
Diagrammatic Mathematics for Equivariant Deep
Learning Architectures

CaLISTA Workshop Geometry-Informed Machine Learning

Edward Pearce-Crump

Imperial College London

1 / 51

Diagrams, Diagrams, Diagrams!

2 / 51

Machine Learning, Symmetries and Groups

In machine learning, we would like to develop principled approaches for
constructing neural networks.

One important approach is to

A+B C=C BA+ + +

identify symmetries
that exist in data

view the symmetries
formally as groups

create neural network
architectures that take
advantage of these
symmetries when

performing learning.

The image of the Cayley Table of S3 is attributed to Shiraki: 10.1093/ietfec/e88-a.10.2734

3 / 51

10.1093/ietfec/e88-a.10.2734

Group Equivariant Neural Networks

(Rn)⊗k

Learnable, Linear

Fixed, Non-Linear

G(n)

G(n)

G(n)

G(n)-equivariant

G(n)-equivariant

(Rn)⊗l

(Rn)⊗l

Layer spaces:

G (n) ⊆ GL(n)

ρk : G (n) → GL((Rn)⊗k)

ρk(g)(v1 ⊗ · · · ⊗ vk) := gv1 ⊗ · · · ⊗ gvk

Equivariance:

(Rn)⊗k
ρk(g)

ϕϕ

(Rn)⊗l (Rn)⊗l

(Rn)⊗k

ρl(g)

4 / 51

Initial Research Question

Question: For different groups G (n) ⊆ GL(n), what are the possible
weight matrices that can appear in these neural networks?

???

G(n)

G(n) (Rn)⊗l

(Rn)⊗k

Goal: To find a basis or spanning set of matrices for

HomG(n)((Rn)⊗k , (Rn)⊗l)

5 / 51

a) Symmetric Group Sn

Permutation equivariant neural networks have been studied by many
authors:

1 Zaheer et al. (2017, arXiv:1703.06114): introduced the first
permutation equivariant neural network, Deep Sets, for learning
from sets in a permutation equivariant manner.

2 Hartford et al. (2018, arXiv:1803.02879): modelled interactions
between different sets of objects using a permutation equivariant
neural network.

3 Maron et al. (2019, arXiv:1812.09902): characterised all of the
learnable, linear, equivariant layer functions when the layers are some
tensor power of Rn for the symmetric group Sn in the practical cases,
by looking at fixed point equations representing the symmetric
subspace.

6 / 51

Notation

[n] means the set of elements {1, . . . , n}

[n]p is the p-fold Cartesian product set

{1, . . . , n} × · · · × {1, . . . , n}

For example, if n = 3 and p = 6, then

(2, 1, 1, 3, 3, 2)

is an element of [3]6.

7 / 51

An Approach using Set Partitions

We showed that there exists a bijective correspondence between

The Set Partitions of [l + k]

A Basis of HomSn((Rn)⊗k , (Rn)⊗l)

The Sn orbits of [n]l+k

having at most n blocks

1 2 3

4 5

l

k

Pearce-Crump (2022): Connecting Permutation Equivariant Neural Networks and Partition

Diagrams, arXiv:2212.08648, to appear at ECAI 2024.

8 / 51

Bijection between Basis and Sn orbits

Any linear map f : (Rn)⊗k → (Rn)⊗l can be expressed in the basis of matrix
units as

f =
∑
I∈[n]l

∑
J∈[n]k

fI ,JEI ,J

We can show that f is Sn-equivariant if and only if, for all σ ∈ Sn, I ∈ [n]l and
J ∈ [n]k ,

fσ(I),σ(J) = fI ,J

Defining an action of Sn on [n]l+k by

σ(I , J) := (σ(I), σ(J))

shows that the orbits of this action correspond bijectively with the basis
elements of HomSn((Rn)⊗k , (Rn)⊗l). These orbits partition [n]l+k entirely.

9 / 51

Bijection between Sn orbits and Set Partitions

Consider n = 3, l = 2 and k = 4, and let

(I , J) = (2, 1 | 1, 3, 3, 2)

be the class representative of an orbit under S3 ↷ [3]2+4.

We obtain a (k = 4, l = 2)-set partition diagram having (at most) n = 3
blocks as follows:

Draw two rows of nodes

2 1

1 3 3 2

Label the nodes with
the elements of (I , J)

2 1

1 3 3 2

Only connect nodes that
have the same labels

10 / 51

The correspondence is independent of the choice of class representative for
the orbit: if instead of

(I , J) = (2, 1 | 1, 3, 3, 2)

we take
(I , J) = (3, 2 | 2, 1, 1, 3)

we obtain the same (k = 4, l = 2)-set partition diagram:

3 2

2 1 1 3

Also, each (k, l)-set partition diagram having at most n blocks appears in
the correspondence: calculate all possible labels to get the orbit!

The basis matrices correspond bijectively with all (k , l)-set partition
diagrams having at most n blocks!

11 / 51

Example: HomS2((R2)⊗2,R2) (n = 2, k = 2, l = 1)

Goal: The weight matrix for an S2-equivariant linear map from
(R2)⊗2 to R2.

Step 1: We need all (k = 2, l = 1)-set partition diagrams that have at
most n = 2 blocks:

Step 2: For each diagram, calculate all possible labellings of the blocks of
the diagram without repeating labels, and label each node with its block
label. For the second diagram:

1

1 2

2

2 1
12 / 51

Example: HomS2((R2)⊗2,R2) (n = 2, k = 2, l = 1)

Step 3: Convert these labels into (I , J) pairs.

We see that
1

1 2

2

2 1

become
(1 | 1, 2) and (2 | 2, 1)

Step 4: For each diagram, add together the matrix units indexed by the
(I , J) pairs to form the associated basis matrix:

[1,1 1,2 2,1 2,2

1 0 1 0 0
2 0 0 0 0

]
+

[1,1 1,2 2,1 2,2

1 0 0 0 0
2 0 0 1 0

]
=

[1,1 1,2 2,1 2,2

1 0 1 0 0
2 0 0 1 0

]
13 / 51

Example: HomS2((R2)⊗2,R2) (n = 2, k = 2, l = 1)

Hence we obtain the following basis matrices:

[1,1 1,2 2,1 2,2

1 1 0 0 0
2 0 0 0 1

] [1,1 1,2 2,1 2,2

1 0 1 0 0
2 0 0 1 0

] [1,1 1,2 2,1 2,2

1 0 0 1 0
2 0 1 0 0

] [1,1 1,2 2,1 2,2

1 0 0 0 1
2 1 0 0 0

]

and so the weight matrix for an S2-equivariant linear map from (R2)⊗2 to
R2 is of the form: [1,1 1,2 2,1 2,2

1 w1 w2 w3 w4

2 w4 w3 w2 w1

]
for weights w1,w2,w3,w4 ∈ R.

14 / 51

b) Orthogonal Group O(n)

Neural networks that are equivariant to other groups have been studied by
a few authors:

1 Finzi et al. (2021, arXiv:2104.09459): constructed a numerical
algorithm to find the weight matrices for three groups:

the orthogonal group O(n),
the special orthogonal group SO(n), and
the symplectic group Sp(n)

Issue: their algorithm only works for small values of n, k and l as it is
constrained by memory on larger values.

2 Villar et al. (2021, arXiv:2106.06610): characterised O(n), SO(n),
and Sp(n) invariant scalar functions (Rn)⊗k → R and equivariant
vector functions (Rn)⊗k → Rn by approximating with MLPs.

15 / 51

We showed that there exists a bijective correspondence between

The Set Partitions of [l + k]

A Spanning Set of HomO(n)((Rn)⊗k , (Rn)⊗l)

whose blocks come in pairs

1 2 3

4 5

A Spanning Set of HomO(n)((Rn)⊗l+k ,R)
First Fundamental Theorem for O(n) :

6

l

k

Pearce-Crump (2022): Brauer’s Group Equivariant Neural Networks, arXiv:2212.08630, ICML

2023.

16 / 51

Brauer’s Invariant Argument

It can be shown that the linear map from (Rn)⊗k to (Rn)⊗l

∑
I∈[n]l ,J∈[n]k

cI ,JEI ,J

is equivariant to O(n) if and only if the linear map from (Rn)⊗(l+k) to R
which maps an element of the form

u(1)⊗ u(2)⊗ · · · ⊗ u(l)⊗ v(1)⊗ v(2)⊗ · · · ⊗ v(k)

to

∑
I∈[n]l ,J∈[n]k

cI ,J

l∏
t=1

uit (t)
k∏

r=1

vjr (r)

is invariant to O(n).
17 / 51

First Fundamental Theorem for O(n)

Suppose that Rn has associated with it a non-degenerate, symmetric,
bilinear form (·,·).

Pick the standard basis for Rn, so that (·,·) becomes the Euclidean inner
product on Rn.

If f : (Rn)⊗(l+k) → R is a polynomial function on elements in (Rn)⊗(l+k)

of the form

u(1)⊗ u(2)⊗ · · · ⊗ u(l)⊗ v(1)⊗ v(2)⊗ · · · ⊗ v(k)

that is O(n)-invariant, then f must be a polynomial of the Euclidean inner
products

(u(i), u(j)), (u(i), v(j)), (v(i), v(j))

18 / 51

Hence, from Brauer’s Invariant Argument, we get that

Theorem: Spanning Set of Invariants (Rn)⊗(l+k) → R for O(n)

The functions

(z(1), z(2))(z(3), z(4)) . . . (z(l + k − 1), z(l + k))

where z(1), . . . , z(l + k) is a permutation of

u(1), u(2), . . . , u(l), v(1), v(2), . . . , v(k)

form a spanning set of invariants (Rn)⊗(l+k) → R for O(n).

19 / 51

Example: EndO(2)((R2)⊗2) (n = 2, k = 2, l = 2)

Goal: The weight matrix for an O(2)-equivariant linear map from
(R2)⊗2 to (R2)⊗2.

One possible method is the following:

Step 1: Calculate all functions of the form

(z(1), z(2))(z(3), z(4))

where z(1), . . . , z(4) is a permutation of

u(1), u(2), v(1), v(2)

These are:

(u(1), u(2))(v(1), v(2)) (u(1), v(1))(u(2), v(2)) (u(1), v(2))(u(2), v(1))

20 / 51

Step 2: Expand each product in the standard basis:

For example, for (u(1), u(2))(v(1), v(2)), this is

= [u1(1)u1(2) + u2(1)u2(2)][v1(1)v1(2) + v2(1)v2(2)]

= u1(1)u1(2)v1(1)v1(2) + u1(1)u1(2)v2(1)v2(2)

+ u2(1)u2(2)v1(1)v1(2) + u2(1)u2(2)v2(1)v2(2)

Step 3: Identify the coefficients cI ,J from the invariant and reverse
Brauer’s Invariant Argument to obtain the spanning set matrix:

For the above: c1,1|1,1 = 1, c1,1|2,2 = 1, c2,2|1,1 = 1, c2,2|2,2 = 1, and all
other coefficients are 0.

Hence the spanning set matrix is


1,1 1,2 2,1 2,2

1,1 1 0 0 1
1,2 0 0 0 0

2,1 0 0 0 0
2,2 1 0 0 1


21 / 51

Key idea: each function can be presented in the form of a (k, l)-Brauer
diagram:

For example, if l = 2 and k = 4, then the function

(u(1), v(2))(u(2), v(4))(v(1), v(3))

corresponds to the diagram

u(1) u(2)

v(1) v(2) v(3) v(4)

The set of all (k, l)-Brauer diagrams determines the spanning set
matrices for HomO(n)((Rn)⊗k , (Rn)⊗l)!

22 / 51

Example: EndO(2)((R2)⊗2) (n = 2, k = 2, l = 2)

Step 1: We need all (k = 2, l = 2)–Brauer diagrams with k = 2 nodes at
the bottom and l = 2 nodes at the top.

Step 2: For each diagram, calculate all possible labellings of the blocks of
the diagram, where this time we allow repeated block labels, and label
each node with its block label:

For example, for the first diagram, we have

1 1

1 1

1 1

2 2

2 2 2 2

2 211

23 / 51

Step 3: Convert these labels into (I , J) pairs.

We see that

1 1

1 1

1 1

2 2

2 2 2 2

2 211

becomes

(1, 1 | 1, 1), (1, 1 | 2, 2), (2, 2 | 1, 1), (2, 2 | 2, 2)

Step 4: Add together the matrix units indexed by these (I , J) pairs to
obtain the spanning set matrix:


1,1 1,2 2,1 2,2

1,1 1 0 0 1
1,2 0 0 0 0

2,1 0 0 0 0
2,2 1 0 0 1


24 / 51

Example: EndO(2)((R2)⊗2) (n = 2, k = 2, l = 2)

Set Partition Diagram Inner Products Spanning Set Element

(u(1), u(2))(v(1), v(2))


1,1 1,2 2,1 2,2

1,1 1 0 0 1
1,2 0 0 0 0

2,1 0 0 0 0
2,2 1 0 0 1



(u(1), v(1))(u(2), v(2))


1,1 1,2 2,1 2,2

1,1 1 0 0 0
1,2 0 1 0 0

2,1 0 0 1 0
2,2 0 0 0 1



(u(1), v(2))(u(2), v(1))


1,1 1,2 2,1 2,2

1,1 1 0 0 0
1,2 0 0 1 0

2,1 0 1 0 0
2,2 0 0 0 1


25 / 51

Example: HomO(2)((R2)⊗2, (R2)⊗2) (n = 2, k = 2, l = 2)

Hence the weight matrix for an O(2)–equivariant linear map from (R2)⊗2

to (R2)⊗2 must have the form


1,1 1,2 2,1 2,2

1,1 w1,2,3 0 0 w1

1,2 0 w2 w3 0

2,1 0 w3 w2 0
2,2 w1 0 0 w1,2,3


where w1,2,3 := w1 + w2 + w3.

26 / 51

Diagrammatic Mathematics

Recall the main result for O(n):

The set of all (k , l)-Brauer diagrams determines the spanning set
matrices for HomO(n)((Rn)⊗k , (Rn)⊗l).

Recall the main result for Sn:

The set of all (k, l)-partition diagrams having at most n blocks de-
termines the basis matrices for HomSn((Rn)⊗k , (Rn)⊗l).

Notice the following:

For each group G (n), both the diagrams associated with G (n) and
the HomG(n) spaces are very similar for any pair of values k and l .

27 / 51

Category Theory

Idea: form categories for both diagrams and representations!

Let us focus on O(n) for now.

For the diagrams:

We can define a category B(n), called the Brauer category, to be:

Objects: 0, 1, 2, . . .

Morphisms: for objects k, l , these are the set of all
(k , l)-Brauer diagrams

Pearce-Crump (2023): Categorification of Group Equivariant Neural Networks,

arXiv:2304.14144.

28 / 51

We need to provide a definition for the composition of any two morphisms.

= n

We can also turn B(n) into an R-linear category by allowing, for objects
k , l , all possible formal linear combinations of the morphisms.

+ w2w1 + w3

29 / 51

For the representations:

We can define the tensor power representation category C(O(n))
to be:

Objects: R,Rn, (Rn)⊗2, . . .

Morphisms: for objects (Rn)⊗k , (Rn)⊗l , this is the vector
space HomO(n)((Rn)⊗k , (Rn)⊗l)

Composition: is given by the usual composition of linear maps

30 / 51

Q: Why do we care about this additional structure?

Previously, for each k , l , we constructed a surjective linear map from

the vector space spanned by the set of all (k, l)-Brauer diagrams to

HomO(n)((Rn)⊗k , (Rn)⊗l)

by mapping each (k , l)-Brauer diagram to a spanning set matrix and
extending linearly.

We can now turn these linear maps into a full, R-linear functor from
B(n) to C(O(n)):

Objects: k 7→ (Rn)⊗k

Morphisms: (k , l)-Brauer diagram 7→ spanning set matrix

It can be shown that the functor respects the composition of
morphisms!

31 / 51

But most importantly, there is another composition operation that we
can define for each of these categories.

For morphisms in B(n):

⊗ =

For morphisms in C(O(n)):

For any two O(n)-equivariant matrices, define the composition op-
eration to be their tensor product (Kronecker product)!

This turns B(n) and C(O(n)) into strict monoidal categories.

32 / 51

Crucially:

One can show that the functor from B(n) to C(O(n))
becomes a monoidal functor!

Informal argument: the labelling of the blocks in each separate
diagram in a tensor product is unaffected when the diagrams are
horizontally concatenated, and vice versa!

⊗ =

i

i

j

j

k k

l l

i j k k

ij l l

E(i ,j |j ,i) ⊗ E(k,k|l ,l) = E(i ,j ,k,k|j ,i ,l ,l)

Note that this is true even if none, some or all of the values
1 ≤ i , j , k , l ≤ n are the same!

33 / 51

We can look to do the same thing for the symmetric group Sn:

For the diagrams:

We can define a category P(n), called the Partition category, to
be:

Objects: 0, 1, 2, . . .

Morphisms: for objects k, l , this is the vector space given by
the formal linear span of all (k , l)-partition diagrams

Vertical Composition: Similar to Brauer category

Horizontal Composition: Similar to Brauer category

34 / 51

For the representations:

We can define the tensor power representation category C(Sn) to
be:

Objects: R,Rn, (Rn)⊗2, . . .

Morphisms: for objects (Rn)⊗k , (Rn)⊗l , this is the vector
space HomSn((Rn)⊗k , (Rn)⊗l)

Vertical Composition: is given by the usual composition of
linear maps

Horizontal Composition: tensor product of linear maps

35 / 51

But we hit a problem!

Although, for each k , l , the surjective linear map from

the vector space spanned by the set of all (k, l)-partition diagrams to

HomSn((Rn)⊗k , (Rn)⊗l)

that is given by mapping

each (k , l)-partition diagram having at most n blocks to a basis matrix

and all others to the zero matrix

and extending linearly, can be turned into a functor from P(n) to C(Sn),

This functor is not monoidal!

36 / 51

Imagine we are looking at S3-equivariance, and we consider:

⊗ =

Each of these diagrams, considered separately, is valid. But now consider
the following labels:

⊗ =

1

1 2

2 1

1

1

2

1

11

2

Under the functor, the LHS becomes

E(1,2|1,2) ⊗ E(1|1)

which equals
E(1,2,1|1,2,1)

But the RHS under the functor becomes the zero matrix, as each block in
the right hand diagram needs to be labelled with different values!

37 / 51

New Basis: Godfrey et al. (2023, arXiv:2303.06208) came up with a
different basis for HomSn((Rn)⊗k , (Rn)⊗l) that happens to be a fix for our
monoidal functor problem!

Idea: Allow repeating block labels in a (k, l)–set partition diagram.
We now draw these diagrams with white nodes to be consistent!

Claim:

The image of the set of all (k , l)–set partition diagrams having
at most n blocks under this labelling scheme still forms a basis
of HomSn((Rn)⊗k , (Rn)⊗l), and

The resulting functor we get, from P(n) to C(Sn), is monoidal!

38 / 51

Implications for Equivariant Neural Networks

Under the monoidal functor, we can think of diagrams as
being the same as matrices, and so each weight matrix can
be thought of as being equivalent to a formal linear
combination of diagrams: for O(2), the weight matrix


1,1 1,2 2,1 2,2

1,1 w1,2,3 0 0 w1

1,2 0 w2 w3 0

2,1 0 w3 w2 0
2,2 w1 0 0 w1,2,3


is the same as

+ w2w1 + w3

Planar (non-crossing) diagrams correspond to Kronecker
products of matrices!

39 / 51

Application: Algorithm for Computing with Weight
Matrices

Suppose that we would like to perform

Wv = y

where

W is an O(n) (or Sn)-equivariant weight matrix

v is an input vector in (Rn)⊗k , and

y is an output vector in (Rn)⊗l .

A naive matrix multiplication implementation would take O(nl+k) time.

Q: Can we do any better?

We want to use our observations to obtain a faster implementation!
40 / 51

Initially, we could look to

1 Express the weight matrix as a linear combination of diagrams.

2 Apply each diagram to the input vector in parallel.

But we haven’t really done much at this stage!

Q: What is the best way to apply each diagram to the input
vector?

Pearce-Crump (2023): An Algorithm for Computing with Brauer’s Group Equivariant Neural

Network Layers arXiv:arXiv:2304.14165.

41 / 51

Imagine that one of the diagrams in our decomposition of an
O(3)-equivariant weight matrix from (R3)⊗5 to (R3)⊗5 is

We can deform the diagram, as follows:

42 / 51

And with the final deformation we obtain a factoring of the original
diagram into three new diagrams:

Each of these diagrams plays a unique role!

43 / 51

The bottom diagram is a permutation that changes how we access the
coefficients in our original vector for input into the middle diagram.
It can be viewed as having no cost!

3

33

3 2

211

11

For example, when we consider the coefficient at the (3, 3, 2, 1, 1)-entry of
the vector that is the input to the middle diagram, it is the value v1,1,2,3,3
in our original vector v that is accessed.

44 / 51

The top diagram is also a permutation that decides where the output
from the middle diagram is stored in the final output vector. It can
also be viewed as having no cost!

2 2

2 2

1

1

1 3

1 3

If α is the coefficient that is the output from the middle diagram in the
(2, 2, 1, 1, 3)-entry, then it is stored in the final output vector at the
(1, 2, 1, 2, 3)-entry.

45 / 51

So we have reduced the calculation entirely to the middle diagram!

Moreover, the middle diagram is planar, so it can be decomposed
horizontally:

= ⊗⊗

Under the monoidal functor, this becomes a Kronecker product of smaller
matrices!

Each diagram performs a different function as a matrix:

Copy Operation Identity Matrix Tensor Contraction

46 / 51

⊗⊗

Step 0: Input vector:∑
l1,l2,l3,l4,l5∈[3]

vl1,l2,l3,l4,l5el1,l2,l3,l4,l5

Step 1: Apply bottom permutation:∑
l1,l2,l3,l4,l5∈[3]

vl1,l2,l3,l4,l5el5,l4,l3,l1,l2

Step 2: Apply tensor contraction:∑
j∈[3]

∑
l3,l4,l5∈[3]

vj,j,l3,l4,l5el5,l4,l3

47 / 51

⊗⊗

Step 3: Apply identity:∑
j∈[3]

∑
l3,l4,l5∈[3]

vj,j,l3,l4,l5el5,l4,l3

Step 4: Apply copying:∑
m∈[3]

∑
j∈[3]

∑
l3,l4,l5∈[3]

vj,j,l3,l4,l5em,m,l5,l4,l3

Step 5: Apply top permutation:∑
m∈[3]

∑
j∈[3]

∑
l3,l4,l5∈[3]

vj,j,l3,l4,l5el5,m,l4,m,l3

This is the output vector!

48 / 51

Time Complexity

By looking at the operations in the middle diagram:

For the orthogonal group O(n), one can show that the time com-
plexity is reduced from O(nl+k) to O(nk−1).

For the symmetric group Sn, one can show that the time complexity
is reduced

In the worst case, from O(nl+k) to O(nk) (coming from a one
vertex tensor contraction block)

In the best case, the computation is free! (no tensor
contraction blocks in the bottom row)

49 / 51

Monoidal Diagram Categories and Equivariance

1 Sp(n)-equivariance:

Pearce-Crump (2023, arXiv:2212.08630):
Brauer’s Group Equivariant Neural
Networks. ICML 2023.

1 2 3 4

5 6

l

k

2 SO(n)-equivariance:

Pearce-Crump (2023, arXiv:2212.08630):
Brauer’s Group Equivariant Neural
Networks. ICML 2023.

1 2

3 4 5

l

k

3 Aut(G)-equivariance, G a graph:

Pearce-Crump and Knottenbelt (2023,
arXiv:2307.07810): Graph Automorphism
Group Equivariant Neural Networks. ICML
2024.

1 2 3

4 5

1

32

l

k

50 / 51

Contact Details

Edward Pearce-Crump

Imperial College London

e.pearcecrump@googlemail.com

ep1011@ic.ac.uk

https://www.epearcecrump.co.uk

51 / 51

