there are N phases which fill the space, they are not independent. If we know the first N - 1 phases, the Nth is known
- The *i*th phase is given by:

 $A_i = \cap \{ D(x, i), x \in E \}$

Creating an indexed partition

- Below is an example of how to convert an angle image (values 0° to 180°) to an indexed partition
 - Decide on a partition size, here 45°
 - Decide on a starting point, here 0°

Original image with pixel values (0° - 180°)

Indexed partition from the image

Lattice of indexed partitions

- **Definition**: An indexed partition on a space *E*, indexed by a finite number *N*, is an application $D : E \to \Pi(E) \otimes N$ such that the restriction of *D* to $\Pi(E)$ is a connected partition. The *N* sets associated with the gamut of indices (colour, direction, ...) are called phases
- Now limit ourselves to N 1 indices. The order relation between two indexed partitions D and D' is defined by $D \quad D' \Leftrightarrow \begin{cases} D \le D' & \text{in the sense of connected partitions} \\ A_i \subseteq A_i' & i \in [1, 2, ..., N - 1] \end{cases}$
- The set Δ of partitions with N indices is the lattice produced from the N lattices associated with the orders above
- This lattice is not unique, because any phase can be chosen to play the role of the *N*th phase

Transformations on Δ

Let ψ : D → D be an increasing operation
 We then have the following relations

$$\{A_{i} \subseteq A'_{i} \Rightarrow \Psi(A_{i}) \subseteq \Psi(A'_{i})\} \Leftrightarrow \{A_{i} \quad A'_{i} \Rightarrow \Psi(A_{i}) \quad \Psi(A'_{i})\}$$

 $A_i \subseteq A'_i \text{ for } i \in [1, ..., N-1] \Leftrightarrow A_N \quad A'_N \Rightarrow \Psi(A_N) \quad \Psi(A'_N)$

Consequently, if the operator ψ is increasing for one of the lattices Δ , it is increasing for the others

Cyclic lattices

- The order of increasing operators on ∆ is not specified
- When the indices correspond to points on the unit circle, we can associate with them an order of treatment
- The lattice ∆ ignores this feature, but the choice of operators acting on it can take this into account
- The term cyclic lattices will be used to mean lattices of indexed partitions with indices on the unit circle

Cyclic operators on indexed partitions Δ

- Two possible approaches:
 - Series operators (e.g., Closings)
 - Parallel operators (e.g., Openings)
- By definition, a cyclic operator acting on a cyclic lattice must act systematically on all the indices, either by composition, supremum or infimum

Series Closings

Let φ₁ be a connected closing on Π(*E*)
 Introduce the operator

 $\psi_1 [D (x, 1)] = \gamma_x \phi_1 (A_1)$ $\psi_1 [D (x, i)] = D(x, i) \setminus \gamma_x \phi_1 (A_1) \quad i = [2, ..., N]$

- \blacksquare γ_x is the point connected opening
- The composition $\psi = \psi_N \dots \psi_2 \psi_1$, which is a cyclic operator, operates on all the phases. It can be shown that $\psi \psi = \psi$ (idempotence) as long as the order of operators is kept the same
- \blacksquare The operator ψ is a cyclic morphological filter on Δ

Illustration of a series closing

 $\psi_3 \psi_2 \psi_1 D$

Illustration of a series closing

 $\psi_3 \psi_2 \psi_1 D$

D

 $\Psi_1 D$

Phase 2

Application of the series closing

"L'Atelier", F. Matheron

Hue Band

Hue Band

Application of the series closing

"L'Atelier", F. Matheron

Ψ

Reduction to 8 values by histogram equalisation, followed by series closing with a hexagon of size 2

Initial image (Hue band with 256 grey levels)

Image with simplified hue band (hue band with 8 grey levels)

Parallel openings

- We now exploit the fact that the *N*th phase has different properties to the others, and use it to indicate residues
- We start with a connected opening $\gamma : \Pi(E) \to \Pi(E)$, and construct a new partition D^* as

$$D_{i}^{*}(x) = \gamma_{x} [\gamma(A_{i})] = \gamma [D_{i}(x)]$$

if $\gamma[D_{i}(x)] \neq \emptyset$, $i \in [1, ..., N-1]$
$$D_{N}^{*}(x) = \gamma_{x} (A_{N}) \text{ where } A_{N} = \{ x : \gamma_{x} [\gamma(A_{i})] = \emptyset$$

 $i \in [1, ..., N-1] \}$

- We denote as $\gamma^* : \Delta \to \Delta$ the operator which transforms D into D^*
- γ^* is a morphological filter on Δ and an opening for the N-1 phases A_i
- We privilege its action on the phases, and call it a X-opening

Illustration of a parallel opening

■ Parallel as all phases are changed together

Circular parallel opening

- Divide the circle into *N* 1 sectors of size $\omega = 2\pi / (N-1)$ starting from an angular origin α.
- The result is a partition of *E* into *N* 1 phases A_i , and by application of γ^* , an *N*th phase $A_N(\alpha)$.
- The phase $A_N(\alpha)$ depends on the origin, so we isotropise it by intersection

 $A_N = \bigcup \{A_N(\alpha), 0 \le \alpha \le 2\pi\}$

- A point belongs to A_N only if it disappears from every opening for all values of α
- A_N can be interpreted as the result of a very simple isotropic closing

Hue Image

 $\alpha = 0^{\circ}, \omega = 90^{\circ}$

Labelled Image

Hue Image

Labelled Image

Class definition

 $\alpha = 20^{\circ}, \omega = 90^{\circ}$

Labelled Image

Hue Image

Class definition

 $\alpha = 30^{\circ}, \omega = 90^{\circ}$

Labelled Image

Hue Image

Class definition

 $\alpha = 40^{\circ}, \omega = 90^{\circ}$

Labelled Image

Hue Image

Class definition

 $\alpha = 50^{\circ}, \omega = 90^{\circ}$

Labelled Image

Hue Image

Class definition

 $\alpha = 60^{\circ}, \omega = 90^{\circ}$

Hue Image

Labelled Image

Class definition

 $\alpha = 70^{\circ}, \, \omega = 90^{\circ}$

Hue Image

Labelled Image

Class definition

 $\alpha = 80^{\circ}, \omega = 90^{\circ}$

$$\alpha = 0^{\circ}, \omega = 90^{\circ}$$

Hue Image

Labelled Image

Example of application to defect detection

Initial image

Luminance image

Reduced angle image

Characteristics of the knots and the maille

■ Colour

- In general, the knots are very dark
- The maille is light, but the same colour as other light regions of the wood
- Texture
 - There is a strong perturbation in the grain direction near knots
 - The maille cuts the grain lines, thereby producing a slight modification of the dominant direction

The Rao algorithm

- Gaussian filter
- Calculation of the horizontal and vertical gradients of the smoothed images
- Calculation of an angle at each pixel from images of the horizontal and vertical gradient
- The dominant angle is calculated in the neighbourhoods to produce an angle image
- Each pixel in the angle image corresponds to the dominant angle in a neighbourhood

Chain of treatment

 Initial Image and Gaussian
 smoothed
 image (5x5
 filter)

The gradient images of the Gaussian smoothed image

Magnitude and initial angle images

Final Result

Luminance image

Reduced angle image

Two labelisations with different α to simulate the rotation of α

90°

■ Cyclic opening of size 9x9

Residue (phase 5) indicated in \bigcirc

Intersection of the residues

Labelisation 1

Labelisation 2

Detection of knots and maille

Projection

 of the
 residues
 found onto
 the original
 image

Effect of structuring element size

Change in partition definition

9x9 opening

ω=45°, $\alpha = 0^{\circ}$ and $\alpha = 23^{\circ}$

and

 $\alpha = 15^{\circ}$

 $\omega = 20^{\circ},$ $\alpha = 0^{\circ}$ and $\alpha = 10^{\circ}$

Angle image

80

Angular top-hat and histogram

Angle image

Angular top-hat and histogram

Threshold 30-90

Angle image

Summary

- Using mathematical morphology on angle valued functions is difficult
- To combat this, we have developed rotationally invariant operators
- Two possible approaches have been presented, namely
 - Circular centred operators (operators which bring into play a difference)
 - Indexed Partitions
- Applications of these operators to common angle images, the hue image and directional texture images, were presented