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Does it memorise or generalise ?

How does it circumvent the curse ?

Image generation by score denoising
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Figure 5: 1024 ⇥ 1024 images generated using the CELEBA-HQ dataset. See Appendix F for a
larger set of results, and the accompanying video for latent space interpolations.

Mao et al. (2016b) (128⇥ 128) Gulrajani et al. (2017) (128⇥ 128) Our (256⇥ 256)

Figure 6: Visual quality comparison in LSUN BEDROOM; pictures copied from the cited articles.

Our contributions allow us to deal with high output resolutions in a robust and efficient fashion.
Figure 5 shows selected 1024 ⇥ 1024 images produced by our network. While megapixel GAN
results have been shown before in another dataset (Marchesi, 2017), our results are vastly more
varied and of higher perceptual quality. Please refer to Appendix F for a larger set of result images
as well as the nearest neighbors found from the training data. The accompanying video shows latent
space interpolations and visualizes the progressive training. The interpolation works so that we first
randomize a latent code for each frame (512 components sampled individually from N (0, 1)), then
blur the latents across time with a Gaussian (� = 45 frames @ 60Hz), and finally normalize each
vector to lie on a hypersphere.

We trained the network on 8 Tesla V100 GPUs for 4 days, after which we no longer observed
qualitative differences between the results of consecutive training iterations. Our implementation
used an adaptive minibatch size depending on the current output resolution so that the available
memory budget was optimally utilized.

In order to demonstrate that our contributions are largely orthogonal to the choice of a loss function,
we also trained the same network using LSGAN loss instead of WGAN-GP loss. Figure 1 shows six
examples of 10242 images produced using our method using LSGAN. Further details of this setup
are given in Appendix B.
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p(x) = Z�1 e�U(x)

Turbulences
geometry

Cosmic web
long-range

since 1940’s

Statistical physics

• Learning systems at equilibrium: estimate the probability p(x)

for x 2 Rd

Curse of dimensionality if d � 1.



     Overview

• 1. Generation by denoising score matching with deep networks .  
Generalisation or memorisation ? What prior ? 

• 2. Renormalisation group with long-range geometric interactions 
for turbulences.



       Transport of Probabilities
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• Define a transport from p to a simple pT
Learn the inverse transport from data

• Transport is learned from data: what type ?

- Markov chains (1906): too general in high dimension

- Physics Wilson renormalisation group (1970): along scales

- AI score di↵usion generation (2020): along noise variance
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•AWaveletScore-basedGenerativeModel(WSGM)whichgeneratesconditionalprobabili- 54

tiesofnormalizedwaveletcoefficients,withthesamediscretizationscheduleatallscales. 55
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Figure1:AnSGMgeneratesimagesbydiscretizingareversediffusion,whichprogressively
transformswhiteGaussiannoiseintoanaturalimage.AWSGMgeneratesincreasinglyhigher-
resolutionimagesbydiscretizingreversediffusionsonwaveletcoefficientsateachscale.Itbegins
bygeneratingafirstlow-resolutionimage.Renormalizedwaveletcoefficientsarethengenerated
conditionallytothislow-resolutionimage.Afastinversewavelettransformreconstructsahigher-
resolutionimagefromthesewaveletcoefficients.Thisprocessisrepeatedateachscale.Thenumber
ofstepsisthesameateachscale,andcanbeordersofmagnitudesmallerthanforSGM.
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   Score Diffusion Generation

[43]. A Wavelet Score-based Generative Model (WSGM) generates normalized wavelet coefficients39

from coarse to fine scales, as illustrated in Figure 1. The conditional probability of each set of wavelet40

coefficients, given coarse scale coefficients, is sampled with its own (conditional) SGM. The main41

result is that a normalization of wavelet coefficients allows fixing the same discretization schedule42

at all scales. Remarkably, and as opposed to existing algorithms, it implies that the total number of43

sampling iterations per image pixel does not depend on the image size.44

After reviewing score-based generation models, Section 2 studies the mathematical properties of its45

time discretization, with a focus on Gaussian models and multiscale processes. Images and many46

physical processes are typically non-Gaussian, but do have a singular covariance with long- and47

short-range correlations. In Section 3, we explain how to factorize these processes into probability48

distributions which capture interactions across scales by introducing orthogonal wavelet transforms.49

We shall prove that it allows considering SGMs with the same time schedule at all scales, indepen-50

dently of the image size. In Section 4, we present numerical results on Gaussian distributions, the '4
51

physical model at phase transition, and the CelebA-HQ image dataset [17]. The main contributions52

of the paper are as follows:53

• A Wavelet Score-based Generative Model (WSGM) which generates conditional probabili-54

ties of normalized wavelet coefficients, with the same discretization schedule at all scales.55

The number of time steps per image pixel does not need to depend upon the image size to56

reach a fixed error level.57

• Theorems controlling errors of time discretizations of SGMs, proving accelerations obtained58

by scale separation with wavelets. These results are empirically verified by showing that59

WSGM provides an acceleration for the synthesis of physical processes at phase transition60

and natural image datasets.61

Figure 1: An SGM generates images by discretizing a reverse diffusion, which progressively
transforms white Gaussian noise into a natural image. A WSGM generates increasingly higher-
resolution images by discretizing reverse diffusions on wavelet coefficients at each scale. It begins
by generating a first low-resolution image. Renormalized wavelet coefficients are then generated
conditionally to this low-resolution image. A fast inverse wavelet transform reconstructs a higher-
resolution image from these wavelet coefficients. This process is repeated at each scale. The number
of steps is the same at each scale, and can be orders of magnitude smaller than for SGM.
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Yang Song et. al.

• The di↵usion is inverted with a damped-Langevin equation:

dxT�t =
�
xT�t + 2r log pT�t(xT�t)

�
dt+

p
2dBt

• The score r log pt is estimated with a deep neural network.

T

Forward
Inverse

• Forward di↵usion: add noise with Ornstein-Uhlenbeck equation

dxt = �xt dt+
p
2 dBt



   Score Based Denoising

is the conditional expectation :

The estimator x̂ of x given xt which minimises

x̂ = E[x|xt]

Ez,x

�
kx̂� xk2

�

Score denoising: Tweetie, Robbins, Misayawa identity

E[x|xt] = xt + �2
t rxt log pt(xt)

The score r log pt is estimated with a denoising neural network.

which computes x̂ by minimising E(kx̂� xk2).

Noisy signal: xt = x+ z with z ⇠ N (0,�t Id)



      Score Estimation by Denoising

layer 1weights weights

... x̂xt

denoiser

p(x)

denoiser

p(x)

r log pt(xt) ⇡ ŝt(xt) =
x̂� xt

�2
t

Trained by minimising Ext(kx̂� xk2) on the training set

Can it estimate the score in high dimension ? Why ?



Image Generation by Score Diffusion 

with score based di↵usions.

Figure 14: LSUN (bedroom) [34] samples generated by NCSN++ [26] with TDAS under 400
iterations. Resolution: 256⇥ 256.

24

from large databases with N examples of images

Does it learn an underlying probability distribution ?



        Estimation Error

• Variance:  does the estimation vary with the choice of training 
sample ? Does it memorise or generalise from the training ? 

• Bias: does the model converge to the “true” underlying 
probability distribution ?

Z. Kadkhodaie, F. Guth,, E. Simoncelli, S. M.



        Convolutional U-Nets

scale

7 million parameters for small 80⇥ 80 images

ReLU(v) = max(v, 0)Linear convolutions and



      Generalises or Memorises ?

Figure 7: Histogram of cosine similarity between pairs of closest images in the non-overlapping
subsets S1 and S2 of CelebA (left) and LSUN bedroom (right). Images with similarity score higher
than 0.95 are removed from the datasets before training. This should be compared with the histograms
in Figure 8.

B.2 GENERALIZATION OF UNET MODEL TRAINED ON CELEBA DATASET
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of N images of 80⇥ 80 pixels Generalises!



       Generalisation Test

Synthesized
from S1

Synthesized
from S2

Z. Kadkhodaie, F. Guth, S.M., E. Simoncelli

N = 100,000

B ADDITIONAL NUMERICAL RESULTS ON GENERALIZATION

B.1 SIMILARITY BETWEEN DATA SUBSETS

Figure 6: Histogram of cosine similarity between pairs of closest images in the non-overlapping
subsets S1 and S2 of CelebA (left) and LSUN bedroom (right). Images with similarity score higher
than 0.95 are removed from the datasets before training to eliminate replicated images. This should
be compared with the histograms in Figures 2 and 10.

B.2 GENERALIZATION OF UNET MODEL

In this section, we show that convergence of model variance is robust to the change of data distribution
and architecture. The minimum size of the training set, N , for which the model transitions from
memorization to generalization indeed depends on the architecture, image size and data distribution.
Nevertheless, with enough data, two models trained on non-overlapping subsets of data converge to
virtually the same function.

B.2.1 TRAINED ON CELEBA DATASET

Figure 7: More examples to illustrate convergence of model variance for models shown in Figure 2, at
N = 105. Samples generated by each denoiser are shown in separate rows, where each column shows
same initialization across the networks. The networks generate nearly identical samples, showing
convergence to the same function.

Figure 8: Bifurcation of trajectories. Sampling trajectories for the two samples shown in the last
column of Figure 7. The two diffusion models arrive at different samples starting from the same
initial point. The bifurcation of gradients appears to emerge somewhere around the middle of the
trajectories, which illustrates instabilities predicted by recent dynamical models Biroli et al. (2024).
All the intermediate samples in the trajectories have been denoised in a on-shot denoising manner
using the corresponding denoisers. This example shows that the convergence is not perfect, hence the
distribution of cosine similarities at N = 105 is not perfectly a delta function at 1.
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Images reconstructed from the same noise with 2 scores
estimated from 2 di↵erent train sets S1 and S2 of N images
of N images of 80⇥ 80 pixels

The estimation variance is small for N large enough



Generalisation Test: Memorise ?

Closest
in S1

Closest
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Synthesized
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B.2.2 TRAINED ON LSUN BEDROOM DATASET

Figure 9: Transition from memorization to generalization, for a UNet denoiser trained on bedroom
LSUN images (Yu et al., 2015) downsampled to 80 ⇥ 80. Similarly to denoisers trained on face
images shown in Figure 1, the model transitions from memorizing the training set to generalizing
outside of the training set. At N = 105 the performance is almost identical on training and test sets,
and the model is no longer overfitting the training data.

Closest image from S1:

Generated by models trained on S1:

Generated by models trained on S2:

Closest image from S2:

Figure 10: Convergence of model variance. Diffusion models are trained on non-overlapping subsets
S1 and S2 of a bedroom LSUN dataset. The subset size N varies from 1 to 105. Notice the samples
generated by network trained on N = 100 images: they are combinations of patches of training
images. This type of memorization has been previously reported in (Somepalli et al., 2023). See
caption of Figure 2 for a complete description of the figure.
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Images reconstructed from the same noise with 2 scores
estimated from 2 di↵erent train sets S1 and S2 of N images
of N images of 80⇥ 80 pixels Generalises!
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14

Generalises!

The number N for generalisation depends on the number of

parameters of the network.



    Analysis of Bias 

What is the bias when estimating p ?

, bias when estimating r log pt ?

, optimality of denosing estimator x̂ ?



  Sparse Denoising in Adapted Basis

Minimise error , {hx, ki}k is a sparse representation of x

x̂ = xt + ŝt(xt)

A CNN provides a score estimation

with ŝt(x) = �rÛt(x)

x̂ = (Id�r2Ût)xt

It is locally linear ) ŝt(x) = rŝt(x)x.

In the basis { k}k which diagonalises the energy hessian r2Ût :

x̂ =
X

k

�k hxt, ki k

hxt, ki = hx, ki+ hzt, kiwith

signal + noise

{ k}k adapted to xtShrinks hxt, ki in an orthonormal basis



 Optimal Denoising of Geometry ?

Figure 4: DNN denoisers trained on C↵ images achieve near-optimal performance. Top. PSNR
curves of trained networks for various regularity levels ↵. The empirical slopes achieved for different
values of ↵ closely match the optimal slopes (dashed lines). Bottom. Eigenvectors for two C↵ images
(top row: ↵ = 4, bottom row: ↵ = 2), which consist of harmonics on the two regions and harmonics
along the boundary. The frequency of the harmonics increases with k. For less regular images, the
harmonics are more localized along the contours. More examples are given in Appendix B.7.

geometry. This generalization performance confirms that inductive biases of DNNs are aligned
towards learning GAHBs.

3.3 MIS-ALIGNED INDUCTIVE BIASES AND SUBOPTIMALITY

If the generalization of DNNs is enabled by inductive biases favoring GAHBs, then we expect these
bases to emerge even in cases where they are suboptimal. In this section, we consider synthetic image
classes that test this prediction.

Low-dimensional manifolds. We consider a dataset of disk images with varying positions, sizes, and
foreground/background intensities. This defines a five-dimensional curved manifold, with a tangent
space evaluated at a disk image x that is spanned by deformations of x along these five dimensions.
When the noise level � is much smaller than the radius of curvature of the manifold, the posterior
distribution p(x|y) is supported on an approximately flat region of the manifold, and the optimal
denoiser is approximately a projection onto the tangent space. Thus, the optimal Jacobian should
have only five non-negligible eigenvalues, whose corresponding eigenvectors span the tangent space.
The remaining eigenvectors should have shrinkage factors of � = 0 but are otherwise unconstrained.
The optimal MSE is then asymptotically equal to 5�2, leading to a unit PSNR slope.

Figure 19 shows an analysis of a denoiser trained on 104 disk images. We observe additional
basis vectors with non-negligible eigenvalues that have a GAHB structure, with oscillations on the
background region and along the contour of the disk. We also find that the number of non-zero
eigenvalues increases as the noise level decreases, and this leads to a suboptimal PSNR slope of
approximately 0.9. We obtain similar results on two additional examples of a distribution supported
on a low-dimensional manifold, given in Appendix B.8. These results reveal that the inductive biases
of the DNN are not perfectly aligned with low-dimensional manifolds, and that in the presence of the
curvature, the suboptimality due to these biases increases as the noise level decreases.

Shuffled images. We now turn to a high-dimensional distribution whose optimal basis does not have
harmonic structures. We construct a dataset of shuffled faces by permuting the pixels of 104 face
images in the CelebA dataset. The permutation was chosen randomly, and does not preserve locality,
as neighboring pixels are mapped to independent positions. By construction, the optimal denoiser on
shuffled faces has the same performance as the optimal denoiser on ordinary faces (unshuffling the
image pixels, optimally denoising the face image, and then shuffling the pixels back).

Figure 6 shows the behavior of a denoiser trained on this dataset. The first basis vectors are partially
harmonic and are adapted to the global geometry of the face, but are significantly corrupted. The
eigenvalues decay much more slowly than for the denoiser trained on non-shuffled faces, which is
also indicative of suboptimality. The MSE is also much higher (with a much lower PSNR slope) than
that of the denoiser trained on ordinary faces. The mismatch between the inductive biases of the
architecture and the properties of the distribution thus results in substantially worse performance.
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Optimal estimator:

adapted to the estimated geometry from xt

C. Dossal, E. LePennec, G. Peyre, S. M(2005).

by shrinking coe�cients in geometric harmonic bases

E(kx̂� xk2) ⇠ �2↵/(↵+1)

C↵

C↵

C↵

Is a CNN able to reach this optimal denoising rate ?

random C↵ curve in a random C↵ background



  Optimal Denoising in GAHB

Figure 4: DNN denoisers trained on C↵ images achieve near-optimal performance. Top. PSNR
curves of trained networks for various regularity levels ↵. The empirical slopes achieved for different
values of ↵ closely match the optimal slopes (dashed lines). Bottom. Eigenvectors for two C↵ images
(top row: ↵ = 4, bottom row: ↵ = 2), which consist of harmonics on the two regions and harmonics
along the boundary. The frequency of the harmonics increases with k. For less regular images, the
harmonics are more localized along the contours. More examples are given in Appendix B.6.

This optimal slope ↵/(↵+ 1) is also obtained by best “bandlet” basis denoising estimators (Peyré &
Mallat, 2008; Dossal et al., 2011). Bandlets are harmonic functions oscillating at different frequencies,
whose geometry is adapted to take advantage of the directional regularity of images along contours.
Sparse representation of C↵ images are obtained with few bandlets having low-frequency oscillations
in regular regions and along contours but sharp variations across contours.

Figure 16 shows that DNN denoisers trained on 104 C↵ images also achieve this optimal rate and
learns GAHBs adapted to the level of regularity ↵, similarly to bandlets but with a more flexible
geometry. This generalization performance confirms that inductive biases of DNNs are aligned
towards learning GAHBs.

3.3 MIS-ALIGNED INDUCTIVE BIASES AND SUBOPTIMALITY

If the generalization of DNNs is enabled by inductive biases favoring GAHBs, then we expect these
bases to emerge even in cases where they are suboptimal. In this section, we consider synthetic image
classes that test this prediction.

Low-dimensional manifolds. We consider a dataset of disk images with varying positions, sizes, and
foreground/background intensities. This defines a five-dimensional curved manifold, with a tangent
space evaluated at a disk image x that is spanned by deformations of x along these five dimensions.
When the noise level � is much smaller than the radius of curvature of the manifold, the posterior
distribution p(x|y) is supported on an approximately flat region of the manifold, and the optimal
denoiser is approximately a projection onto the tangent space. Thus, the optimal Jacobian should
have only five non-negligible eigenvalues, whose corresponding eigenvectors span the tangent space.
The remaining eigenvectors should have shrinkage factors of � = 0 but are otherwise unconstrained.
The optimal MSE is then asymptotically equal to 5�2, leading to a unit PSNR slope.

Figure 19 shows an analysis of a denoiser trained on 104 disk images. We observe additional
basis vectors with non-negligible eigenvalues that have a GAHB structure, with oscillations on the
background region and along the contour of the disk. We also find that the number of non-zero
eigenvalues increases as the noise level decreases, and this leads to a suboptimal PSNR slope of
approximately 0.9. We obtain similar results on two additional examples of a distribution supported
on a low-dimensional manifold, given in Appendix B.7. These results reveal that the inductive biases
of the DNN are not perfectly aligned with low-dimensional manifolds, and that in the presence of the
curvature, the suboptimality due to these biases increases as the noise level decreases.

Shuffled images. We now turn to a high-dimensional distribution whose optimal basis does not have
harmonic structures. We construct a dataset of shuffled faces by permuting the pixels of 104 face
images in the CelebA dataset. The permutation was chosen randomly, and does not preserve locality,
as neighboring pixels are mapped to independent positions. By construction, the optimal denoiser on
shuffled faces has the same performance as the optimal denoiser on ordinary faces (unshuffling the
image pixels, optimally denoising the face image, and then shuffling the pixels back).
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The remaining eigenvectors should have shrinkage factors of � = 0 but are otherwise unconstrained.
The optimal MSE is then asymptotically equal to 5�2, leading to a unit PSNR slope.

Figure 19 shows an analysis of a denoiser trained on 104 disk images. We observe additional
basis vectors with non-negligible eigenvalues that have a GAHB structure, with oscillations on the
background region and along the contour of the disk. We also find that the number of non-zero
eigenvalues increases as the noise level decreases, and this leads to a suboptimal PSNR slope of
approximately 0.9. We obtain similar results on two additional examples of a distribution supported
on a low-dimensional manifold, given in Appendix B.7. These results reveal that the inductive biases
of the DNN are not perfectly aligned with low-dimensional manifolds, and that in the presence of the
curvature, the suboptimality due to these biases increases as the noise level decreases.

Shuffled images. We now turn to a high-dimensional distribution whose optimal basis does not have
harmonic structures. We construct a dataset of shuffled faces by permuting the pixels of 104 face
images in the CelebA dataset. The permutation was chosen randomly, and does not preserve locality,
as neighboring pixels are mapped to independent positions. By construction, the optimal denoiser on
shuffled faces has the same performance as the optimal denoiser on ordinary faces (unshuffling the
image pixels, optimally denoising the face image, and then shuffling the pixels back).
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Geometrically Adapted

Harmonic Bases

Eigenvectors of Hessian

Optimal denoising rate



Figure 3: Analysis of a denoiser, trained on 104 face images, evaluated on a noisy test image. Top
left. Clean, noisy (� = 0.15) and denoised images. Bottom left. Decay of shrinkage values �k(y)
(red), and corresponding coefficients hx, ek(y)i (blue), evaluated for the noisy image y. The rapid
decay of the coefficients indicates that the image content is highly concentrated within the preserved
subspace Right. The adaptive basis vectors ek(y) contain oscillating patterns, adapted to lie along
the contours and within smooth regions of the image, whose frequency increases as �k(y) decreases.

oracle lower-bound given by eq. (14), up to a log � factor. It is thus an almost-optimal denoising
estimator algorithm among fixed-basis algorithms. Such algorithms are for example optimal for
bounded variation images, where the best basis is a wavelet basis (Donoho & Johnstone, 1998).

Geometry-adaptive harmonic bases. Denoising estimators calculated with DNNs may be interpreted
as best-basis estimators that adapt the basis (ek)1kd to the noisy image y in order to obtain a
sparser representation of the unknown clean image x. We now evaluate the inductive biases of the
DNN trained on 104 images used in Section 2.

Figure 3 shows the shrinkage factors (�k(y)), adaptive basis vectors (ek(y)), and signal coefficients
(hx, ek(y)i). The eigenvectors have oscillating patterns both along the contours and in uniformly
regular regions and thus adapt to the geometry of the input image. The coefficients are seen to
be sparse in this basis, and the fast rate of decay of eigenvalues exploits this sparsity. The strong
generalization results of Section 2 show that the network inductive biases are well-aligned to the data
distribution in the case of celebrity faces. All of this suggests that DNN denoisers might be inductively
biased towards such geometry-adaptive harmonic bases (GAHBs). In the next two subsections, we
provide evidence supporting this conjecture, by analyzing networks trained on synthetic datasets
where the optimal solution is (approximately) known.

3.2 ALIGNED INDUCTIVE BIASES AND OPTIMALITY

Best bases and inductive bias. Suppose that the adaptive basis (ek(y)) is selected within a dictionary,
which may include an exponential number of orthonormal bases, but which are all constructed from
a number of vectors ek which is polynomial in d. One can then prove (Dossal et al., 2011) that a
best-basis selection from the noisy image y can achieve an MSE of the same order as the oracle
best-basis estimated from the clean image x. This near-optimality despite the presence of noise comes
from the limited choice of possible basis vectors ek in the dictionary, which limits the variance of
the best-basis estimation. This is equivalent to the inductive bias of a DNN, which restricts the class
of denoising estimators f(y) to avoid the curse of dimensionality. The main difficulty is to have an
inductive bias that leads to an MSE that is close to the minimum MSE. If DNNs are inductively biased
towards GAHBs, we expect that they generalize and converge to the optimal denoising performance
when such bases are indeed optimal. We now verify this conjecture on a class of synthetic images.

C↵ images and bandlet bases. We consider the so-called geometric C↵ class of images (Korostelev
& Tsybakov, 1993; Donoho, 1999; Peyré & Mallat, 2008) which are uniformly Lipschitz C↵ over
regions that are separated by uniformly Lipschitz C↵ contours. A uniformly Lipschitz ↵ function
has (partial) derivatives of degree smaller than ↵ which are uniformly bounded. Examples of these
images are shown in Figure 16 and Appendix B.6, and an algorithm for their synthesis is presented in
Appendix D.

One can prove (Korostelev & Tsybakov, 1993) that the optimal denoiser on geometrically C↵ images
has a PSNR which asymptotically increases with a slope ↵/(↵+ 1) as a function of input PSNR.
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   2. High Dimensional Models 

• Score diffusion generalises with enough training examples 
• Generalisation depends upon the number of network parameters 
• Circumvents the curse of dimensionality: how ?                              

Symmetries over geometric groups are not enough.

scale

Open the black box

Can we build accurate models with fewer examples ?

Can we model physical turbulences ?

How to capture an image geometry ?



 Renormalisation Group : Hierachy
Kadano↵, Wilson 1970

xj�1

xj

x

scale

Inverse Markov chain across scales

pj�1(xj�1) = pj(xj) p̄j(xj�1|xj)

G. Biroli, E. Lempereur

T. Marchand, M. Ozawa, S. M.

p̄j

: easy to estimate and sample

high
dimension

low
dimension

xJ

pj�1

pj

p

pJ

Probability transport across scales

Need to estimate each p̄j(xj�1|xj)

having long range interactions:



Under review as a conference paper at ICLR 2023

W

WT

W

WTW

WT

Figure 1: Markov wavelet conditional model structure. At each scale j, the fast wavelet transform
W decomposes an image xj�1 into three wavelet channels, x̄j , containing vertical, horizontal, and
diagonal details, and a low-pass channel xj containing a coarse approximation of the image, all
subsampled by a factor of two. At each scale j, we assume a Markov wavelet conditional model, in
which the probability distribution of any wavelet coefficient of x̄j (here, centered on the left eye),
conditioned on values of xj and x̄j in a local spatial neighborhood (regions within red squares), is
independent of all coefficients of x̄j outside this neighborhood.

A fast orthonormal wavelet transform uses a separable convolutional and subsampling operator W
defined with conjugate mirror filters (Mallat, 2009), to iteratively compute wavelet coefficients (see
Figure 1). Let x0 be an image of N ⇥N pixels. For each scale j > 1, the operator W decomposes
xj�1 into:

Wxj�1 = (x̄j ,xj),

where xj is a lower-resolution image and x̄j is an array of three wavelet coefficient images, each
with dimensions N/2j ⇥N/2j , as illustrated in Figure 1. The inverse wavelet transform iteratively
computes xj�1 = WT (x̄j ,xj).

We now introduce the wavelet conditional factorization of probability models. Since W is orthog-
onal, the probability density of xj�1 is also the joint density of (xj , x̄j). It can be factorized by
conditioning on xj :

p(xj�1) = p(xj , x̄j) = p(xj)p(x̄j |xj).

This is performed J times, so that the lowest resolution image xJ is small enough, which yields:

p(x) = p(xJ)
JY

j=1

p(x̄j |xj). (1)

The conditional distributions p(x̄j |xj) specify the dependencies of image details at scale j condi-
tioned on the coarser scale values. They may be represented with a conditional Gibbs energy:

p(x̄j |xj) = Zj(xj)
�1 e�Ej(x̄j |xj), (2)

where Z(xj) is the normalization constant for each xj . The conditional Gibbs energies (2) have been
used in the wavelet conditional renormalization group approach to obtain a stable parameterization
of the probability model even at critical phase transitions, when the parameterization of the global
Gibbs energy becomes singular.

Local wavelet conditional renormalization group models (Marchand et al., 2022) further impose
that p(x̄j |xj) is a conditional Markov random field. That is, the probability distribution of a
wavelet coefficient of x̄j conditioned on values of xj and x̄j in a restricted spatial neighborhood is
independent of all coefficients of x̄j and x̄ outside this neighborhood (see Figure 1). The Hammersley-
Clifford theorem states that this Markov property is equivalent to imposing that Ej can be written
as a sum of potentials, which only depends upon values of x̄j and xj over local cliques (Clifford
& Hammersley, 1971). This decomposition lifts the curse of dimensionality, since one only needs
to estimate potentials over neighborhoods of fixed size, which does not grow with the image size.
To model ergodic stationary physical fields, the local potentials of the Gibbs energy Ej have been
parameterized linearly by using prior physical models.

We generalize Markov wavelet conditional models by parameterizing the conditional score with a
cCNN having small RFs:

�rx̄j log p(x̄j |xj) = rx̄jEj(x̄j |xj). (3)

3

        Transition Probabilities Across Scales
Wavelet orthogonal basis : xj�1 $ (xj , x̄j)

x̄jxj�1 xj

xj = {x ⇤  k
j }k3 with  k

j (u) = 2�j k(2�ju)

 1  2  3

p̄j(xj�1|xj) = p̄j(x̄j |xj) = p̄j(x̄j |x̄j+1...x̄J) : long-range

Can we build low-dimensional exponential model ?

Multiscale representation of geometry

p̄j(x̄j |x̄j+1...) = Z�1
j e�✓j

T�(x̄j ,x̄j+1...)



       Hierarchic Sampling
x0

xj

xj�1

xj

xJ xJ

xj�1

⇠ U-Net. right branch

p(x) = p(xJ)
QJ

j=1 p̄j(xj |xj)

sample pJ(xJ)
sample p̄J(xJ |xJ)

sample p̄j(xj |xj)

T. Marchand, M. Ozawa, G. Biroli, S. M.

with p̄j(x̄j |xj) = Z�1
j e�✓j

T�(x̄j ,x̄j+1...)



 Wavelet Subdivision in Fourier
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Wavelet coe�cients

Orthogonal wavelets decomposes in di↵erent frequency bands

Frequency (Fourier) domain



              Long-Range Dependencies
• Need to build models of p(x̄j |xj) = p(x̄j |x̄j+1...x̄`...)

j = 3

j = 2

j = 1

k = 1 k = 2 k = 3 k = 4

x

Nearly no correlation at di↵erent positions, scales, orientations

x̄j =
�
x ⇤  j,k

�
k

because phases of wavelets coe�cients oscillate at di↵erent frequencies.
How to capture dependencies across scales ?



                   Wavelet Modulus

Long-range correlations across positions, scales, orientations

j = 3

j = 2

j = 1

|x̄j | =
�
|x ⇤  k

j |
�
k

”Edge detection”



                     Geometry

j = 3

j = 2

j = 1

|x̄j | =
�
|x ⇤  k

j |
�
k ”Edge detection”

k = 1 k = 2 k = 3 k = 4

1st wavelet transform



               Directional Regularity

|x ⇤  k
j |

|x ⇤  j,k| ⇤  `,k?
` = j + 1

` = j + 2

` = j + 3

Sparse

for k = 4, j = 1

2nd wavelet transform
second wavelet perpendicular to first wavelet



              Multiscale Image Geometry

Long-range correlations across positions, scales, orientations

j = 3

j = 2

j = 1

|x̄j | =
�
|x ⇤  k

j |
�
k

”Edge detection”

1st wavelet transform



                Directional Regularity

|x ⇤  j,k| ⇤  `,k?
` = j + 1

` = j + 2

` = j + 3

Sparse

for k = 4, j = 1|x ⇤  k
j |

2nd wavelet transform
second wavelet perpendicular to first wavelet



 Geometric Directional  Regularity

Theorem (N. Cuvelle-Magar, S. M.)

If x is a C2 image besides piecewise C2 edges curves then

for all k, j0 � j and ↵ < 2 there exists C > 0 with

k|x ⇤  j,k| ⇤  j0,k?k1  C 2↵j
0
.



             Scattering Covariance Model

Spatially local interaction matrices Kj0 but across scales,

with O(log3 d) non-zero interaction coe�cients across scales.

• Exponential models: p(x̄j |x̄j+1...) = Z�1
j e�✓T

j �(x̄j |x̄j+1...)

Etienne Lempereur• Scattering covariance model:

✓Tj �(x̄j |x̄j+1...) =
X

j0�j

ST
j Kj0Sj0

• Scattering covariance: �(x̄j |x̄j+1...) =
�
Sj ST

j0
�
j0�j

• Wavelet coe�cients at scale 2j : x̄j(u) =
�
x ⇤  j,k(u)

�
k

• Scattering: Sj =
�
x̄j , |x̄j | ⇤  `,k

�
`>j,k



        Generation from Scattering Models

x0

Original images of dimension d = 510
4

E. Allys, S. Cheng, E. Lempereur, B. Ménard, R. Morel, S. M.

Reproduces moments of order 3 (bispectrum) and 4 (trispectrum)
Generated with models having 500 parameters



        Generation from Scattering Models
N. Cuvelle-Magar, E. Lempereur

Original images of dimension d = 32⇥ 32

Generated by sampling scattering models

Scattering interactions can model regular geometries

Equivalent to a network with 2 hidden layers.



              Conclusion

• Neural network score generation do generalise: they do not just 
memorise if the data set is large enough: very large… 

• They define geometrically adapted harmonic bases 

• Learning the geometry of complex physics is possible with much 
fewer parameters, within the renormalisation group framework:

Generalisation in di↵usion models arises from geometry-adaptive harmonic
representation, ICLR 2024 Z. Kadkhodaie, F. Guth, , E. Simoncelli, S. M.

Multiscale Data-Driven Energy Estimation and Generation
Phys. Rev X 13,T. Marchand, M. Ozawa, G. Biroli, S. M.

Scattering Spectra Models for Physics, arXiv:2306.17210
S. Cheng, R. Morel, E. Allys, B. Menard, S. M.

Hierarchic flows to estimate and sample high-dimensional probabilities

arXiv:2405.03468, E. Lempreur, S. M.


