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École des Mines de Paris



1. CV Birth 2. A Breakthrough 3. Geometric Approach to the Calculus of Variations 4. CV and Analysis 5. Singularities 6. Conclusion

Introduction

The Calculus of Variations has a very long history and has
had, and continues to have, an immense impact on the
development of Mathematics.
This lecture discusses in particular its relation with Geometry.
A word of warning: for a long time, mathematicians were
called “geometers”, and “Geometry” was referring to truly
geometric constructions and drawings. In this lecture, we use
this word in the modern sense it has taken in Mathematics
since the end of the XIXth century, emphasising the various
structures that shape objects without reference to actual
drawings and its relation to Groups of transformations.
A good reason for that is the consideration of spaces of
dimensions larger than the usual 3-dimensional space, which
has become standard in XXth century Mathematics, as well as
critical for the use of geometric structures in Theoretical
Physics.
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Outline of the Lecture

Several reasons justify why coupling the two topics is worthwhile:

The Calculus of Variations has been a remarkable stimulus to
develop “new geometric concepts”;
At the same time, in a number of situations, critical values in
the Calculus of Variations were dictated by geometric
considerations;
We will give a few examples of such situations.

Here is the outline of the lecture:
1 The Birth of the Calculus of Variations
2 A Breakthrough by Joseph-Louis de LAGRANGE
3 The Geometric Approach to the Calculus of Variations
4 The Calculus of Variations and Functional Analysis
5 Singularities and the Calculus of Variations
6 Concluding Remarks

7
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1. The Birth of the Calculus of Variations
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The Context

Problems of “optimising” a curve were discussed among geometers
of the early XVIIIth century:

one which attracted a lot of attention was to find the
brachistochrone, i.e. the curve allowing a ball to join two
points at different altitudes in the shortest time under the
only effect of gravity.
Several solutions were proposed, in particular by Jean
BERNOULLI and by Leonhard EULER, many using geometric
arguments (the solution is an inverse cycloid).
In the paper written in 1743 A method for finding curved lines
enjoying properties of maximum or minimum, EULER
proposed a more general setting to consider such problems.
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Leonhard EULER
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The Context

Problems of “optimising” a curve were discussed among geometers
of the early XVIIIth century:

one that attracted attention was to find the brachistochrone,
i.e. the curve allowing a ball to join in the shortest time two
points at different altitudes under the only effect of gravity;
Several solutions were proposed, in particular by Jean
BERNOULLI and by Leonhard EULER, often using geometric
arguments (the solution is an inverse cycloid);
In the paper written in 1743 A method for finding curved lines
enjoying properties of maximum or minimum, EULER
proposed a more general setting to consider such problems;
Joseph-Louis de LAGRANGE read it in 1754, when he was 18,
and wrote to EULER to suggest another approach;
A year later, EULER acknowledges LAGRANGE’s argument;
LAGRANGE published his version of the fundamental paper in
the Calculus of Variations in 1762; he was 26!
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Joseph-Louis de LAGRANGE
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The Euler-Lagrange Equations

For U an open set in Rn, let L be a functional defined on the
space of curves c : [a, b]→ U by L(c) =

∫ b
a L(c(t), ċ(t)) dt,

where ċ denotes the velocity of c and L : (x ,X ) 7→ L(x ,X ) is
a C 1-differentiable real-valued function on U × Rn.
A variation (cs)|s∈]ε,ε[ of the curve c is a map
C : [a, b]×]− ε, ε[ 7→ C (x , s) = (cs(x)) ∈ Rn with c0 = c .
The curve c will be an extremal for the function L if, for all
variations C = (cs) of c , d

ds (L(cs))|s=0 = 0, and one has:

dL(cs)

ds |s=0
=

∫ b

a

(
∂L

∂x

dcs
ds |s=0

,+
∂L

∂X

dc ′s
ds |s=0

)
dt ;

An integration by parts in t assuming endpoints fixed gives

dL(cs)

ds |s=0
= −

∫ b

a

(
d

dt
(
∂L

∂X
)− ∂L

∂x

)
dcs
ds |s=0

dt .

For an extremal c for L, the Euler-Lagrange Equations are
the vanishing of the parenthesis.
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The Euler-Lagrange Equations (cont.)

Euler-Lagrange Equations are a system of second-order differential
equations.

Here are some examples of Lagrangians of curves considered:

The length for which L(x ,X ) = ||X ||, where || || denotes the
Euclidean norm;
The energy for which L(x ,X ) = 1

2 ||X ||
2 ;

Note that the length is invariant under reparametrisation,
creating a degeneracy for its Euler-Lagrange Equations since,
if c is an extremal, then for any diffeomorphism ϕ of the
interval [a, b], then c ◦ ϕ is also an extremal;
The correspondence between large groups of invariance and
degeneracies is a fundamental phenomenon in Mathematics;
For the motion of a particle of mass m in a potential V , the
usual equations of motion mc̈ = −Grad V are obtained from
the Action Lagrangian L(x ,X ) = 1

2m ||X ||
2 − V (x).
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The Least Action Principle

The idea that a Least Action Principle was widely at work in
Nature was already present early in the XVIIth century.

Here are a few instances:

in 1662, his study of light rays led Pierre de FERMAT to state
that their reflection on a surface and their diffraction through
a surface between two media could be recovered applying a
fastest path principle (the Snell-Descartes Laws of Optics);
In 1746, this was widely generalised to mechanical systems by
Pierre-Louis MOREAU de MAUPERTUIS, arguing in a
philosophical manner about the economical behaviour of
Nature, something challenged by his contemporaries;
LAGRANGE made it a scientific statement in 1760.

This idea that minimising an action among all possible paths
joining two states of a system continued to inspire, and proved
relevant, through the history of Physics, stimulating at the same
time broader and broader mathematical formulations.
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2. A Breakthrough by LAGRANGE
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LAGRANGE’s Further Developments

All along the XVIIIth century, Celestial Mechanics worked with
great success on the basis of Newtonian Mechanics thanks to the
Theory of Perturbations .

New developments in the Calculus of Variations, as presented by
LAGRANGE in his Méchanique Analytique published in 1788,
accelerated this process.
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LAGRANGE’s 1788 Méchanique Analitique
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LAGRANGE’s Further Developments

All along the XVIIIth century, Celestial Mechanics worked with
great success thanks to the Theory of Perturbations on the basis of
Newtonian Mechanics.

New developments in the Calculus of Variations, as presented by
LAGRANGE in his Méchanique Analytique published in 1788,
accelerated this process.

Here is a remarkable new development motivated precisely by
Celestial Mechanics brought by LAGRANGE himself:

The increasing complexity of calculations required new tools;
This is what LAGRANGE developed in the mémoire published
in 1808 entitled Mémoire sur la théorie des variations des
éléments des planètes.
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1. CV Birth 2. A Breakthrough 3. Geometric Approach to the Calculus of Variations 4. CV and Analysis 5. Singularities 6. Conclusion

LAGRANGE’s 1808 Mémoire
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LAGRANGE in his Méchanique Analytique accelerated this process.
Here is a remarkable new development motivated precisely by
Celestial Mechanics brought by LAGRANGE himself:

The increasing complexity of calculations required new tools.

This is what LAGRANGE developed in the mémoire published
in 1808 entitled Mémoire sur la théorie des variations des
éléments des planètes.

The mémoire contains two major breakthroughs:

For the first time, an abstract space, distinct from the
physical space, the space of elliptic motions, was defined;
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éléments des planètes.
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For the first time, an abstract space, distinct from the
physical space, the space of elliptic motions, was defined;
This space came equipped with a completely new geometric
structure that will impact massively the Calculus of Variations.
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LAGRANGE’s New Geometry

In the space of elliptic motions, the trajectory of a planet around
the Sun under the influence of other planets is a motion which can
be captured by a single perturbation function Ω which satisfies
some very specific equations.

These show that the new space is naturally endowed with a
geometric structure of a new type involving antisymmetric
products as one can see below:
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LAGRANGE’s New Geometry

In the space of elliptic motions, the trajectory of a planet around
the Sun under the influence of other planets is a motion which can
be captured by a single perturbation function Ω which satisfies
some very specific equations.

These show that the new space is naturally endowed with a
geometric structure involving antisymmetric products:

The new structure LAGRANGE uncovered in dealing with a
specific problem in Celestial Mechanics is based on an
antisymmetric form, a type of objects which had not been
given much consideration in Mathematics so far;
Pierre-Simon de LAPLACE and Simon-Denis POISSON were
also giving some attention to similar structures at this time;
This is the birth of a true new Geometry, which will be at the
heart of the geometric approach to the Calculus of Varations.
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3. The Geometric Approach

to the Calculus of Variations
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Going to the Cotangent Bundle

From now on, we work with the modern tools of Geometry as they
were established in the first part of the XXth century using
manifolds, vector bundles and more general bundles, the exterior
differential. We will be using local coordinates when it makes the
formulation easier to follow, even if our strong preference goes to
intrinsic notions.

On a manifold M, the key new actor will the cotangent bundle,
namely the collection T ∗pM of all 1-forms on tangent spaces at
points p ∈ M:

Let (x i )1≤i≤n be a system of local coordinates around a point
p; of critical importance is the fact that the exterior 2-form
ω =

∑n
i=1 dξi ∧ dx i , where (ξi ) denote the linear coordinates

on T ∗pM induced by the basis (∂/∂x i ) of TpM, is independent
of the choice of coordinates, hence is universally defined;
the 2-form ω is non degenerate, and closed dω = 0;
ω is called the Liouville symplectic form.
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namely the collection T ∗pM of all 1-forms on tangent spaces at
points p ∈ M:

Let (x i )1≤i≤n be a system of local coordinates around a point
p; of critical importance is the fact that the exterior 2-form
ω =

∑n
i=1 dξi ∧ dx i , where (ξi ) denote the linear coordinates

on T ∗pM induced by the basis (∂/∂x i ) of TpM, is independent
of the choice of coordinates, hence is universally defined;
the 2-form ω is non degenerate, and closed dω = 0;
ω is called the Liouville symplectic form.
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The Hamiltonian Approach

LAGRANGE’s breakthrough in the Calculus of Variations we
presented fits with the approach systematically developed by Sir
William Rowan HAMILTON in 1834. Hence the name of
Hamiltonian Approach given to it.

Here are the key features of this approach:

To any function ϕ on T ∗M, one can associate a vector field
Ωϕ using the duality that ω determines, namely iΩϕω = dϕ;
Then, the integral curves of −Ωϕ satisfy Hamilton’s equations
written, in a natural chart (x i , ξi ), in the classical form

dx i

dτ
=

∂ϕ

∂ξi
dξi
dτ

= − ∂ϕ
∂x i

, 1 ≤ i ≤ n ;

The key point is the possibility to connect it with a problem in
the Calculus of Variations in the Lagrangian setting.
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Mapping Lagrangian and Hamiltonian Approaches

The correspondence we are looking for is achieved, in the good
situations, by the Legendre Transform, which goes as follows:

For a Lagrangian L : TM → R, the Legendre transform
associated to L is the map ΛL : TM −→ T ∗M defined for
v ∈ TqM by ΛL(v) = d(L|TqM)(v) (where T ∗v (TqM) is
identified with T ∗qM by translation by the vector −v);

One has (ΛL)(x i ,X i ) = (x i , ∂L/∂X i );
When the matrix (∂2L/∂X i∂X j) is invertible, L is said to be
regular and the Legendre Transform is a local diffeomorphism;
This is in particular the case when L is the energy of curves
associated to a Riemannian metric g ;
If L is regular, then ΛL maps locally the integral curves of the
symplectic gradient of the Hamiltonian H = EL ◦ (ΛL)−1,
where EL is the energy associated to L, to the curves of
velocity-vectors of the extremals of the action functional L
associated to L, a full picture of the Calculus of Variations.
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Symmetries and the Calculus of Variations

The presence of symmetries in a problem of the Calculus of
Variations allows to simplify the search for solutions because of the
existence of conserved quantities. A Hamiltonian ϕ is a conserved
quantity along an integral curve of the vector field Ωϕ since
∂Ωϕϕ = (dϕ)(Ωϕ) = −ω(Ωϕ,Ωϕ) = 0 because ω is antisymmetric.

The presence of the action of a symmetry group creates other
conserved quantities:

Let G be a Lie group acting on T ∗M preserving ω (e.g. if it is
the extension of an action on M); an observable µ on T ∗M
with values in (TeG )∗ (where e is the identity element of the
group) is called a moment if, for any vector X ∈ TeG and for
any point λ ∈ T ∗pM, we have d〈µ,X 〉(λ) = (iXpω)(p) .
Then Emmy NOETHER stated the fundamental conservation
law: for any function left invariant by G, any moment map
p : T ∗M −→ (TeG )∗ for this action is a first integral of the
Hamiltonian motion defined by H.
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4. The Calculus of Variations and Analysis
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Broadening the Calculus of Variations

In its historic setting, the Calculus of Variations focused on
optimising curves but it deals with many other geometric objects
and functionals defined over them. This made it a central tool in
the modelisation in Theoretical Physics, in Computer Science, in
Engineering, etc. Here are a few examples of functionals:

The volume of surfaces and, in higher dimensions of
submanifolds; to find the surface of least area spanning a
curve in 3-space is the famous Plateau problem;
For Riemannian manifolds (M, g) and (N, h) and maps
f : M → N, harmonic maps are critical points of the energy
E(f ) =

∫
M g−1(f ∗(h)) volg =

∫
M(g ij ∂f α

∂x i
∂f β

∂x j
hαβ)volg ;

Let G be a Lie group and π : E → M be a vector bundle
equipped with a G -invariant structure over the Riemannian
manifold (M, g); Yang-Mills fields are critical points of the
Yang-Mills functional YM(∇) = 1

2

∫
M ||R

∇||2 volg where R∇

is the curvature of the G -covariant derivative ∇.
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∫
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∫
M(g ij ∂f α

∂x i
∂f β

∂x j
hαβ)volg ;
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is the curvature of the G -covariant derivative ∇.
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Broadening the Calculus of Variations (cont.)

Here are some more examples of questions which can be
approached using the Calculus of Variations:

In the theory of General Relativity, where the unknown is a
Lorentzian metric g on a 4-dimensional space-time M, the
Hilbert-Einstein Lagrangian HE(g) =

∫
M Scalg volg , where

Scalg denotes the scalar curvature of g , led to the Einstein
Equations Ricg − 1

2Scalg g = T , where T is the stress-energy
tensor representing physical interactions outside gravity;
Segmentation of an image into meaningful regions goes as
follows: starting from an image whose grayscale is given by
f : [0, 1]× [0, 1]→ [0, 1], the segmentations of the image can
be obtained by the level sets of a real-valued function u
defined on [0, 1]× [0, 1] focusing attention on u−1(0) and by
forcing some simplification by penalising its length;
Image restoration means getting rid of the noise; this is done
by optimising the Total Variation of an approximate image.
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Spaces of Functions

Spaces of functions play a decisive role in modern Analysis. They
are often infinite dimensional Hilbert or Banach spaces with
topologies defined by norms appropriate for the problem studied,
often linked to the Calculus of Variations. The idea is often to take
the largest possible space where the functional makes sense.

Various collections of spaces have been considered:

Classically, spaces of differentiable functions are natural to
consider but to take advantage of weak methods spaces using
generalised derivatives are most of the time used;
On a Riemannian manifold M of dimension n, the Sobolev
spaces W k,p(M) consist of functions on M whose weak
partial derivatives up to order k are Lp-integrable; they are in
general Banach spaces, but Hilbert spaces for p = 2; the key
inclusion states: W k,p ⊂Wm,q if k ≥ m and k − n

p ≥ m − n
q ;

One also uses Hölder spaces C k,α of functions with non
integral derivatives.
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The Search for Critical Points

Solving a problem in the Calculus of Variations amounts to finding
a critical point of a functional, typically a minimum or a maximum
(but saddle points can also be interesting). For a functional
bounded from below, a minimum is guaranteed if some kind of
compactness holds. Compactness being rare in infinite dimensional
spaces, the right notion is that of weak compactness.

Various tools allow to deal with the existence of critical points.
Here are a few paths that have been followed:

Several methods relate the topology of a space and the
existence of critical points of functions, such as Morse Theory;
To circumvent the action of a non compact group preserving
the functional, constraints can be added, e.g. gauge fixing;
The Concentration-Compactness Principle, introduced by
Pierre-Louis LIONS, decomposes any sequence of functions
failing to converge into a convergent part and a part
exhibiting concentration by action of a non-compact group.
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Special Solutions and Moduli Spaces

All equations we have been considering so far are second-order
equations. In a number of important geometric situations, some
solutions of the Calculus of Variations problem are actually
solutions of a first-order equation.

Here are some examples:

For complex manifolds M and N, holomorphic maps between
them, solutions of the first-order Cauchy-Riemann Equations,
are automatically harmonic if the metrics are Kählerian;
If dimM = 4 and M is oriented, 2-forms over M split into
self-dual and anti-self-dual parts; due to the Chern-Weil
characteristic constraint, self-dual (or anti-self-dual)
connections are minima of the Yang-Mills functional YM, i.e.
solutions of a first order equation;
Simon DONALDSON turned the moduli of these solutions
into a tool to show that R4 has many non-isomorphic
differential structures, the only Rn to have this property.
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5. Singularities and the Calculus of Variations
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The Euler-Lagrange Equation for Curves

The regularity theory is simpler for curves, when the
Euler-Lagrange Equation are differential equations than when they
are systems of partial differential equations; still, it seems that a
rigorous solution for curves was only obtained by David HILBERT
in 1900.

The theory of shortest paths between two points exhibit some
general features in a simpler form:

When two points are not too far apart, there is uniqueness of
the geodesic joigning two points which is the shortest path;
Along a geodesic γ, a singular situation appears when the
second variation of the energy has some degenerate directions;
the two endpoints are then said to be conjugate of each other
along γ; beyond these points γ is not anymore minimising;
Another important approach deals with closed curves, and the
study of closed geodesics on a compact manifold has been a
motivating problem in the Calculus of Variations.
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Regularity of Harmonic Maps

When dimM > 1, the energy functional of maps from M had a
different scaling behaviour. In dimension 2, the energy functional is
the same for two conformally related metrics: indeed, if one
composes a map f with a conformal transformation ϕ, then
E(f ) = E(f ◦ ϕ); on S2, the group of conformal transformations is
non compact; hence, one can construct a sequence of maps with
the same energy without convergent subsequence: in this
dimension, the energy of a map does not control its continuity.

To overcome this difficulty more work is required:

The approach taken by Jonathan SACKS and Karen
UHLENBECK is to consider the energy to a power α > 1, for
which minima exist, then to pass to the limit;
what may occur: there is good convergence towards a
harmonic map but at some points, some bubbles may appear,
giving rise to some harmonic maps from S2 to the target;
Small energy prevents this because of the cost of bubbles.
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Small energy prevents this because of the cost of bubbles.
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Removable Singularities for Yang-Mills Fields

UHLENBECK contributed also in a fundamental way to Yang-Mils
theory, in particular in the choice of a gauge controlled by the
energy of the Yang-Mills field. Her most spectacular result there is
her removable singularity theorem.

Here is the result:

Any Yang-Mills field ∇ over B4 − {0} with YM(∇) <∞
extends smoothly in a local trivialisation;
An important corollary is that any finite energy Yang-Mills
field over R4 extends smoothly to S4, taking advantage of the
conformal invariance of YM;
This phenomenon leads, for Yang-Mills fields in 4 dimensions,
to an understanding analogous to what had been achieved for
harmonic maps with the possibility of another phenomenon of
“bubbling”, this time in the form of the appearance of
±-self-dual connections over S4.
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Singularities for Minimal Submanifolds

The question of the absence of singularities of minimal
submanifolds has been an important driver of Geometric Analysis
over the years, in particular for stable submanifolds.

Here is a brief outline:

In 1961, Ennio DE GIORGI established the smooth embedding
of a locally area minimising submanifold which bounds in a
Riemannian manifold away from a singular set Σ of vanishing
n-dimensional Hausdorff measure;
Through stepwise progress, it was proved that Σ was empty if
n ≤ 6, discrete for n = 7 and has Hausdorff dimension less
than n − 7 if n ≥ 8;
James SIMONS showed that the (singular) cone over

1√
2
S3 × 1√

2
S3 in R8 was stable, hence that the bound on the

Hausdorff dimension of the singular set is best possible;
This transition from regularity to singularities in minimal
submanifolds when n ≥ 7 has been a key feature of the theory.
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Concluding Remarks

I am aware that what brings you all here are developments on a
topic which is not directly related to the Calculus of Variations.

My objective in presenting this historic perspective on it was 3-fold:

Challenging problems force to develop new techniques to solve
them and, from that point of view, the Calculus of Variations
is exemplary;
More fundamentally, they can also lead to the development of
radically new concepts:

the first example of this phenomenon I gave is the
consideration of an abstract space in the form of the space of
elliptic motions by LAGRANGE, and even more importantly
the introduction of symplectic geometry in the same setting;
the second is the use by Simon DONALDSON of moduli
spaces of ±-self-dual connections on bundles over a space as a
new geometric invariant attached to a space;

To show how the panoply of tools provided by Mathematics to
create new models develop over the years.
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Concluding Remarks (cont.)

One more dimension that the wonderful mathematical adventure
that the Calculus of Variations puts in perspective is the unity of
mathematics, its various components coming together repeatedly
and often unexpectedly.

Here are a few examples:

A priori the Calculus of Variations points to Analysis although
one of its first problem, the search for the brachistochrone,
was solved by means of Geometry;
Its later developments pointed to Geometry repeatedly,
including leading to new fields as in Henri POINCARÉ’s
“Nouvelles méthodes de la mécanique céleste”, which has
been the cradle of the Theory of Dynamical Systems;
It has been a major driver for major new developments in
areas such as Singularity Theory, Geometric Measure Theory,
Numerical Analysis and Simulation, but also Computer
Graphics.
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Concluding Remarks (final)

I did not touch Deep Learning, the topic which brings you
together, by lack of competence on my part but also to avoid
approaching it not broadly enough when a key message the
perspective I have drawn provides is precisely that all doors should
be open and all possible linkages between various branches of
Mathematics should be explored.

This can be done at various stages:

Of course when mobilising various tools to solve problems;
But also to have an in depth understanding of the
mathematical structure under consideration (a very good
example showing that one sometimes need to be patient is the
unraveling of the geometric structure at the heart of the
Euler-Lagrange Equations by Joseph KLEIN in 1962!);
And finally by taking advantage of special situations to have
access to more general structures as LAGRANGE did in his
1808 Mémoire.
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I thank you for your attention.

Jean-Pierre BOURGUIGNON
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35, route de Chartres
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