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About Me

• PhD-student at AMLab (University of Amsterdam)


• AI4Science


• Generative Models


• Time-Series


• Geometric Deep Learning
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Overview

• Clifford Algebra


• Clifford Group Equivariant Neural Networks


• Clifford Group Equivariant Simplicial Message Passing


• Clifford-Steerable CNNs
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Introduction
Equivariant Neural Networks

• Images by Maurice Weiler5

• Group equivariance stimulates robust and reliable results.


• w ∈ G : ρ(w)ϕ = ϕρ(w)



Introduction
Equivariant (Graph) Networks: Categorization

• Group convolutions (LieConv, B-spline CNNs).


• Integral over a group - computationally intensive.


• Scalarization methods (EGNN, GVP, VN).


• Operate almost exclusively with invariant (scalar) features.


• Restricted expressivity.


• E(3)-NN based methods (TFN, SEGNN).


• Tensor products of Wigner-D representations decomposed into irreps 
using Clebsch-Gordan coefficients.


• Operate on spherical harmonics basis.


• Not trivially extended to other dimensions or groups than O(3).

Han et al., 20226



Introduction
Clifford Group Equivariant Networks
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The Clifford Algebra
Introduction

• Also known as geometric algebra.


• Algebraic representation and manipulation of geometric concepts.


• Generalization of the exterior algebra.


• Inclusion of complex numbers and quaternions.


• Coordinate / Dimension independent.


• Applications in robotics, computer graphics, signal processing, physics, 
biology, etc.
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The Clifford Algebra
Why Deep Learning?

• Some indications CA data representations + CA weights yields more efficient learning + 
generalization properties.


• Similar to complex neural networks.


• Can represent certain physics quantities through e.g. bivectors.


• Equivariance w.r.t. several groups in several dimensions (O(3), SO(3), O(2), O(1, 3), E(3), etc.


• Translations (PGA), conformal group.


• Equivariant multiplicative operation (geometric product).


• No need for spherical harmonics, CG coefficients, etc. Space is bounded.
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The Clifford Algebra
Bilinear Forms

• Geometry starts with a notion of distance. We introduce a bilinear form


• 


• Distance between two vectors: 


• Angles: 

⟨ ⋅ , ⋅ ⟩ : V × V → F

∥x − y∥2 = ⟨x − y, x − y⟩

θxy = arccos
⟨x, y⟩

∥x∥∥y∥
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The Clifford Algebra
Orthogonal Group

• 


• The group  contains all linear transformations that preserve the bilinear form.


• 


• These generalize to non-Euclidean metrics as found in, e.g., special relativity.


• For example, in the Euclidean case we had . 


•
In special relativity, we can use 


• The orthogonal group of such a space is , defined analogously to the Euclidean case.

⟨ ⋅ , ⋅ ⟩ : V × V → F

O(n)

O(n) := {R ∈ GL(n) ∣ ∀u, v ∈ V : ⟨u, v⟩ = ⟨Ru, Rv⟩}

⟨v, w⟩ = v⊤ [
1

1
1] w

⟨v, w⟩ = v⊤

1
−1

−1
−1

w

O(1,3)
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The Clifford Algebra
Introduction

• Algebra: a vector space (e.g., ) with a product.


•  is a valid expression.


• We specify a product of two vectors that relates to the inner product (geometry) but 
does not reduce to a scalar.


• We now axiomatically state


•  enforced relation to preserve geometry.


• 


• We still have to investigate in which space this product lives.

ℝ3

u, v ∈ V : uv

v2 := ∥v∥2 = ⟨v, v⟩

(u + v)2 = u2 + v2 + uv + vu ⟺ uv + vu = 2⟨u, v⟩

12 v2 = q(v) ⟺ (u + v)2 − u2 − v2 = 2b(u, v)



• Let’s take . Using a basis . I.e.,


• 


• We can create the  basis


• For orthogonal (basis) vectors, .


• 


• , 


• When I say “vector in the algebra”, I mean that only the vector coefficients are nonzero.


•

ℝ3 e1, e2, e3

x ∈ ℝ3 : x = x1e1 + x2e2 + x3e3

Cl(ℝ3, ⟨ ⋅ , ⋅ ⟩)

eiej = − ejei

e123e1 = − e1e2e1e3 = e1e1e2e3 = ⟨e1, e1⟩e23

x = x01 + x1e1 + x2e2 + x3e3 + x12e12 + x13e13 + x23e23 + x123e123 xi ∈ ℝ

The Clifford Algebra
The Algebra Basis
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The Clifford Algebra
The Geometric Product

• Let’s take two vectors , 


•

a, b ∈ Cl(ℝ2, ⟨ ⋅ , ⋅ ⟩) ⟨ei, ei⟩ = 1
ab = (a1e1 + a2e2)(b1e1 + b2e2) = a1e1(b1e1 + b2e2) + a2e2(b1e1 + b2e2)

= a1b1e2
1 + a1b2e1e2 + a2b1e2e1 + a2b2e2

2

= (a1b1 + a2b2)1 + (a1b2 − a2b1)e1e2

= ⟨a, b⟩ + a ∧ b
= b(a, b) + a ∧ b
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Theoretical Results
The orthogonal group.

• : orthogonal group representation.


•  satisfies: 


1. 


2. Additivity: 


3. Multiplicativity: 


4. Commutes with scalars: 

ρ(w)

ρ(w)

⟨(ρ(w)(x1), ρ(w)(x2)⟩ = ⟨x1, x2⟩

ρ(w)(x1 + x2) = ρ(w)(x1) + ρ(w)(x2)

ρ(w)(x1x2) = ρ(w)(x1)ρ(w)(x2)

ρ(w)(α ⋅ x) = α ⋅ ρ(w)(x)
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 multivector representation.O

All geometric product 
polynomials are  
equivariant.

O



Network Architectures
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MultivectorLinear

MultivectorGate

GeometricProduct

Implicitly building a big polynomial…



Methodology
Linear Layers “Multivector Neurons”

• Let  denote a set of multivectors.


• We can linearly combine them using 


• 


• Or more densely: 

x1, …, xcin

Tlin
ϕcout

(x1, …, xcin
) :=

cin

∑
l=1

ϕcoutcl
xcl

ϕcoutcin
∈ ℝ

Tlin
ϕcout

(x1, …, xcin
)(k) :=

cin

∑
l=1

ϕcoutcinkx(k)
cl
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Methodology
Parameterized Geometric Products

18



x1

x2

x1x2

x(1)
1

x(1)
2

(x(1)
1 x(1)

2 )(0)(x(1)
1 x(1)

2 )(2)

x(2)
1

(x(2)
1 x(1)

2 )(3)

19



20



Methodology
Parameterized Geometric Product

• 


• All products:


•

Pϕ(x1, x2)(k) :=
n

∑
i=0

n

∑
j=0

ϕijk(x(i)
1 x( j)

2 )(k)

Tprod(x1, …, xcin
)(k) :=

cin

∑
p=1

cin

∑
q=1

Pϕpq
(xp, xq)(k)
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Network Architectures
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MultivectorLinear

MultivectorGate

GeometricProduct

Implicitly building a big polynomial…



Experiments
 Experiment: RegressionO(5)

• Taken from Finzi et al., 2022


• Approximate f(x1, x2) := sin(∥x1∥) − ∥x2∥3/2 +
x⊤

1 x2

∥x1∥∥x2∥
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Experiments
 Experiment: -body.E(3) n

• A benchmark for simulating physical systems using GNNs.


• Given  charged particles’ positions and velocities, estimate their 
positions after 1000 time-steps.

n = 5
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Experiments
 Experiment: Top TaggingO(1,3)

• Jet tagging: identifying particle jets generated during collisions.


• Top tagging: identifying whether event produced a top quark.


• Given: momenta, energy of  particles.


• Relativistic nature: transformations that preserve space-time distances given 

by  

±200

O(1,3) . A =

1
−1

−1
−1

27
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In Conclusion
• Equivariant parameterization of neural networks based on Clifford algebras.


• Remarkably versatile models: different dimensions and applications.


• Despite that, we match or outperform models specifically designed for certain 
tasks.


• No need for group convolutions.


• We can directly use higher-order (vector) features instead of scalarized ones.


• CGENNs generalize to quadratic spaces of any dimension.


• No spherical harmonics, CG coefficients, etc.
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• Code is available at https://github.com/DavidRuhe/
clifford-group-equivariant-neural-networks/


• Massive speed ups in JIT-compiled JAX versions.

Final Remarks
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https://github.com/DavidRuhe/clifford-group-equivariant-neural-networks/
https://github.com/DavidRuhe/clifford-group-equivariant-neural-networks/
https://github.com/DavidRuhe/clifford-group-equivariant-neural-networks/


Adjacent & Followup Works

• Geometric Algebra Transformer (Brehmer et al., 2023, NeurIPS 2023)


• Lorentz-Equivariant GATr (Spinner et al., 2024)


• Clifford Simplicial Message Passing (Liu et al., 2024, ICLR 2024)


• Clifford-Steerable CNNs (Zhdanov et al., 2024, ICML 2024)


• Applications in


• 3D vision (Pepe et al., 2024)


• (Bio)chemistry (Pepe et al., 2024)


• Fluid Mechanics (Maruyana et al., 2024).
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Motivation

33

• In data science, we can study e.g. molecules 
and proteins by equipping them with complex 
topologies.


• Graph Neural Networks are mostly used to 
tackle these challenges but they are only 
capable of modelling bi-interactions at each 
time.


• Can we find a method to both satisfy the 
equivariance constraint and being able model 
both geometries and topologies lie in the data? 



• Message Passing Networks are powerful, but they cannot distinguish two 
graphs with the same connectivity and the same set of nodes, even the 
two graphs have different topology.

Message Passing Simplicial Networks

34

• By lifting graphs to simplicial 
complex and pass messages on 
simplicial complex, we can identify 
them again!


• Message Passing Simplicial 
Networks learn the topological 
features in simplicial complex 



Simplicial Complex
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• 0-simplex , nodes  


• 1-simplex , edges 


• 2-simplex , triangles 

σ0 vi

σ1 {vi, vj}

σ2 {vi, vj, vk}



Message Passing Simplicial Networks (MPSNs)
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(From Bodnar et al. 2021)

E.g. edges of a triangle.

E.g. triangles neighboring an edge.

Other triangles that share an edge.…

Other edges that share an triangle..



Clifford Group Equivariant Simplicial Message Passing



Shared Message Passing Networks
• In MSPNs, every type of 

communications between different 

dimensional simplices use different 

message networks.


• In this case, 6 networks are created 

and are forward propagated 

sequentially.


• We use only 1 shared message 

passing network, conditioned on 

communication type.
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Experiments
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Human Walking Motion Prediction (E(2))
• Given 31 three-dimensional points coordinates , estimate the coordinates of these points 

after 30 time steps.



Experiments
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MD17 Atomic Motion Prediction (E(3))
• Given the atomic positions at 10 separate time steps , estimate the coordinates of these 

atoms after serveral time steps.



Experiments
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NBA Players 2D Trajectory Prediction
• Given the player positions at 10 separate time steps , estimate the coordinates of these 

players for future 40 time steps.

Figure from Alessio Monti, Alessia Bertugli, Simone Calderara, and Rita Cucchiara. 

Dag-net: Double attentive graph neural network for trajectory forecasting, 2020.
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Feature Vector Fields

43

image data electromagnetic datafluid dynamics data

scalars

classic deep learning

tensors

geometric deep learning

Euclidean space Euclidean space pseudo-Euclidean space

what we need



➔ transformations of the base space  
transformations of the data.

➔ feature vector fields assign a feature  to 
each point  :

              

➔ feature fields are equipped with 
transformation rules under group actions  - 
representations .

→

f(x)
x ∈ ℝp,q

f : ℝp,q → W

g
ρ(g)

base space ℝp,q

data   f : ℝp,q → W

group action on base space

g ∈ G

ρ(g)

group action on data 

Data on Geometric Spaces



Data on Geometric Spaces

source: https://github.com/QUVA-Lab/escnn

different types of feature fields 

➔ transformations of the base space  
transformations of the data.

➔ feature vector fields assign a feature  to 
each point  :

              

➔ feature fields are equipped with 
transformation rules under group actions  - 
representations .

→

f(x)
x ∈ ℝp,q

f : ℝp,q → W

g
ρ(g)



Functions on Geometric Spaces

F

F

Tin(g)

➔ our goal is to approximate the map between 
two feature spaces:

➔ since every feature field is equipped with its 
group representation, the map must respect it 
= equivariant:

transformed
input 

transformed
output

Tout(g)

input output

F : fin → fout

F ∘ ρin(g) = ρout(g) ∘ F



Convolutional Neural Networks

➔ convolutional layer:

( fin * k)(x) = ∫
∞

−∞
fin(τ)k(x − τ)dτ

➔ it is translation-equivariant   pattern 
recognition power. 

→



Steerable CNNs

➔ for arbitrary group G, one can put a 
constraint on kernels:

k(g . x) = ρout(g)k(x)ρin(g)T ∀g ∈ G

➔ guarantees G-equivariance of a 
convolutional layer.  

➔ Zhdanov et al., 2023 show that this 
can be solved implicitly.



Clifford-Steerable Implicit Kernels

1. define kernel grid 
(e.g. 3x3) 

2. compute kernel 
matrix 

3. partially evaluate 
geometric product  

4. compute convolution   



Experiments

➔ in every experiment, the task is to predict 
a future state given the history. 

➔ for classical physics, each time step is a 
separate image.

➔ for relativistic physics, time is part of the 
grid (aka video).  

example: fluid dynamics

history

predictionnext state 

NN

compare



Experiments
we compare the framework against multiple (equiv-t) convolutional operators:
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fluid dynamics electrodynamics
relativistic 

electrodynamics
equivariance

error



Fluid Mechanics
equivariance allows for out-of-distribution generalizability across isometries:

trained on 
64 trajectories trained on 5120 

trajectories



Electrodynamics
equivariance allows for out-of-distribution generalizability across isometries:

CSCNNs capture 
crisper details 



Relativistic Electrodynamics

data: EM fields are emitted by point sources that move, orbit 
and oscillate at relativistic speeds.

1 charge 5 charges



Experiments
we compare the framework against multiple (equiv-t) convolutional operators:
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Experiments
we are now able to implement Lorentz-equivariant CNNs, e.g. equivariant to Lorentz boosts:



Thanks
Please contact me at david.ruhe@gmail.com !

57

mailto:david.ruhe@gmail.com

