Clifford Algebra Representations for Deep Learning

CaLISTA Workshop

About Me

- PhD-student at AMLab (University of Amsterdam)
 - Al4Science
 - Generative Models
 - Time-Series
 - Geometric Deep Learning

Ph.D. Student at the University of Amsterdam

Overview

- Clifford Algebra
- Clifford Group Equivariant Neural Networks
- Clifford Group Equivariant Simplicial Message Passing
- Clifford-Steerable CNNs

Clifford Group Equivariant Neural Networks

David Ruhe

University of Amsterdam AI4Science Lab, AMLab, API david.ruhe@gmail.com

Johannes Brandstetter

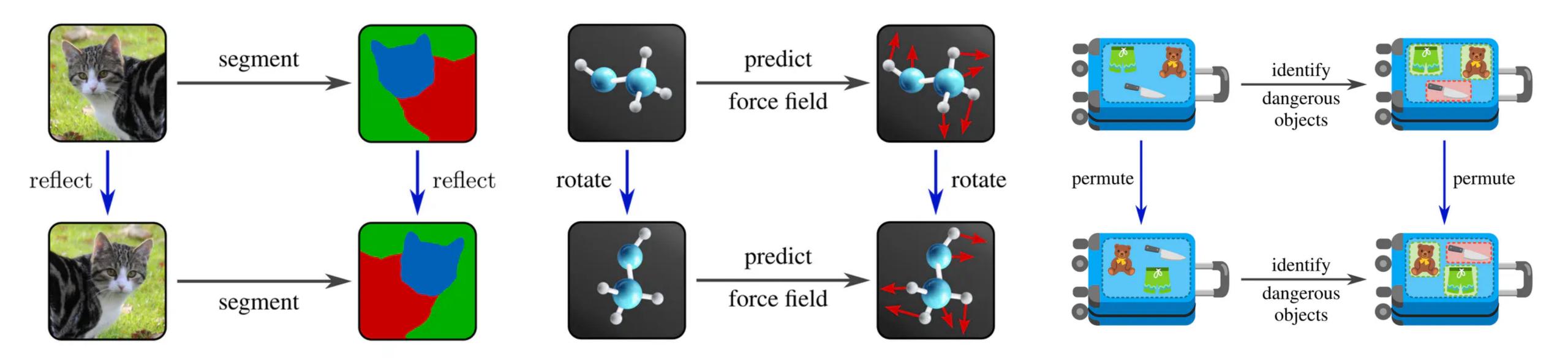
Microsoft Research
AI4Science
johannesb@microsoft.com

Patrick Forré

University of Amsterdam AI4Science Lab, AMLab p.d.forre@uva.nl

Introduction

Equivariant Neural Networks

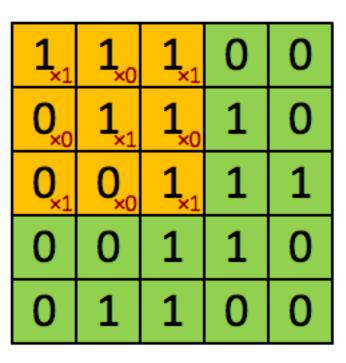


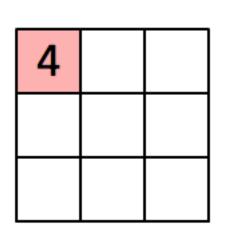
- Group equivariance stimulates robust and reliable results.
- $w \in G : \rho(w)\phi = \phi\rho(w)$

Introduction

Equivariant (Graph) Networks: Categorization

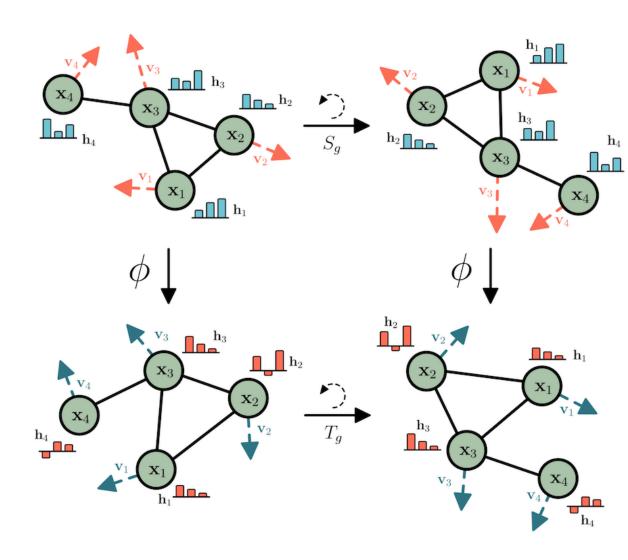
- Group convolutions (LieConv, B-spline CNNs).
 - Integral over a group computationally intensive.
- Scalarization methods (EGNN, GVP, VN).
 - Operate almost exclusively with invariant (scalar) features.
 - Restricted expressivity.
- *E*(3)-*NN* based methods (TFN, SEGNN).
 - Tensor products of Wigner-D representations decomposed into irreps using Clebsch-Gordan coefficients.
 - Operate on spherical harmonics basis.
 - Not trivially extended to other dimensions or groups than O(3).

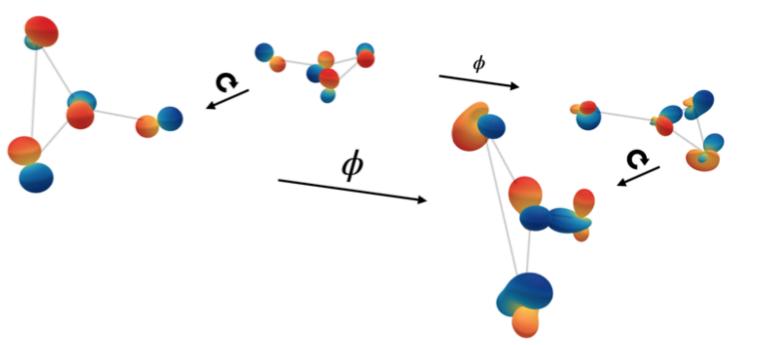




Image

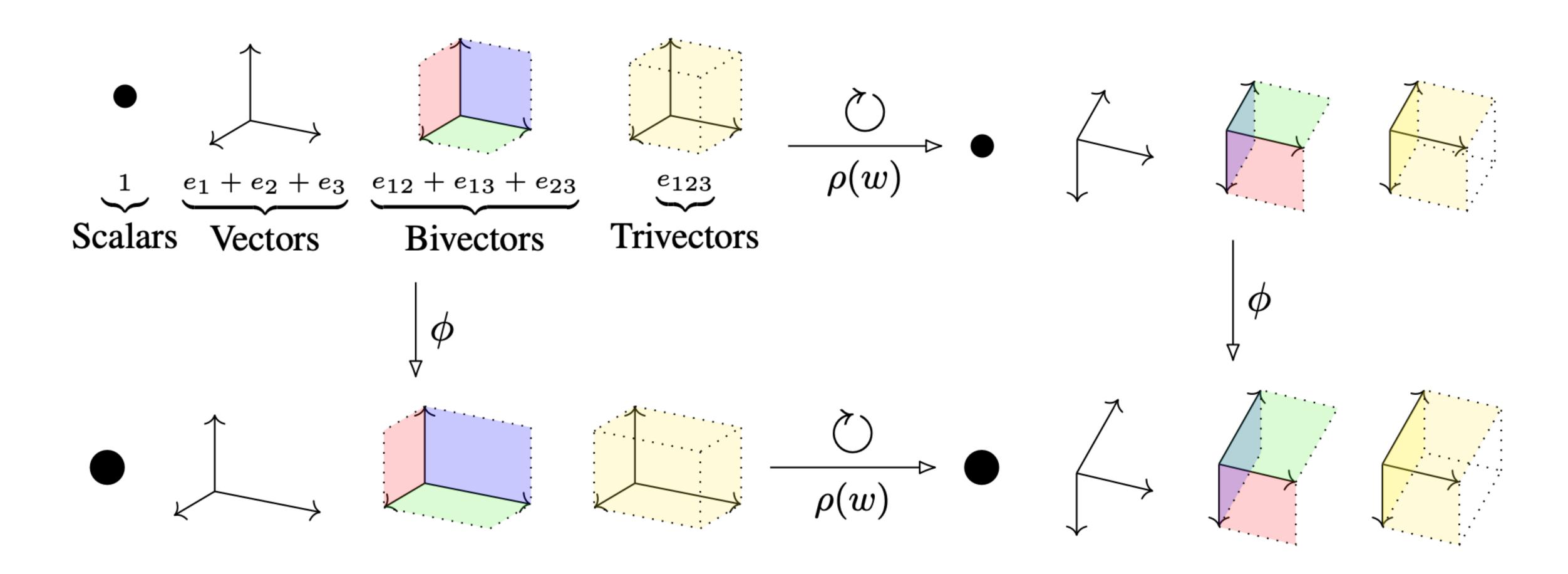
Convolved Feature





Introduction

Clifford Group Equivariant Networks



Introduction

- Also known as geometric algebra.
- Algebraic representation and manipulation of geometric concepts.
- Generalization of the exterior algebra.
- Inclusion of complex numbers and quaternions.
- Coordinate / Dimension independent.
- Applications in robotics, computer graphics, signal processing, physics, biology, etc.

Why Deep Learning?

- Some indications CA data representations + CA weights yields more efficient learning + generalization properties.
 - Similar to complex neural networks.
- Can represent certain physics quantities through e.g. bivectors.
- Equivariance w.r.t. several groups in several dimensions (O(3), SO(3), O(2), O(1, 3), E(3), etc.
 - Translations (PGA), conformal group.
- Equivariant multiplicative operation (geometric product).
 - No need for spherical harmonics, CG coefficients, etc. Space is bounded.

Bilinear Forms

- Geometry starts with a notion of distance. We introduce a bilinear form
 - $\langle \cdot, \cdot \rangle : V \times V \rightarrow F$
 - Distance between two vectors: $||x y||^2 = \langle x y, x y \rangle$

• Angles:
$$\theta_{xy} = \arccos \frac{\langle x, y \rangle}{\|x\| \|y\|}$$

Orthogonal Group

- $\langle \cdot, \cdot \rangle : V \times V \to F$
- The group O(n) contains all linear transformations that preserve the bilinear form.
 - $O(n) := \{ R \in GL(n) \mid \forall u, v \in V : \langle u, v \rangle = \langle Ru, Rv \rangle \}$
- These generalize to non-Euclidean metrics as found in, e.g., special relativity.
 - For example, in the Euclidean case we had $\langle v,w\rangle=v^{\top}\begin{bmatrix}1\\1\\1\end{bmatrix}w.$

In special relativity, we can use $\langle v,w\rangle=v^{\top}\begin{bmatrix}1&&&&\\&-1&&&\\&&-1&&\\&&&-1\end{bmatrix}w$

• The orthogonal group of such a space is O(1,3), defined analogously to the Euclidean case.

Introduction



- Algebra: a vector space (e.g., \mathbb{R}^3) with a product.
 - $u, v \in V : uv$ is a valid expression.
 - We **specify** a *product* of two vectors that relates to the inner product (geometry) but does not reduce to a scalar.
- We now axiomatically state
 - $v^2 := ||v||^2 = \langle v, v \rangle$ enforced relation to preserve geometry.

•
$$(u + v)^2 = u^2 + v^2 + uv + vu \iff uv + vu = 2\langle u, v \rangle$$

We still have to investigate in which space this product lives.

$$v^2 = q(v) \iff (u+v)^2 - u^2 - v^2 = 2b(u, v)$$

The Algebra Basis

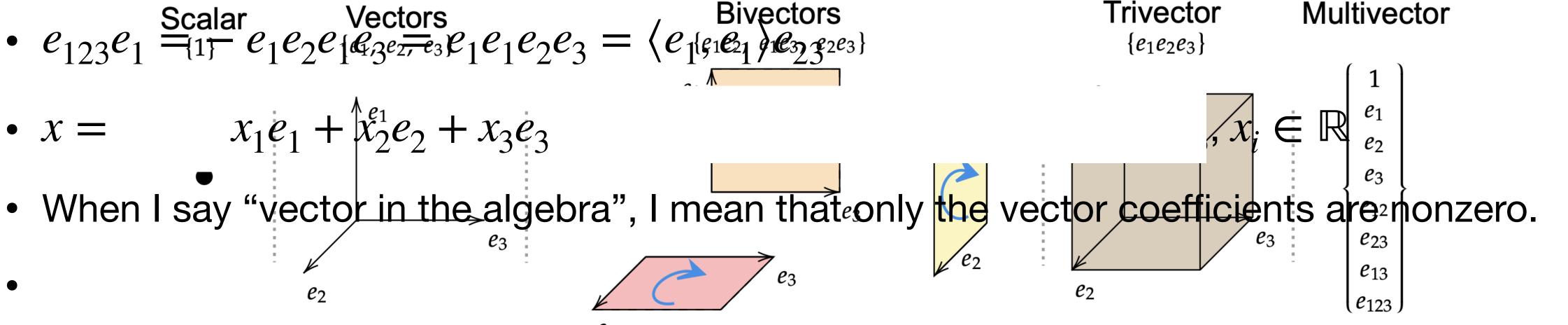
• Let's take \mathbb{R}^3 . Using a basis e_1, e_2, e_3 . I.e.,

•
$$x \in \mathbb{R}^3$$
: $x = x_1e_1 + x_2e_2 + x_3e_3$

- We can create the $Cl(\mathbb{R}^3, \langle \cdot, \cdot \rangle)$ basis
- For orthogonal (basis) vectors, $e_i e_j = -e_i e_i$.

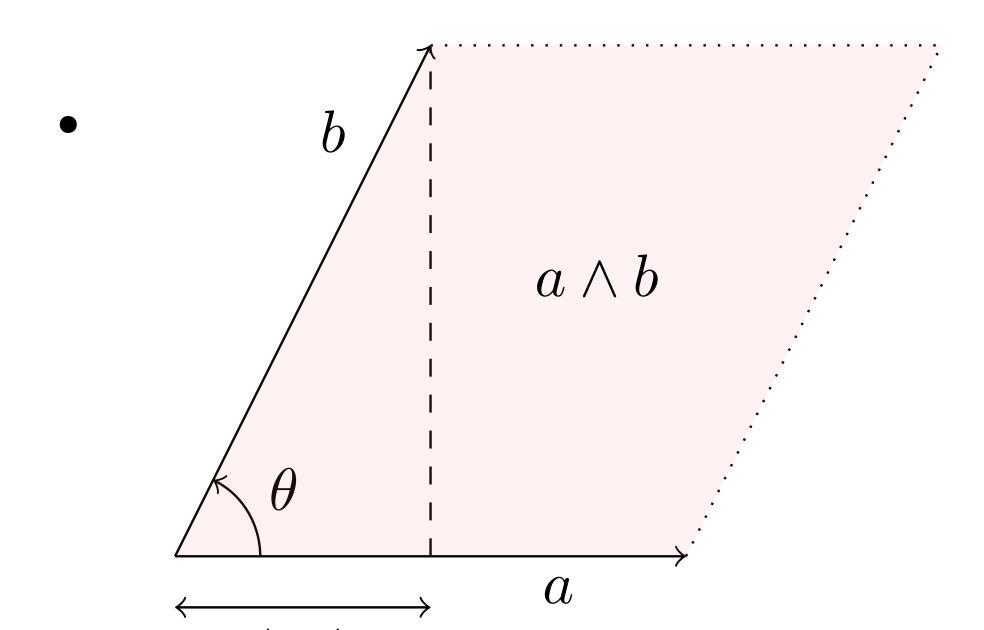
•
$$x = x_1 e_1 + x_2^{e_1} e_2 + x_3 e_3$$

 $uv + vu = 2\langle u, v \rangle$



The Geometric Product

• Let's take two vectors $a, b \in \operatorname{Cl}(\mathbb{R}^2, \langle \cdot, \cdot \rangle), \langle e_i, e_i \rangle = 1$ $ab = (a_1e_1 + a_2e_2)(b_1e_1 + b_2e_2) = a_1e_1(b_1e_1 + b_2e_2) + a_2e_2(b_1e_1 + b_2e_2)$



Theoretical Results

The orthogonal group.

- $\rho(w)$: orthogonal group representation.
- $\rho(w)$ satisfies:

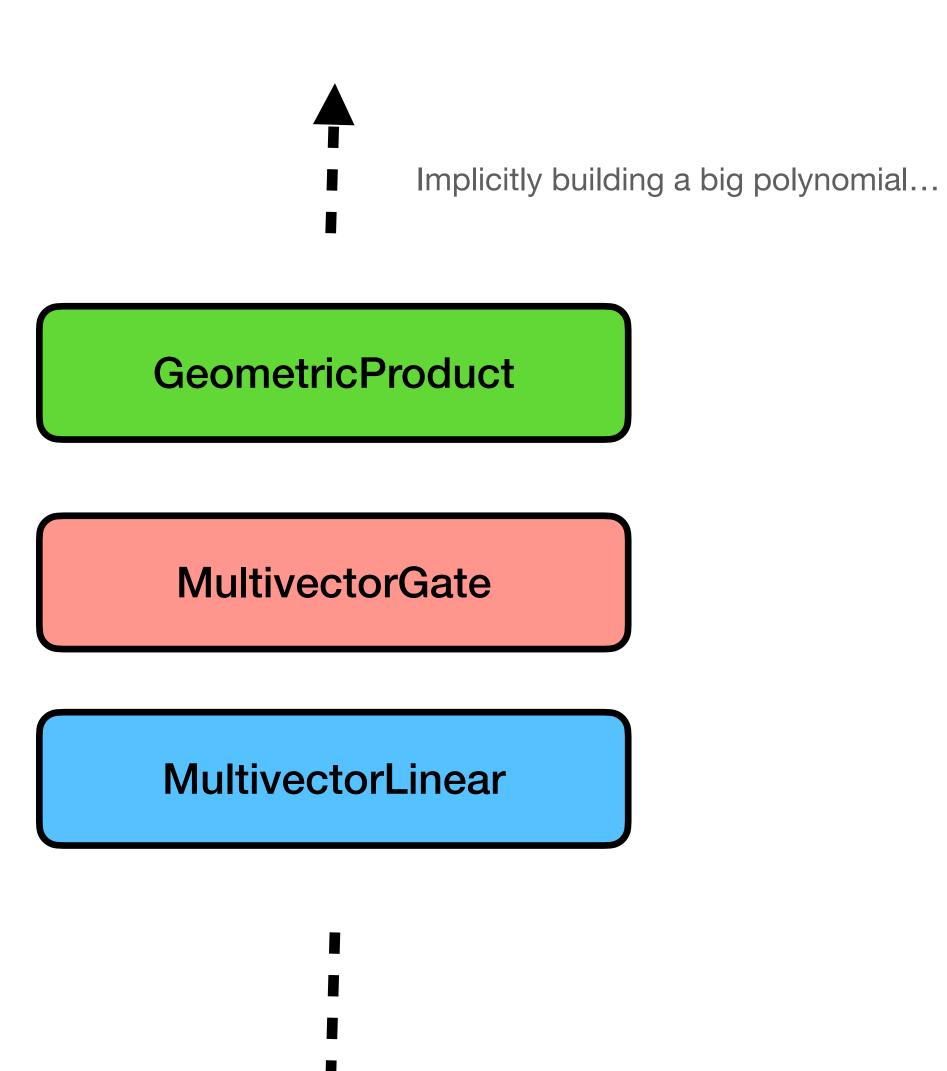
1.
$$\langle (\rho(w)(x_1), \rho(w)(x_2) \rangle = \langle x_1, x_2 \rangle$$

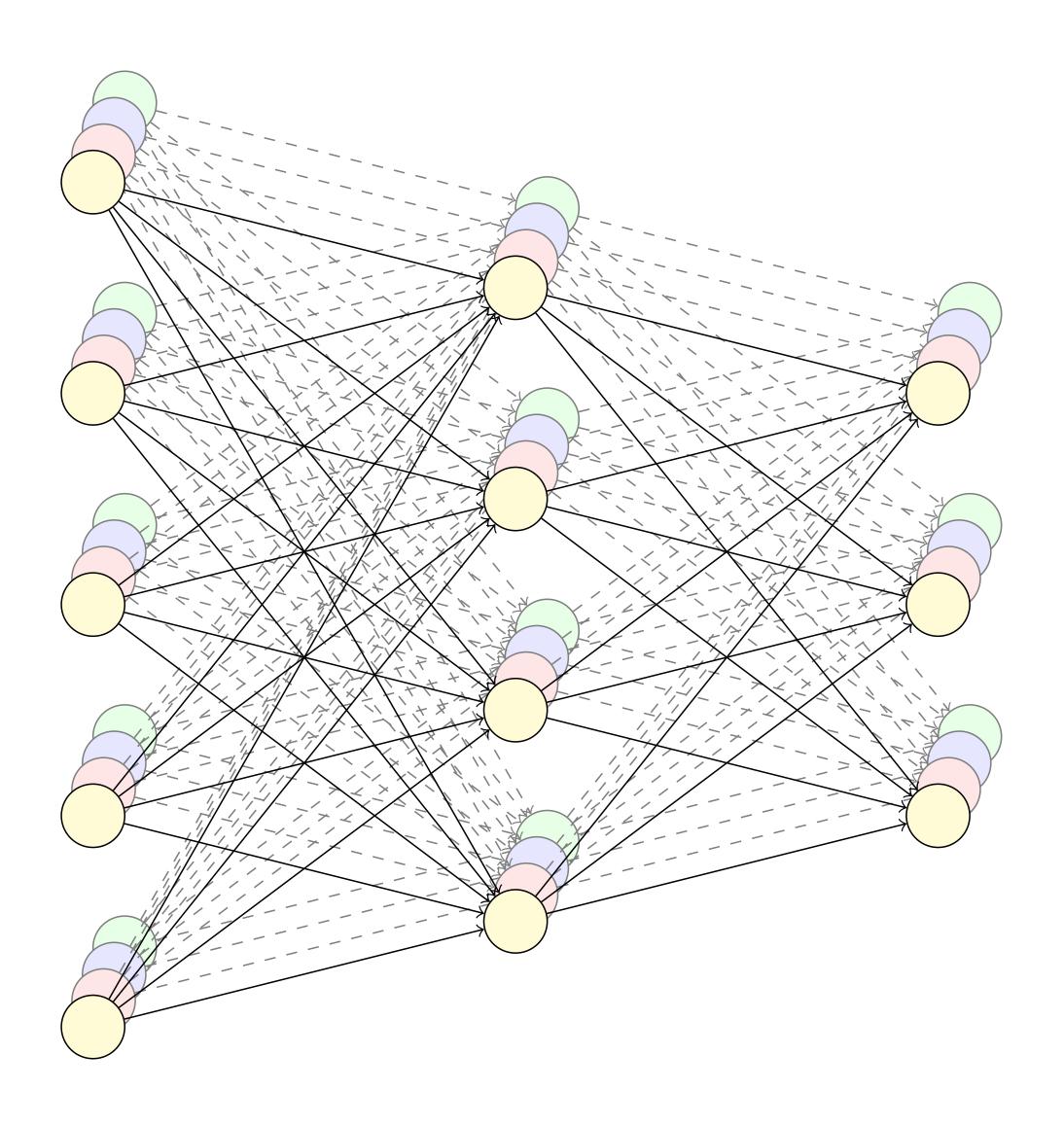
- 2. Additivity: $\rho(w)(x_1 + x_2) = \rho(w)(x_1) + \rho(w)(x_2)$
- 3. Multiplicativity: $\rho(w)(x_1x_2) = \rho(w)(x_1)\rho(w)(x_2)$
- 4. Commutes with scalars: $\rho(w)(\alpha \cdot x) = \alpha \cdot \rho(w)(x)$

O multivector representation.

All geometric product polynomials are O equivariant.

Network Architectures





Methodology

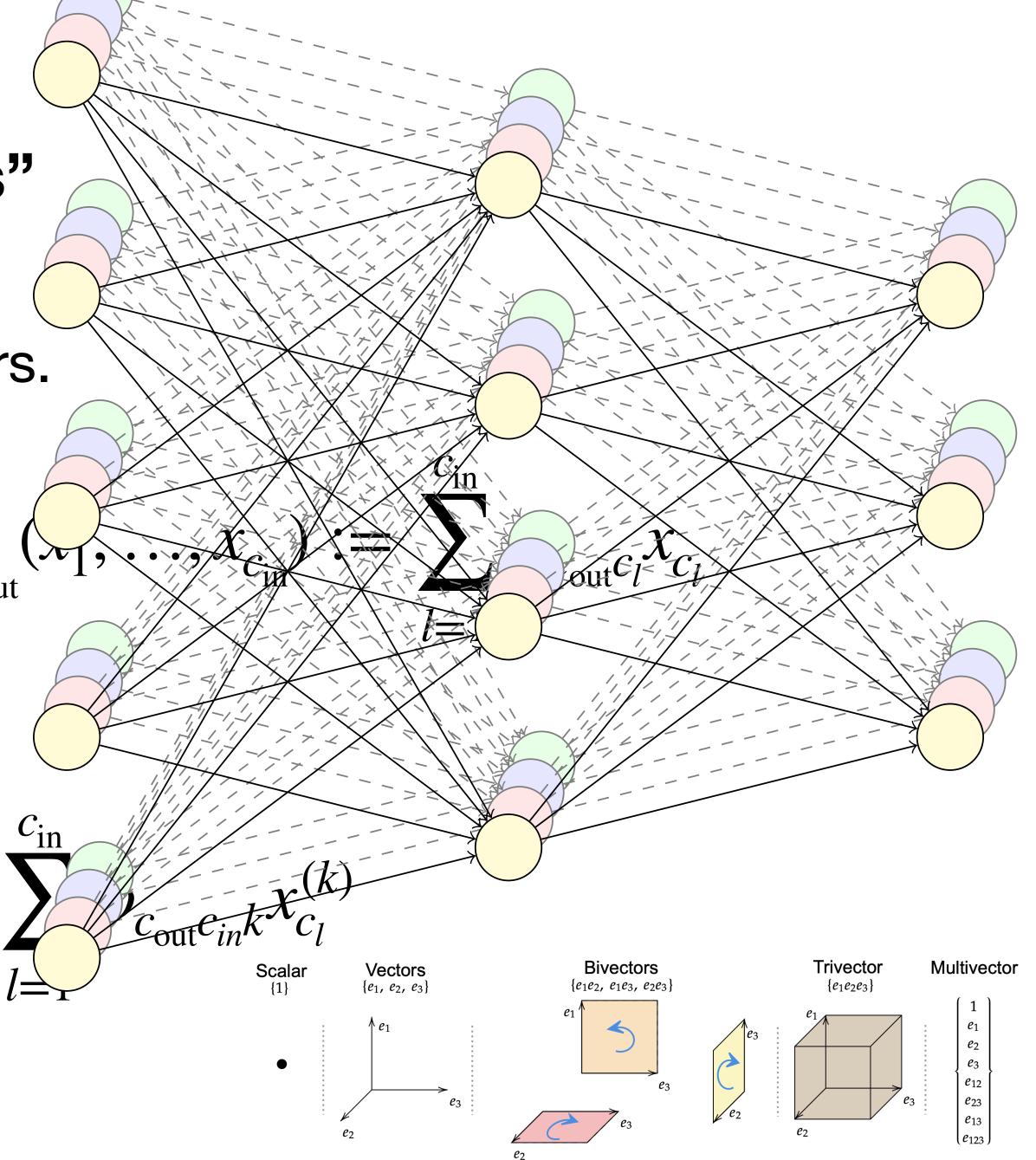
Linear Layers "Multivector Neurons"

• Let $x_1, \ldots, x_{c_{\mathrm{in}}}$ denote a set of multivectors.

• We can linearly combine them using $T_{\phi_{c_{\mathrm{out}}}}^{\mathrm{lin}}$

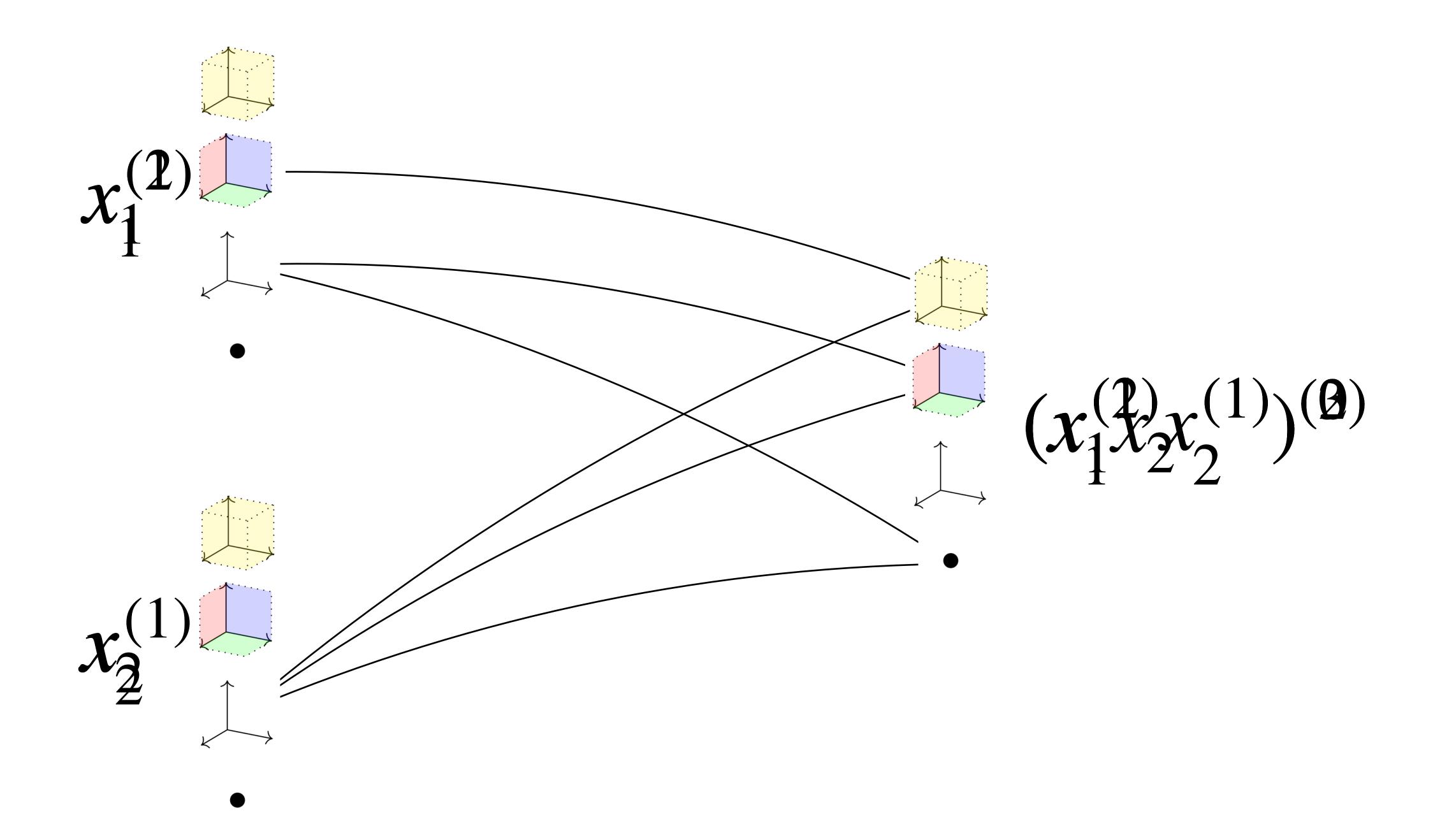
• $\phi_{c_{\text{out}}c_{\text{in}}} \in \mathbb{R}$

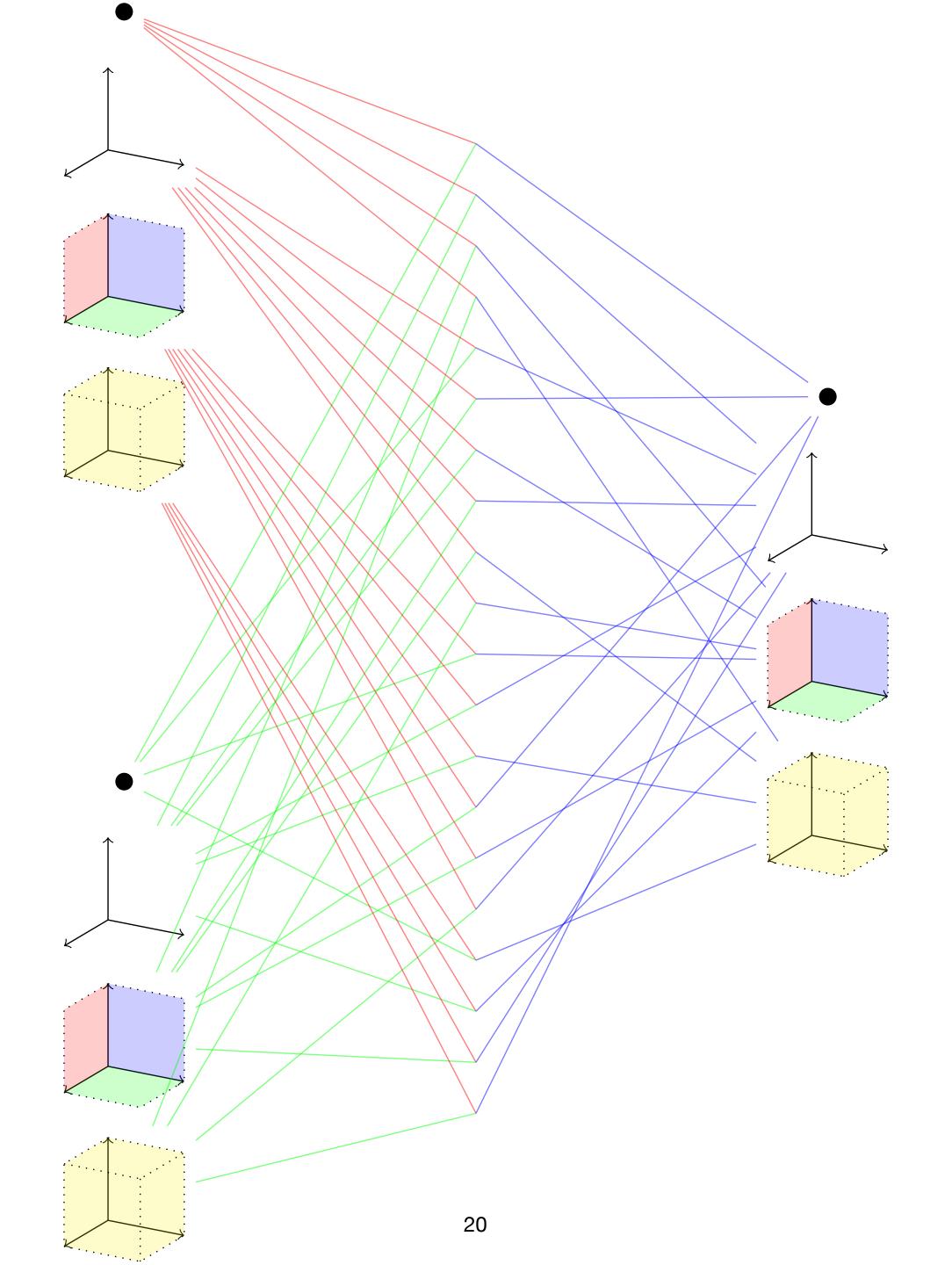
Or more densely: $T_{\phi_{c_{\mathrm{out}}}}^{\mathrm{lin}}(x_1,\ldots,x_{c_{\mathrm{in}}})^{(k)}:=\sum_{i=1}^{k}$



Methodology

Parameterized Geometric Products





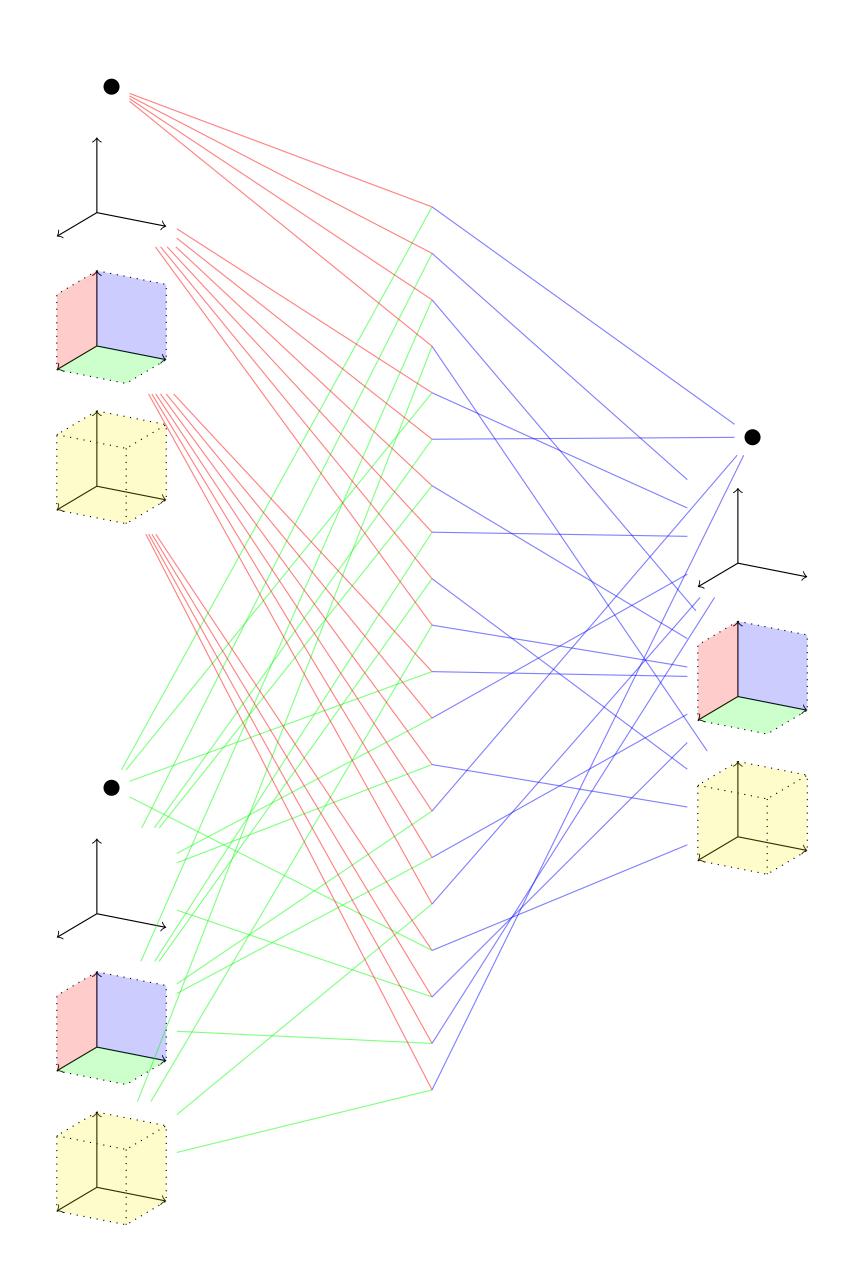
Methodology

Parameterized Geometric Product

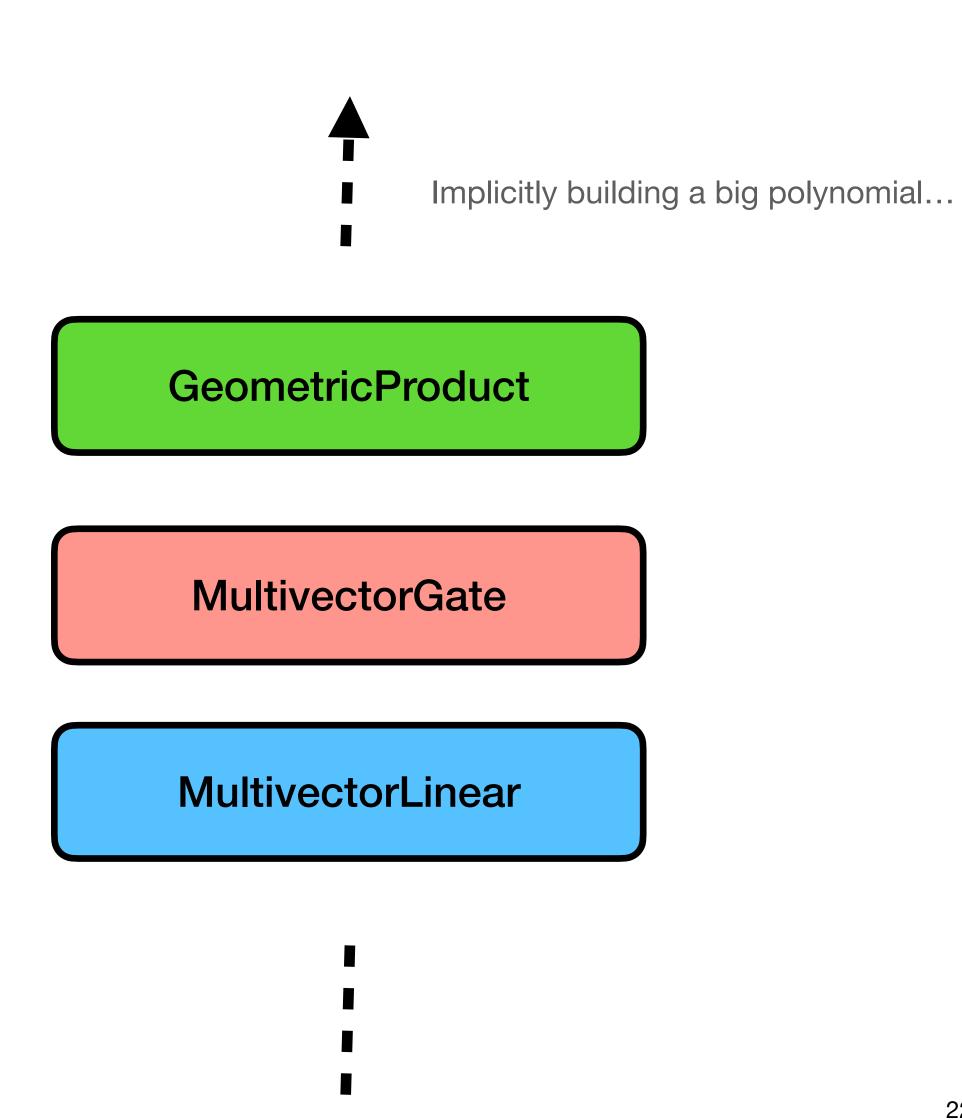
$$P_{\phi}(x_1, x_2)^{(k)} := \sum_{i=0}^{n} \sum_{j=0}^{n} \phi_{ijk}(x_1^{(i)} x_2^{(j)})^{(k)}$$

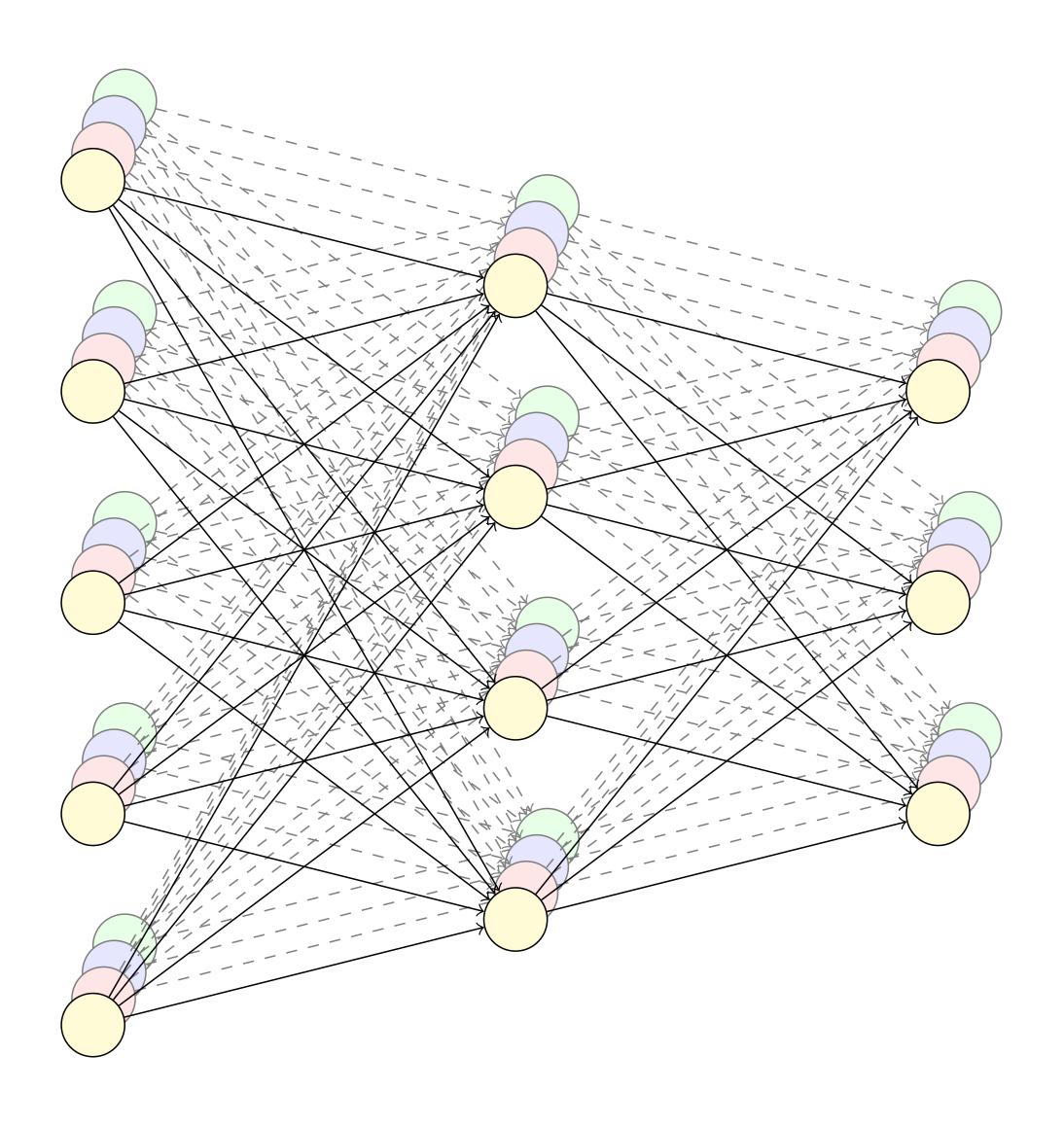
All products:

$$T^{\text{prod}}(x_1, \dots, x_{c_{\text{in}}})^{(k)} := \sum_{p=1}^{c_{\text{in}}} \sum_{q=1}^{c_{\text{in}}} P_{\phi_{pq}}(x_p, x_q)^{(k)}$$



Network Architectures

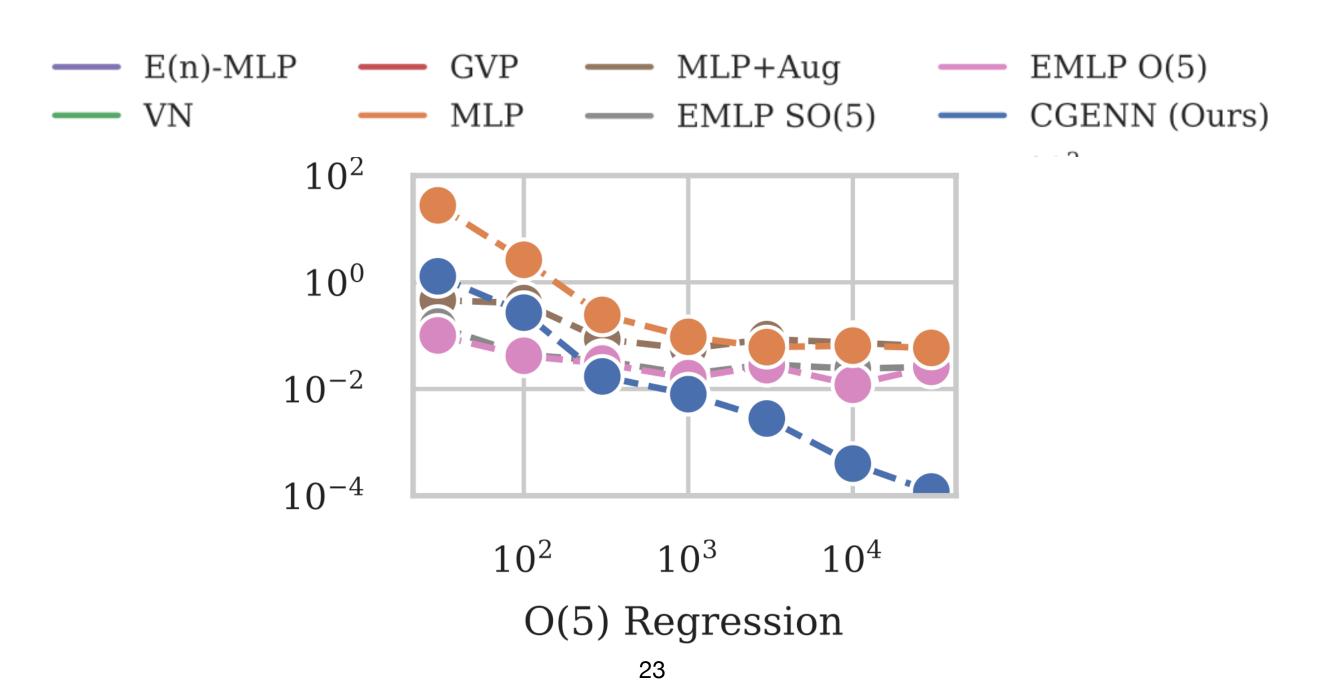




O(5) Experiment: Regression

• Taken from Finzi et al., 2022

• Approximate
$$f(x_1, x_2) := \sin(||x_1||) - ||x_2||^3 / 2 + \frac{x_1^\top x_2}{||x_1|| ||x_2||}$$

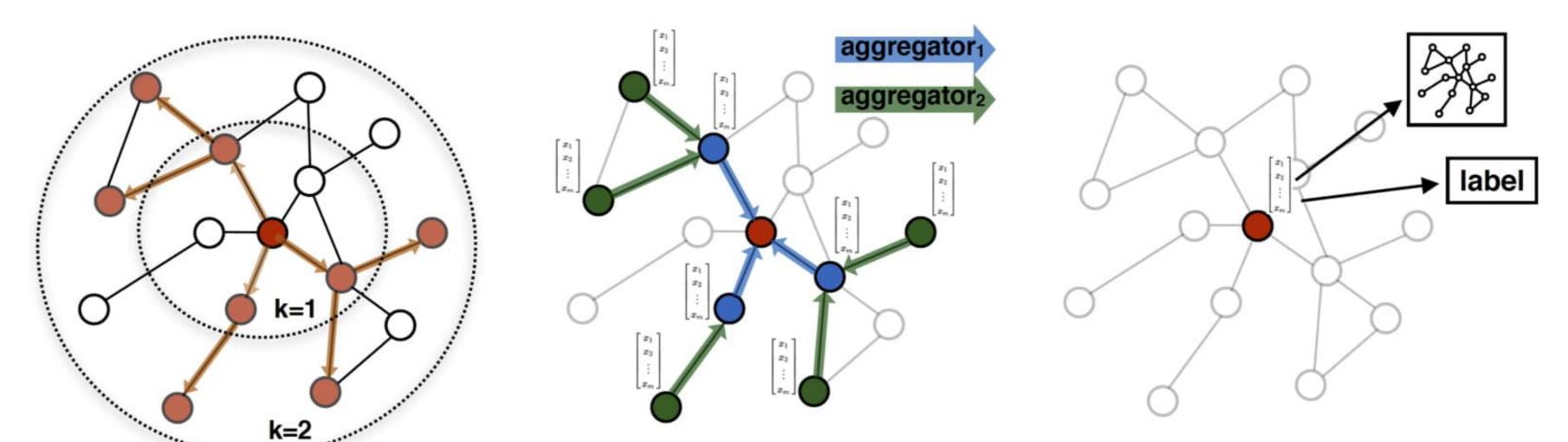


E(3) Experiment: n-body.

- A benchmark for simulating physical systems using GNNs.
- Given n=5 charged particles' positions and velocities, estimate their positions after 1000 time-steps.

E(3) Experiment: n-body.

- A benchmark for simulating physical systems using GNNs.
- Given n=5 charged particles' positions and velocities, estimate their positions after 1000 time-steps.



Algorithm 2 Standard Message Passing

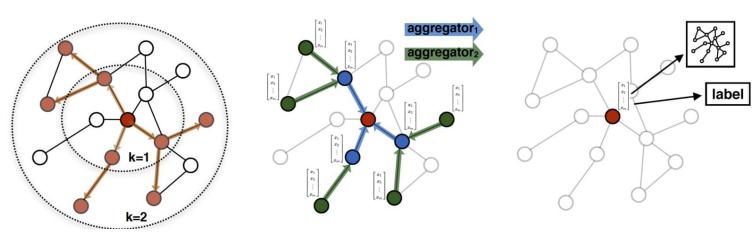
$$\begin{aligned} & \textbf{Require:} \ \ G = (V, E), \forall v \in V: h^v_{\text{in}}, \phi^m, \phi^h \\ & h^v_0 \leftarrow \text{Embed}(h^v_{\text{in}}) \\ & \textbf{for} \ \ell = 0, \dots, L-1 \ \textbf{do} \\ & \text{\# Message Passing} \\ & m^v_\ell \leftarrow \text{Agg}_{w \in N(v)} \phi^m(h^v_\ell, h^w_\ell) \\ & h^v_{\ell+1} \leftarrow \phi^h(h^v_\ell, m^v_\ell) \\ & \textbf{end for} \\ & h^G \leftarrow \text{Agg}_{v \in V} h^v_L \\ & h_{\text{out}} \leftarrow \text{Readout}(h^G) \\ & \textbf{return} \ h_{\text{out}} \end{aligned}$$

E(3) Experiment: n-body.

- A benchmark for simulating physical systems using GNNs.
- Given n=5 charged particles' positions and velocities, estimate their positions after 1000 time-steps.

SEGNN CGENN	$0.0043 \\ \hline 0.0039 \pm 0.0001$
EGNN	0.0070
Radial Field	0.0104
NMP	0.0107
TFN	0.0155
SE(3)-Tr.	0.0244
Method	MSE (↓)

Table 1: Mean-squared error (MSE) on the n-body system experiment.



O(1,3) Experiment: Top Tagging

- Jet tagging: identifying particle jets generated during collisions.
- Top tagging: identifying whether event produced a top quark.
 - Given: momenta, bergy of ± 200 particles.
- Relativistic nations to formations to be serve space time gistances given

				,	,
	Resive	00	0.9837	302	1147
	P-CNN [22]	0.930	0.9803	201	759
by $O(1,3)$.	APFN [58]	0.50	10 08 19	247	288
	Particl	// -0 .¶40	<u></u> b B	397	1615
	$\mathbf{E} \overline{\mathbf{q}}'$	0.922	0.0,00	148	540
	LG	0.929	$1 _ 0.9640$	124	435
	Loren	0.942	0.9868	498	2195
	CGENN) antitop	0.9869	500	2172

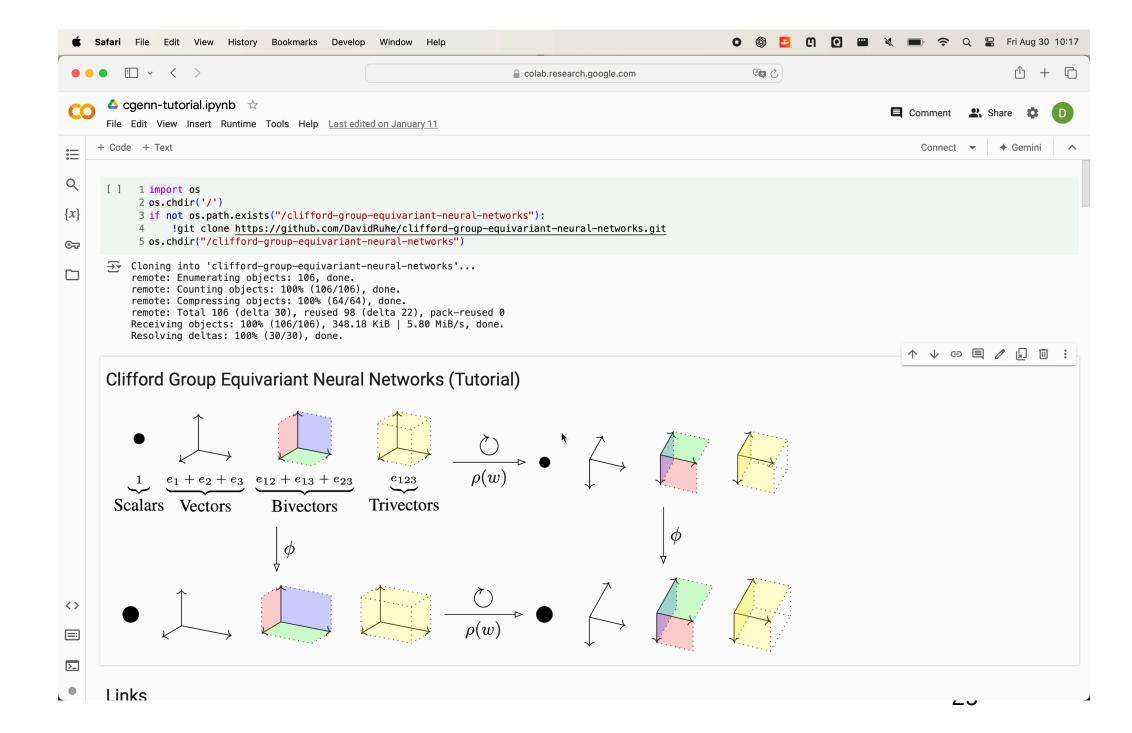
In Conclusion

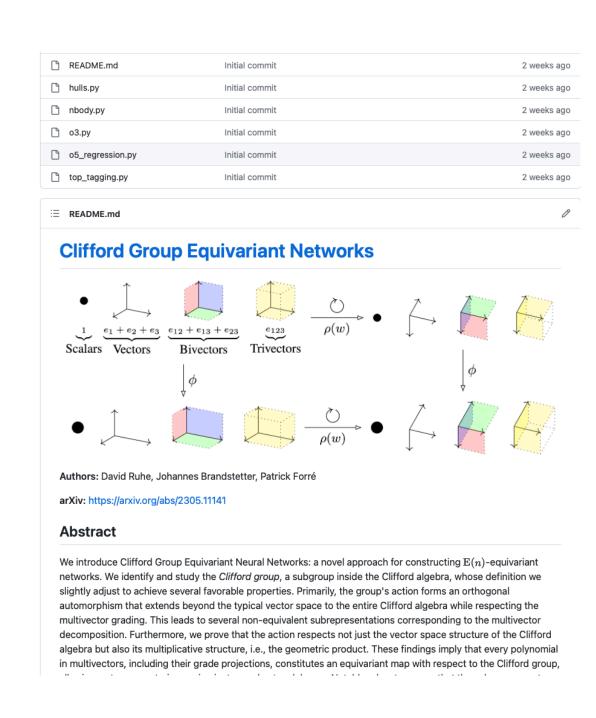
- Equivariant parameterization of neural networks based on Clifford algebras.
- Remarkably versatile models: different dimensions and applications.
- Despite that, we match or outperform models specifically designed for certain tasks.

- No need for group convolutions.
- We can directly use higher-order (vector) features instead of scalarized ones.
- CGENNs generalize to quadratic spaces of any dimension.
- No spherical harmonics, CG coefficients, etc.

Final Remarks

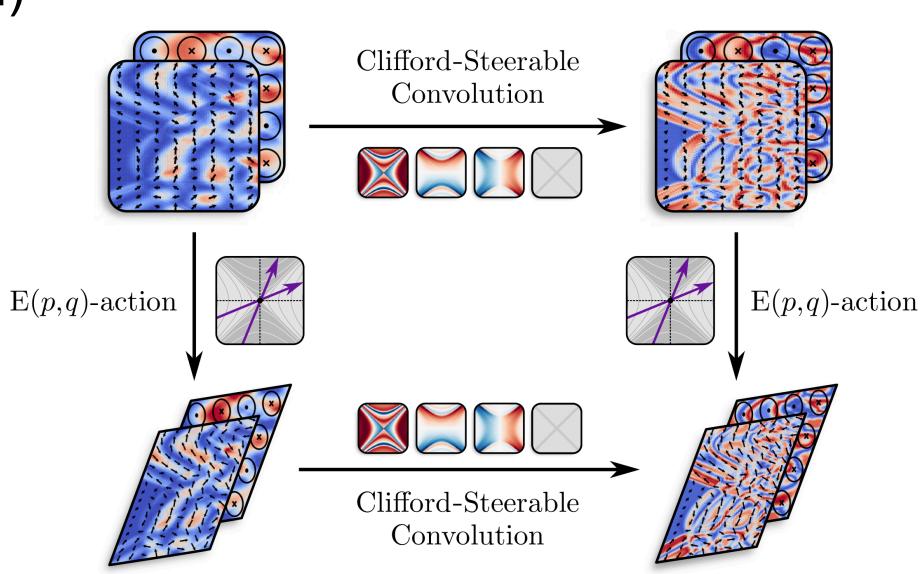
- Code is available at https://github.com/DavidRuhe/clifford-group-equivariant-neural-networks/
- Massive speed ups in JIT-compiled JAX versions.





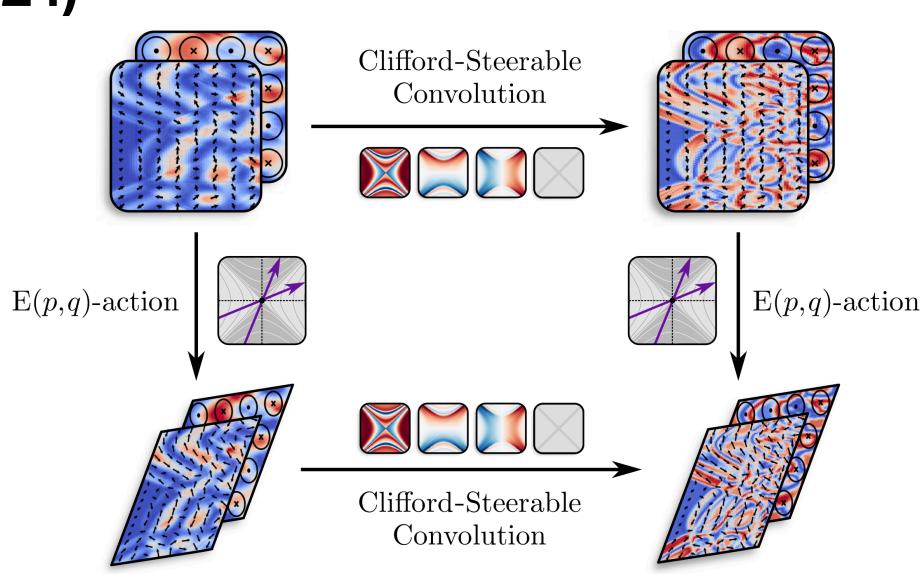
Adjacent & Followup Works

- Geometric Algebra Transformer (Brehmer et al., 2023, NeurIPS 2023)
 - Lorentz-Equivariant GATr (Spinner et al., 2024)
- Clifford Simplicial Message Passing (Liu et al., 2024, ICLR 2024)
- Clifford-Steerable CNNs (Zhdanov et al., 2024, ICML 2024)
- Applications in
 - 3D vision (Pepe et al., 2024)
 - (Bio)chemistry (Pepe et al., 2024)
 - Fluid Mechanics (Maruyana et al., 2024).



Adjacent & Followup Works

- Geometric Algebra Transformer (Brehmer et al., 2023, NeurIPS 2023)
 - Lorentz-Equivariant GATr (Spinner et al., 2024)
- Clifford Simplicial Message Passing (Liu et al., 2024, ICLR 2024)
- Clifford-Steerable CNNs (Zhdanov et al., 2024, ICML 2024)
- Applications in
 - 3D vision (Pepe et al., 2024)
 - (Bio)chemistry (Pepe et al., 2024)
 - Fluid Mechanics (Maruyana et al., 2024).

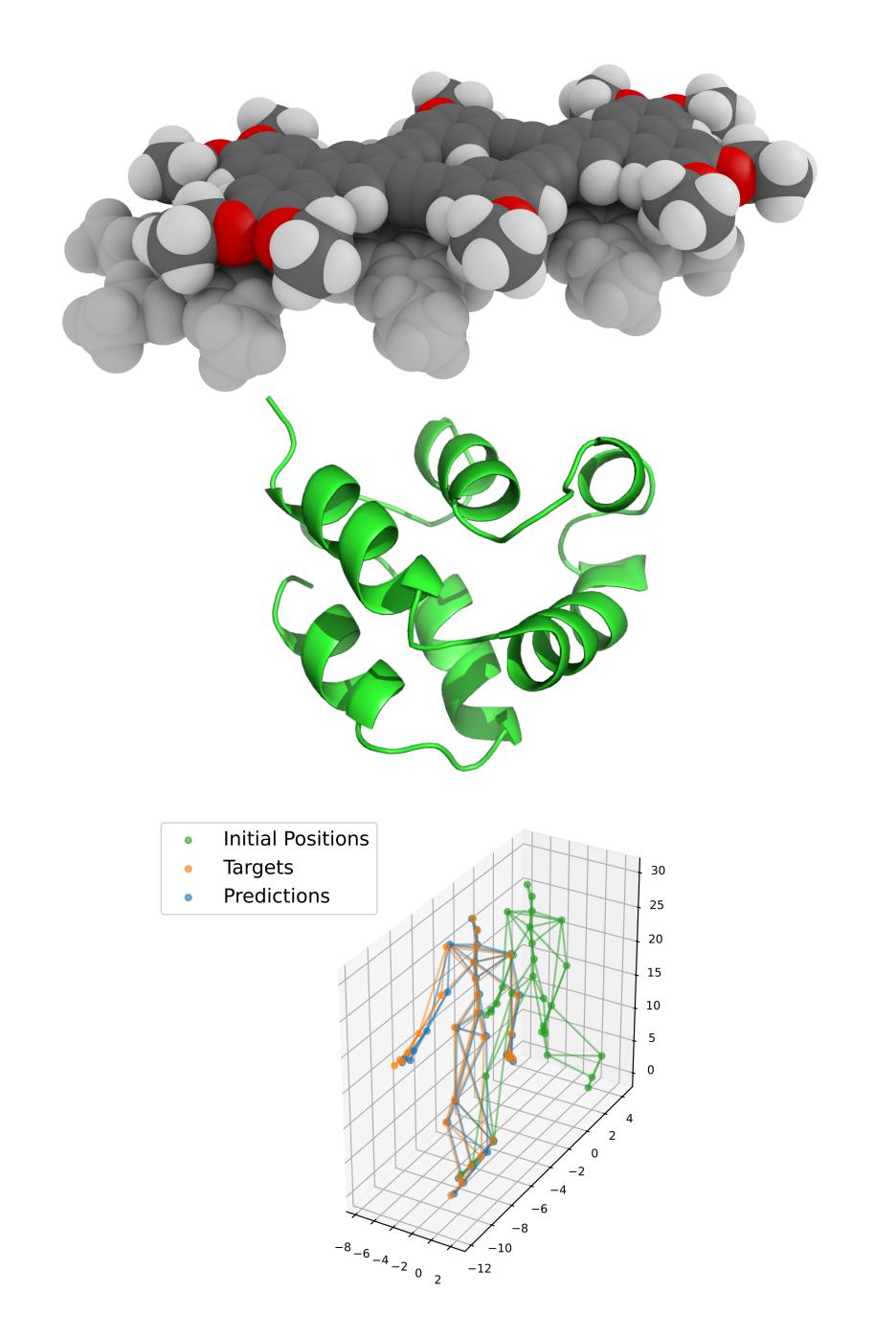


CLIFFORD GROUP EQUIVARIANT SIMPLICIAL MES-SAGE PASSING NETWORKS

Cong Liu^{12,*}, David Ruhe^{123,*}, Floor Eijkelboom¹⁴, Patrick Forré¹² AMLab, University of Amsterdam {c.liu4,d.ruhe,f.eijkelboom,p.d.forre}@uva.nl

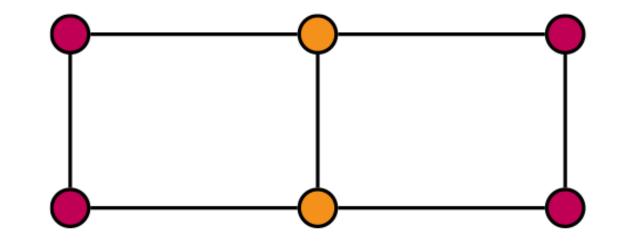
Motivation

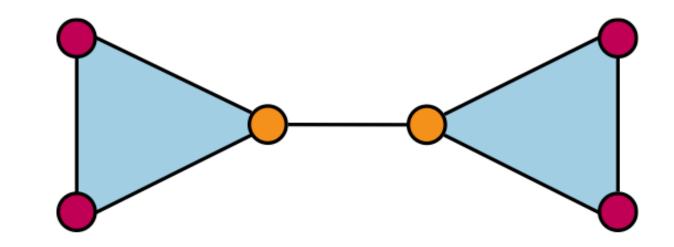
- In data science, we can study e.g. molecules and proteins by equipping them with complex topologies.
- Graph Neural Networks are mostly used to tackle these challenges but they are only capable of modelling bi-interactions at each time.
- Can we find a method to both satisfy the equivariance constraint and being able model both geometries and topologies lie in the data?



Message Passing Simplicial Networks

- Message Passing Networks are powerful, but they cannot distinguish two graphs with the same connectivity and the same set of nodes, even the two graphs have different topology.
- By lifting graphs to simplicial complex and pass messages on simplicial complex, we can identify them again!





 Message Passing Simplicial Networks learn the topological features in simplicial complex

Simplicial Complex

Definition 2.3 (Simplicial Complex). Let V be a finite set. An abstract simplicial complex K is a subset of the power set 2^V that satisfies:

- 1. $\forall v \in V : \{v\} \in K$;
- 2. $\forall \sigma \in K : \forall \tau \subseteq \sigma, \tau \neq \emptyset : \tau \in K$.
- 0-simplex σ^0 , nodes v_i
- 1-simplex σ^1 , edges $\{v_i, v_j\}$
- 2-simplex σ^2 , triangles $\{v_i, v_j, v_k\}$

Message Passing Simplicial Networks (MPSNs)

MPSN We propose a message passing model using the following message passing operations based on the four types of messages discussed in the previous section. For a simplex σ in a complex \mathcal{K} we have:

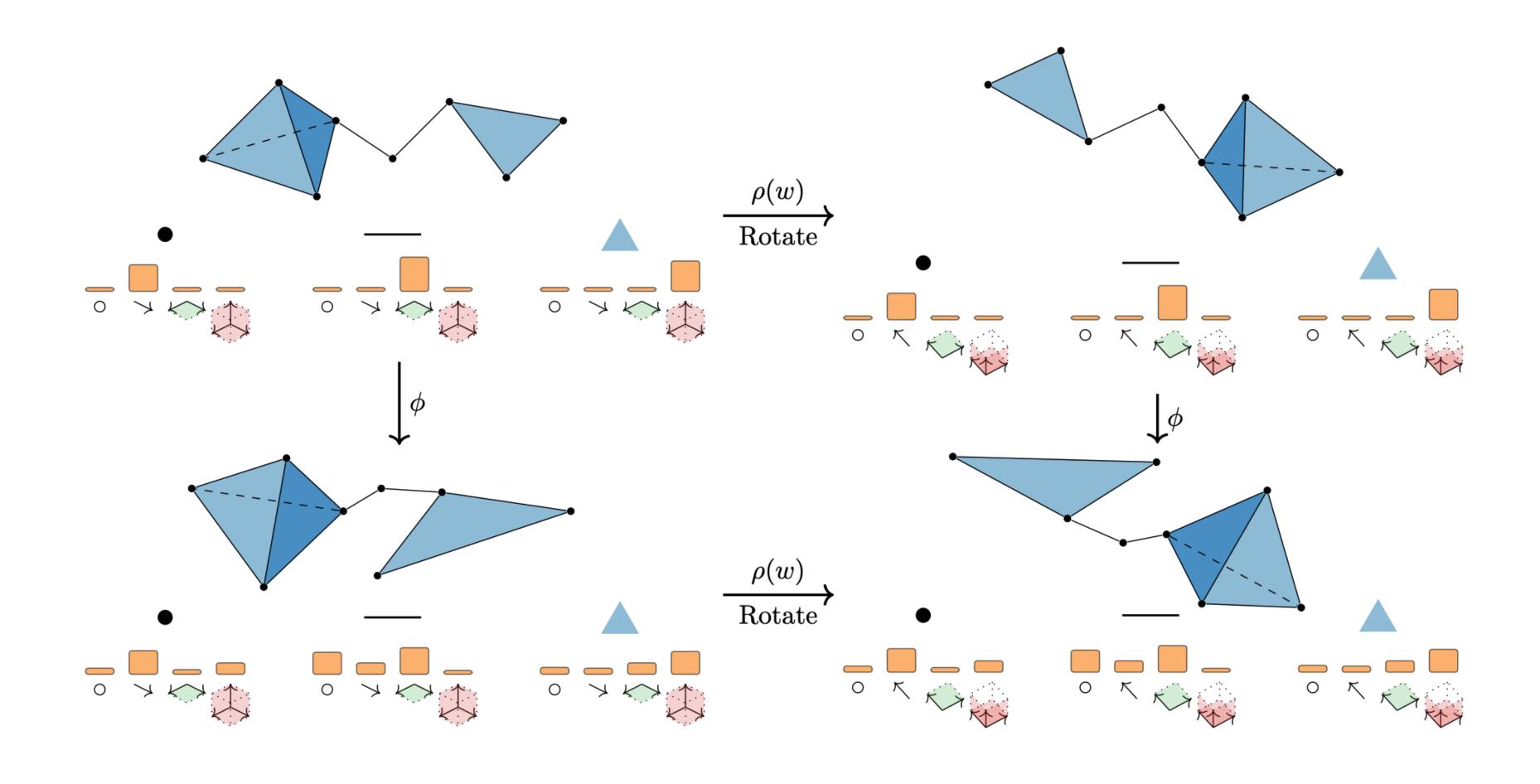
$$m_{\mathcal{B}}^{t+1}(\sigma) = \mathrm{AGG}_{\tau \in \mathcal{B}(\sigma)} \left(M_{\mathcal{B}} (h_{\sigma}^t, h_{\tau}^t) \right) \tag{2}$$
 E.g. triangles neighboring an edge.
$$m_{\mathcal{C}}^{t+1}(\sigma) = \mathrm{AGG}_{\tau \in \mathcal{C}(\sigma)} \left(M_{\mathcal{C}} (h_{\sigma}^t, h_{\tau}^t) \right) \tag{3}$$
 Other triangles that share an edge $M_1(h_{v_0}^t, h_{(v_0, v_2)}^t)$
$$m_{\downarrow}^{t+1}(\sigma) = \mathrm{AGG}_{\tau \in \mathcal{N}_{\uparrow}(\sigma)} \left(M_{\uparrow} (h_{\sigma}^t, h_{\tau}^t, h_{\sigma \cup \tau}^t) \right) \tag{4}$$
 Other edges that share an triangle v_g Other edges that share edges v_g Other edges that share edges v_g Other edges

Then, the update operation takes into account these four types of incoming messages and the previous colour of the simplex:

$$h_{\sigma}^{t+1} = U\left(h_{\sigma}^{t}, m_{\mathcal{B}}^{t}(\sigma), m_{\mathcal{C}}^{t}(\sigma), m_{\downarrow}^{t+1}(\sigma), m_{\uparrow}^{t+1}(\sigma)\right). \tag{6}$$

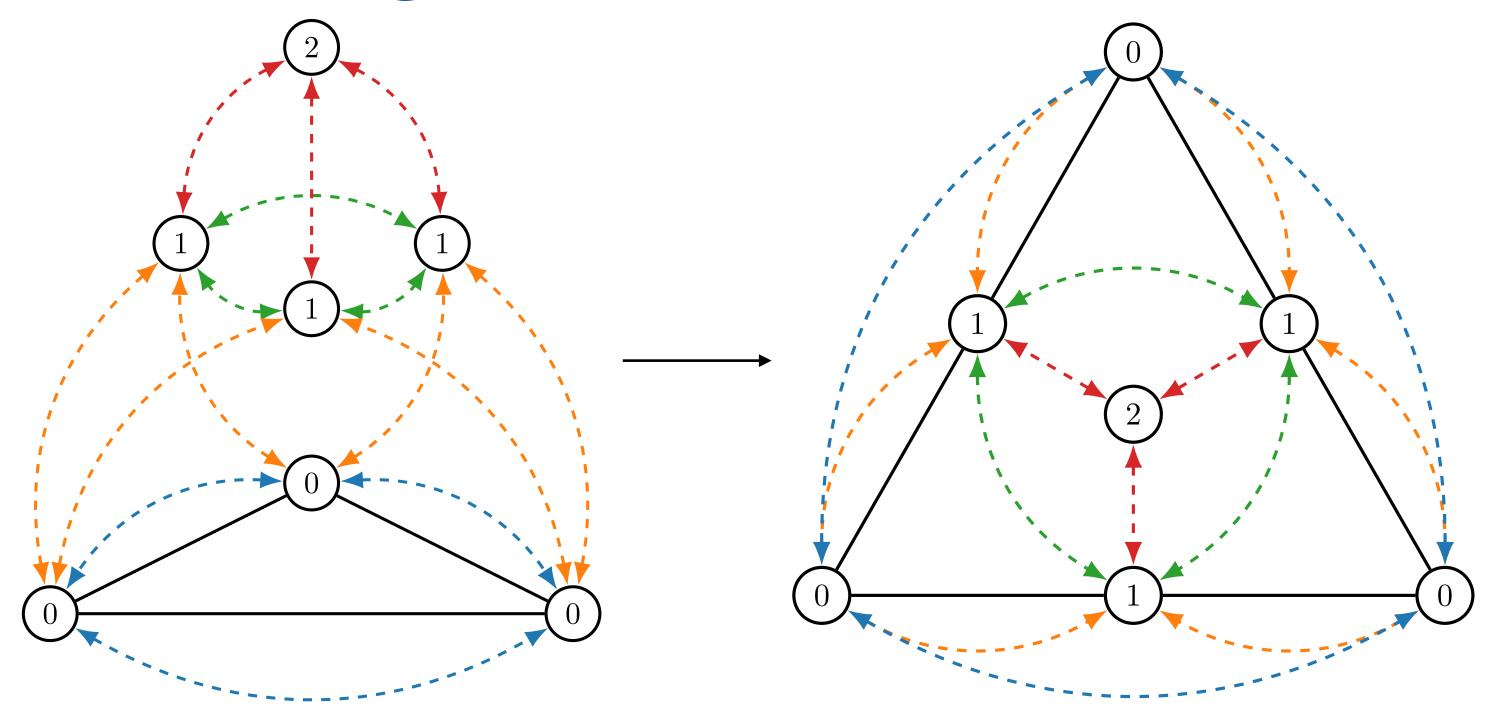
(From Bodnar et al. 2021)

Clifford Group Equivariant Simplicial Message Passing



Shared Message Passing Networks

- In MSPNs, every type of communications between different dimensional simplices use different message networks.
- In this case, 6 networks are created and are forward propagated sequentially.
- We use only 1 shared message passing network, conditioned on communication type.



Algorithm 1 Shared Simplicial Message Passing

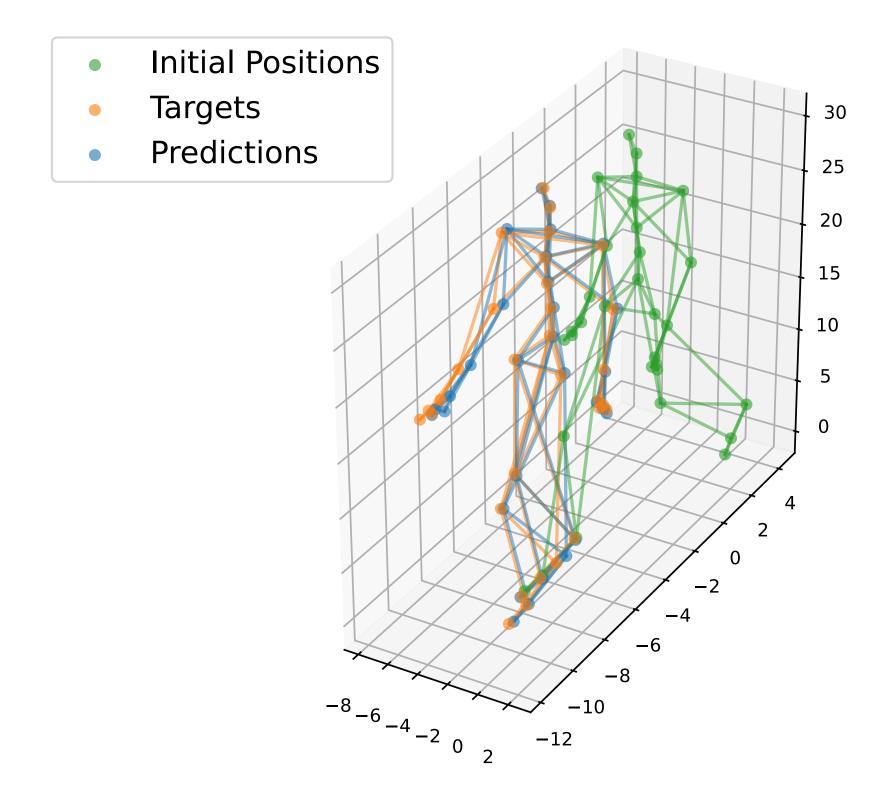
Require:
$$K, \forall \sigma \in K : h^{\sigma}, \phi^{m}, \phi^{h}$$

Repeat: $m^{\sigma} \leftarrow \operatorname{Agg}_{\tau \in B(\sigma)} \phi^{m}(h^{\sigma}, h^{\tau}, \dim \sigma, \dim \tau)$
 $\tau \in C(\sigma)$
 $\tau \in N_{\uparrow}(\sigma)$
 $\tau \in N_{\downarrow}(\sigma)$
 $h^{\sigma} \leftarrow \phi^{h}(h^{\sigma}, m^{\sigma}, \dim \sigma)$

Human Walking Motion Prediction (E(2))

 Given 31 three-dimensional points coordinates, estimate the coordinates of these points after 30 time steps.

Method	MSE (↓)
Radial Field (Köhler et al., 2020)	197.0
TFN (Thomas et al., 2018)	66.9
SE(3)-Tr (Fuchs et al., 2020)	60.9
GNN (Gilmer et al., 2017)	67.3
EGNN (200K) (Satorras et al., 2021)	31.7
GMN (200K) (Huang et al., 2022)	17.7
EMPSN (200K)	15.1
CGENN (200K)	9.41
CSMPN (200K)	7.55



MD17 Atomic Motion Prediction (E(3))

 Given the atomic positions at 10 separate time steps, estimate the coordinates of these atoms after serveral time steps.

	Aspirin	Benzene	Ethanol	Malonaldehyde
Radial Field (Köhler et al., 2020)	17.98 / 26.20	7.73 / 12.47	8.10 / 10.61	16.53 / 25.10
TFN (Thomas et al., 2018)	15.02 / 21.35	7.55 / 12.30	8.05 / 10.57	15.21 / 24.32
SE(3)-Tr (Fuchs et al., 2020)	15.70 / 22.39	7.62 / 12.50	8.05 / 10.86	15.44 / 24.47
EGNN (Satorras et al., 2021)	14.61 / 20.65	7.50 / 12.16	8.01 / 10.22	15.21 / 24.00
S-LSTM (Alahi et al., 2016)	13.12 / 18.14	3.06 / 3.52	7.23 / 9.85	11.93 / 18.43
NRI (Kipf et al., 2018)	12.60 / 18.50	1.89 / 2.58	6.69 / 8.78	12.79 / 19.86
NMMP (Hu et al, 2020)	10.41 / 14.67	2.21 / 3.33	6.17 / 7.86	9.50 / 14.89
GroupNet (Xu et al., 2022)	10.62 / 14.00	2.02 / 2.95	6.00 / 7.88	7.99 / 12.49
GMN-L (Huang et al., 2022)	9.76 / -	48.12 / -	4.83 / -	13.11 / -
EqMotion (300K) (Xu et al., 2023)	5.95 / 8.38	1.18 / 1.73	5.05 / 7.02	5.85 / 9.02
EMPSN (300K)	9.53 / 12.63	1.03 / 1.12	8.80 / 9.76	7.83 / 10.85
CGENN (300K)	3.70 / 5.63	1.03 / 1.59	4.53 / 6.35	4.20 / 6.55
CSMPN (300K)	3.82 / 5.75	1.03 / 1.60	4.44 / 6.30	3.88 / 5.94

Table 3: ADE / FDE (10^{-2}) (\downarrow) of the tested models on the MD17 atomic motion dataset.

NBA Players 2D Trajectory Prediction

 Given the player positions at 10 separate time steps, estimate the coordinates of these players for future 40 time steps.

	Attack	Defense
STGAT (Huang et al , 2019)	9.94 / 15.80	7.26 / 11.28
Social-Ways (Amirian et al., 2019)	9.91 / 15.19	7.31 / 10.21
Weak-Supervision (Zhan et al., 2019)	9.47 / 16.98	7.05 / 10.56
DAG-Net (200K) (Monti et al., 2020)	8.98 / 14.08	6.87 / 9.76
CGENN (200K)	9.17 / 14.51	6.64 / 9.42
CSMPN (200K)	8.88 / 14.06	6.44 / 9.22

Table 4: ADE / FDE (↓) of the tested models on the VUSport NBA player trajectory dataset.

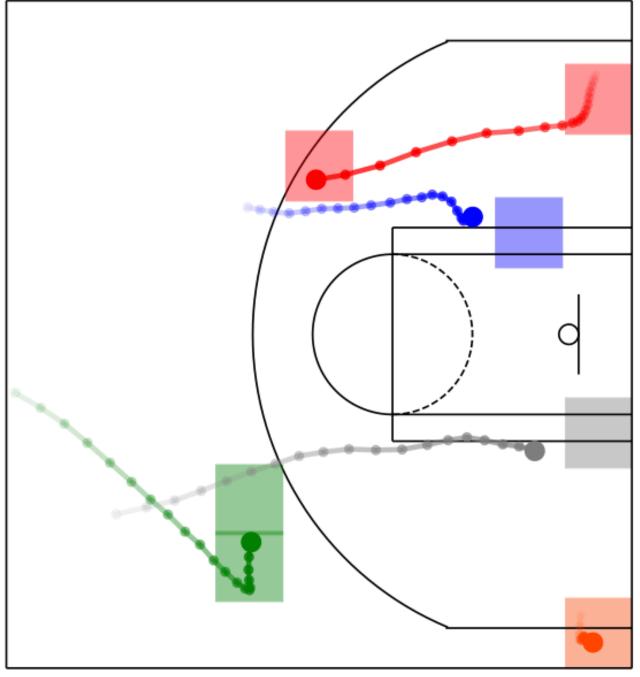


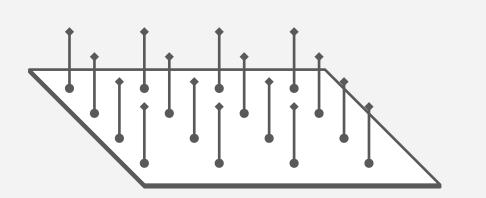
Figure from Alessio Monti, Alessia Bertugli, Simone Calderara, and Rita Cucchiara. Dag-net: Double attentive graph neural network for trajectory forecasting, 2020.

Clifford-Steerable Convolutional Neural Networks

Maksim Zhdanov¹ David Ruhe^{*123} Maurice Weiler^{*1} Ana Lucic⁴ Johannes Brandstetter⁵⁶ Patrick Forré¹²

Feature Vector Fields

classic deep learning

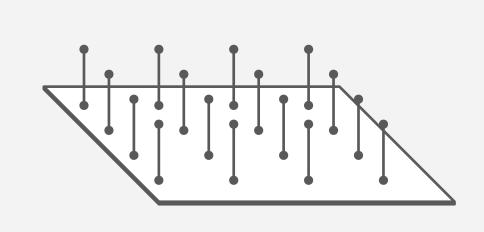


Euclidean space

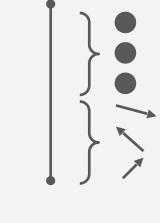
Blue Channel

image data

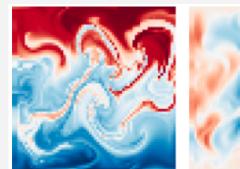
geometric deep learning

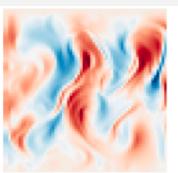


Euclidean space



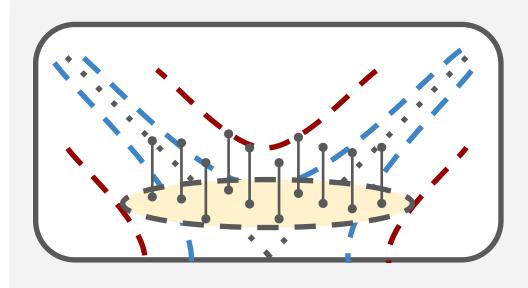
tensors



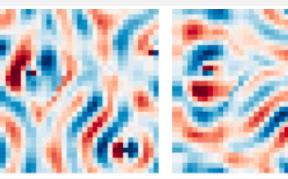


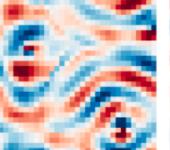
fluid dynamics data

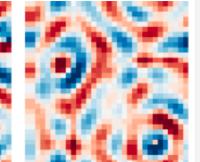
what we need



pseudo-Euclidean space



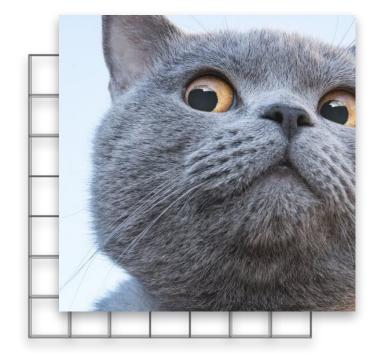




electromagnetic data

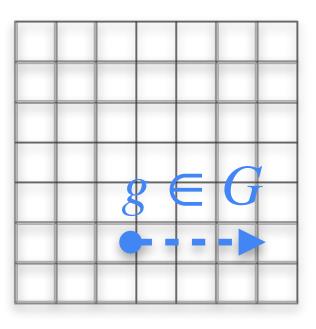
Data on Geometric Spaces

 $\mathrm{data} f \colon \mathbb{R}^{p,q} \to W$



base space $\mathbb{R}^{p,q}$

group action on data



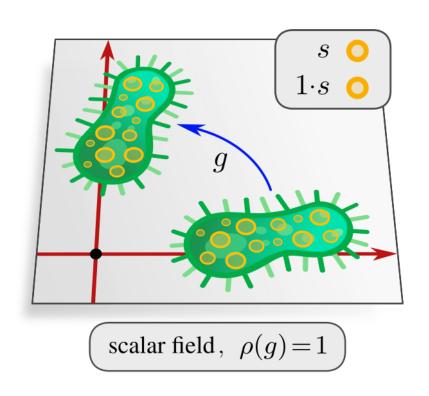
group action on base space

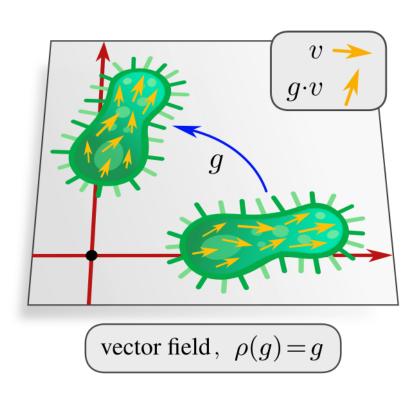
- → transformations of the base space → transformations of the data.
- \rightarrow feature vector fields assign a feature f(x) to each point $x \in \mathbb{R}^{p,q}$:

$$f: \mathbb{R}^{p,q} \to W$$

 \rightarrow feature fields are equipped with transformation rules under group actions g -representations $\rho(g)$.

Data on Geometric Spaces





different types of feature fields

- → transformations of the base space → transformations of the data.
- \rightarrow feature vector fields assign a feature f(x) to each point $x \in \mathbb{R}^{p,q}$:

$$f: \mathbb{R}^{p,q} \to W$$

 \rightarrow feature fields are equipped with transformation rules under group actions g -representations $\rho(g)$.

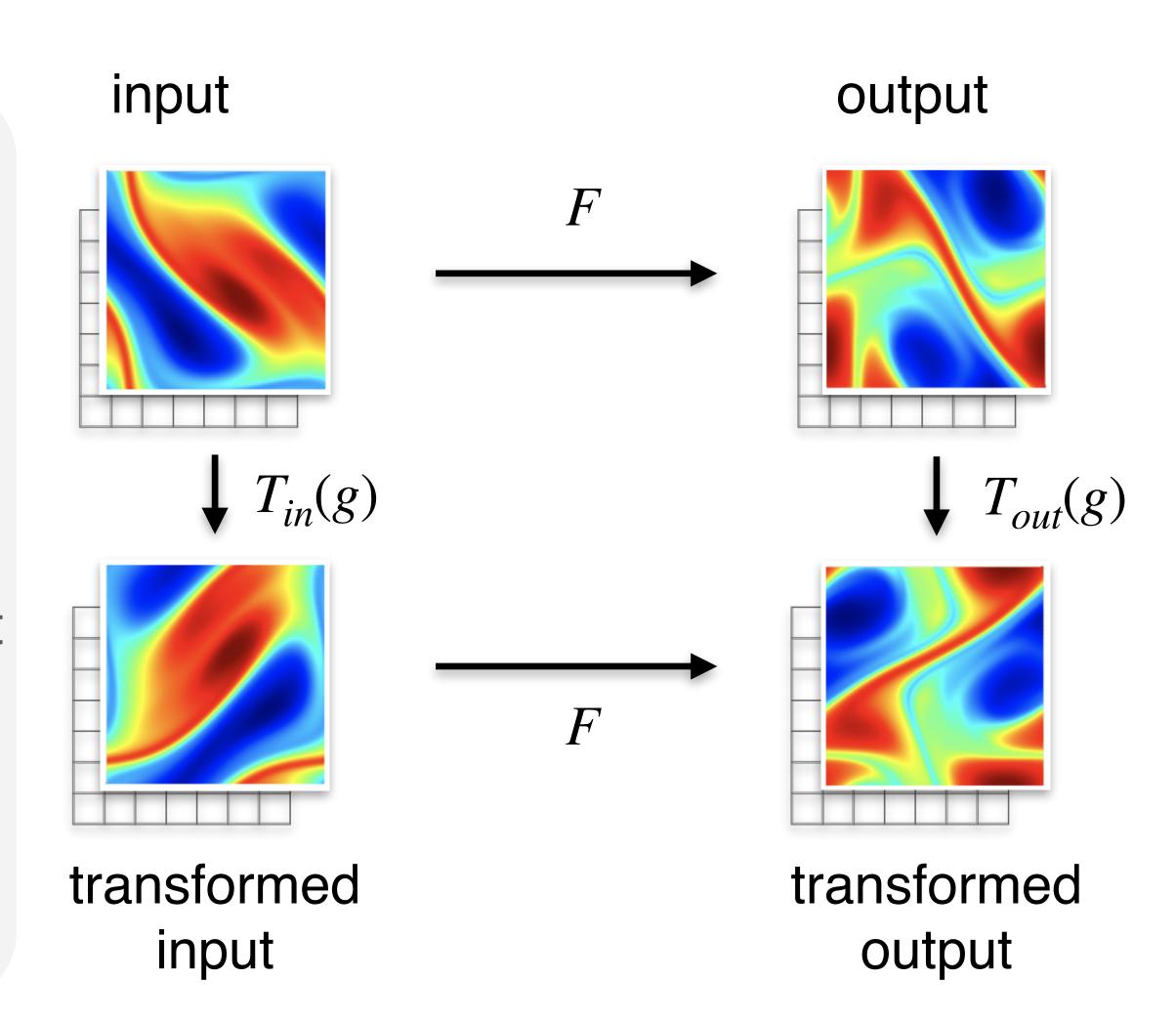
Functions on Geometric Spaces

our goal is to approximate the map between two feature spaces:

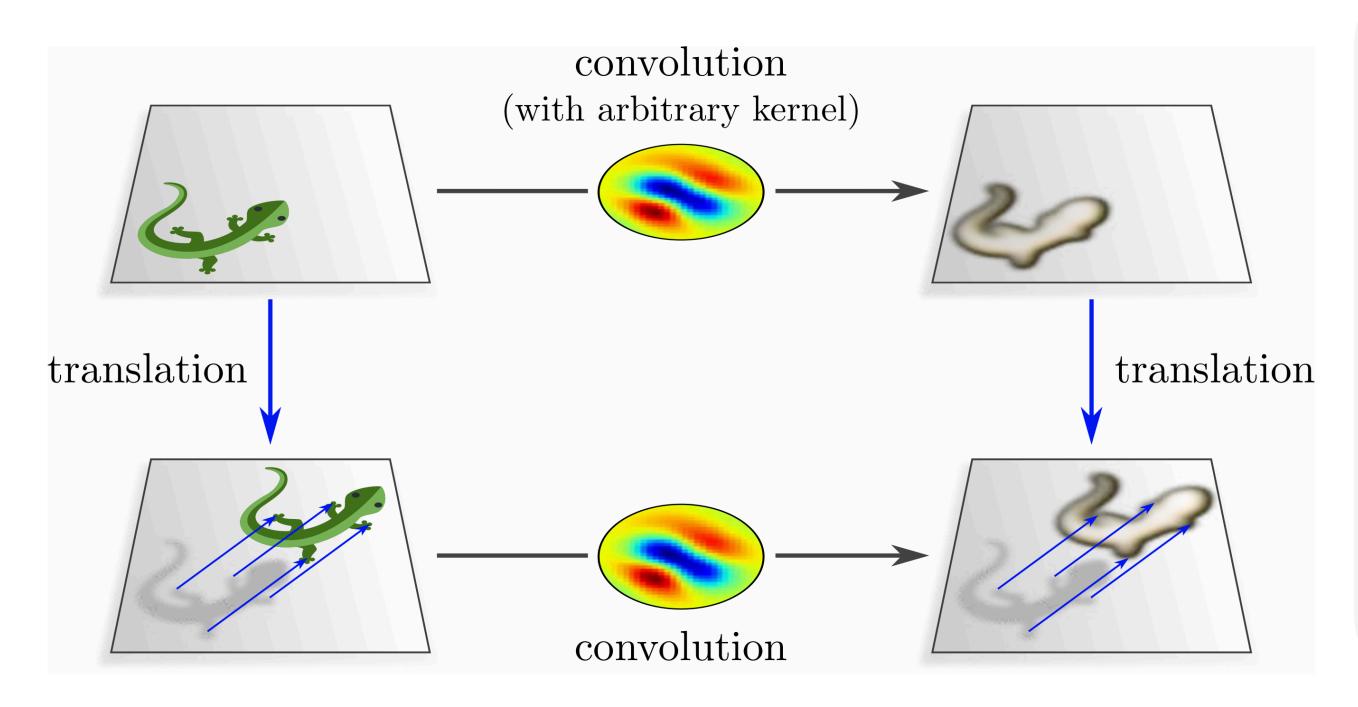
$$F: f_{in} \rightarrow f_{out}$$

→ since every feature field is equipped with its group representation, the map must respect it = equivariant:

$$F \circ \rho_{in}(g) = \rho_{out}(g) \circ F$$



Convolutional Neural Networks

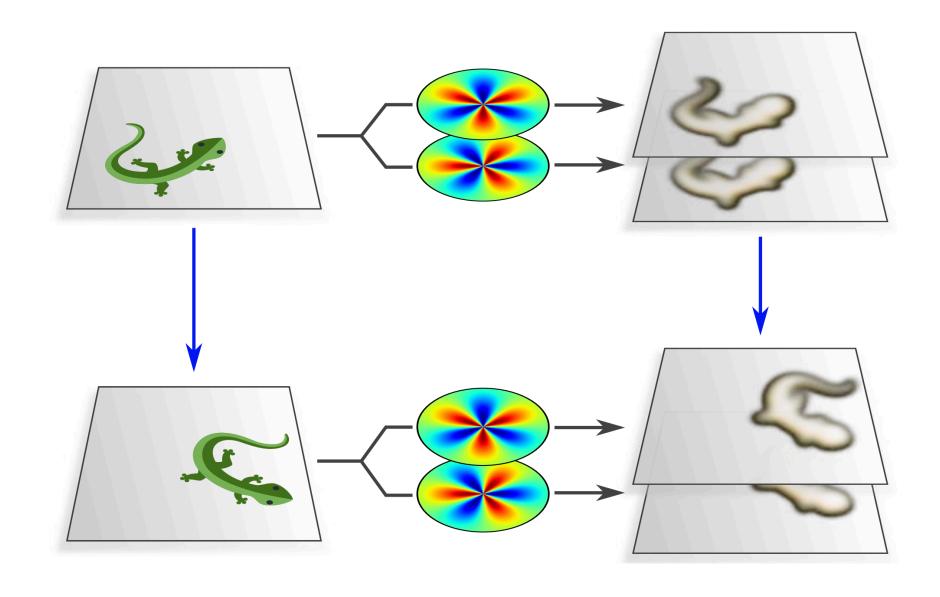


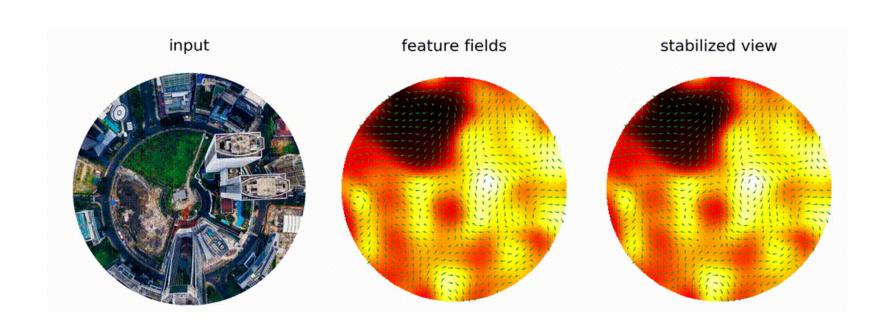
convolutional layer:

$$(f_{in} * k)(x) = \int_{-\infty}^{\infty} f_{in}(\tau)k(x - \tau)d\tau$$

→ it is translation-equivariant → pattern recognition power.

Steerable CNNs



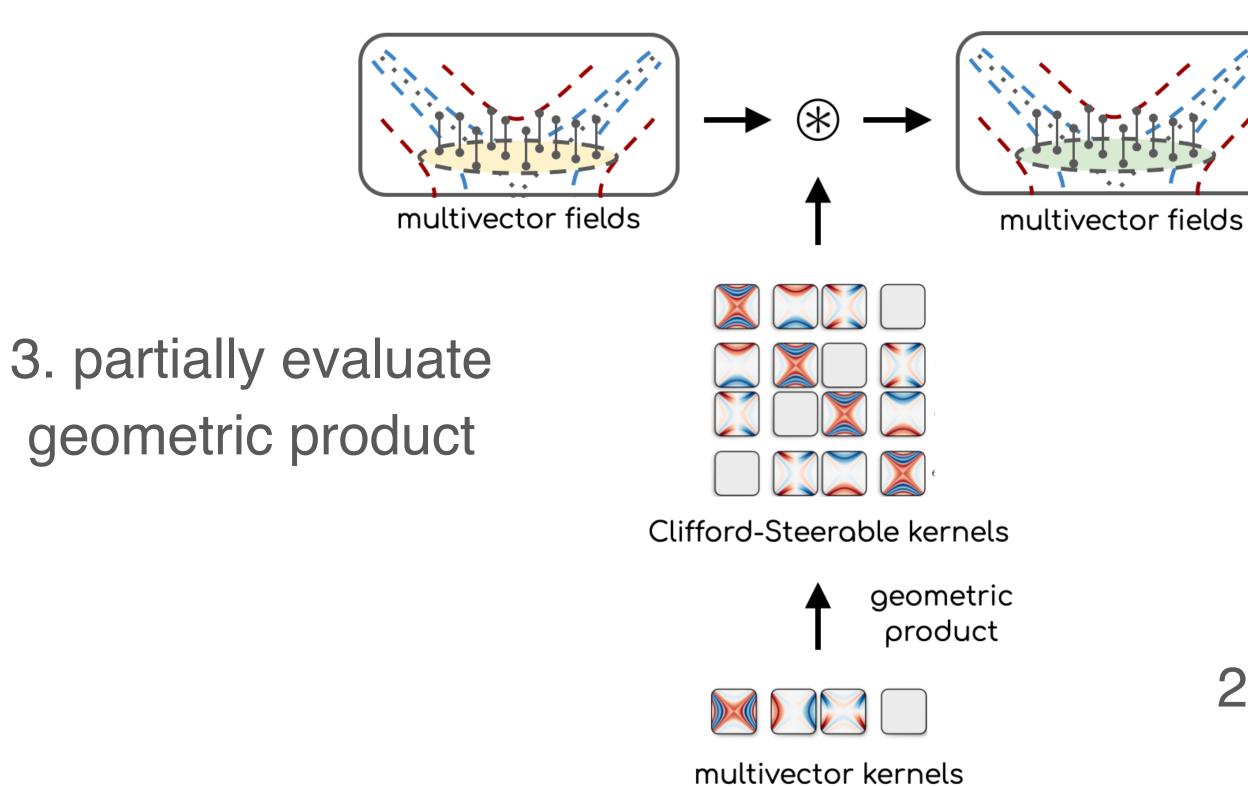


for arbitrary group G, one can put a constraint on kernels:

$$k(g.x) = \rho_{\text{out}}(g)k(x)\rho_{\text{in}}(g)^T \quad \forall g \in G$$

- guarantees G-equivariance of a convolutional layer.
- → Zhdanov et al., 2023 show that this can be solved **implicitly**.

Clifford-Steerable Implicit Kernels



 \rightarrow \nearrow \uparrow \nwarrow \leftarrow \swarrow \downarrow \searrow

grid' relative positions

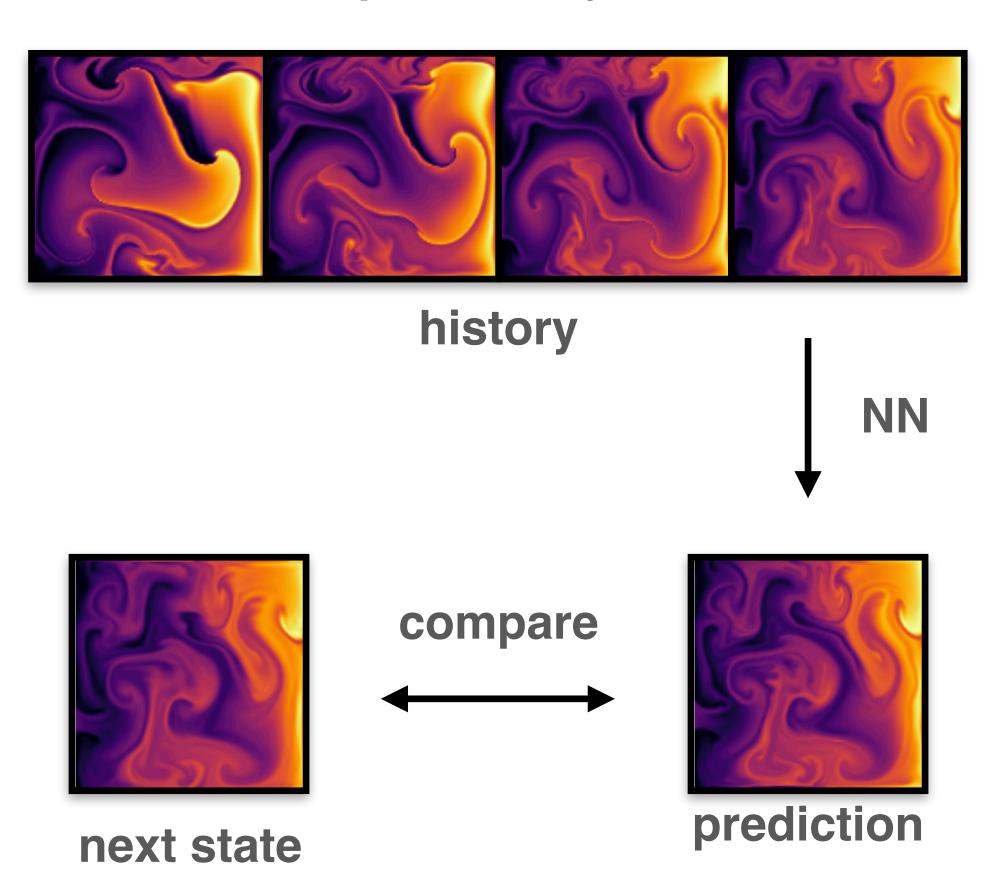
2. compute kernel matrix

4. compute convolution

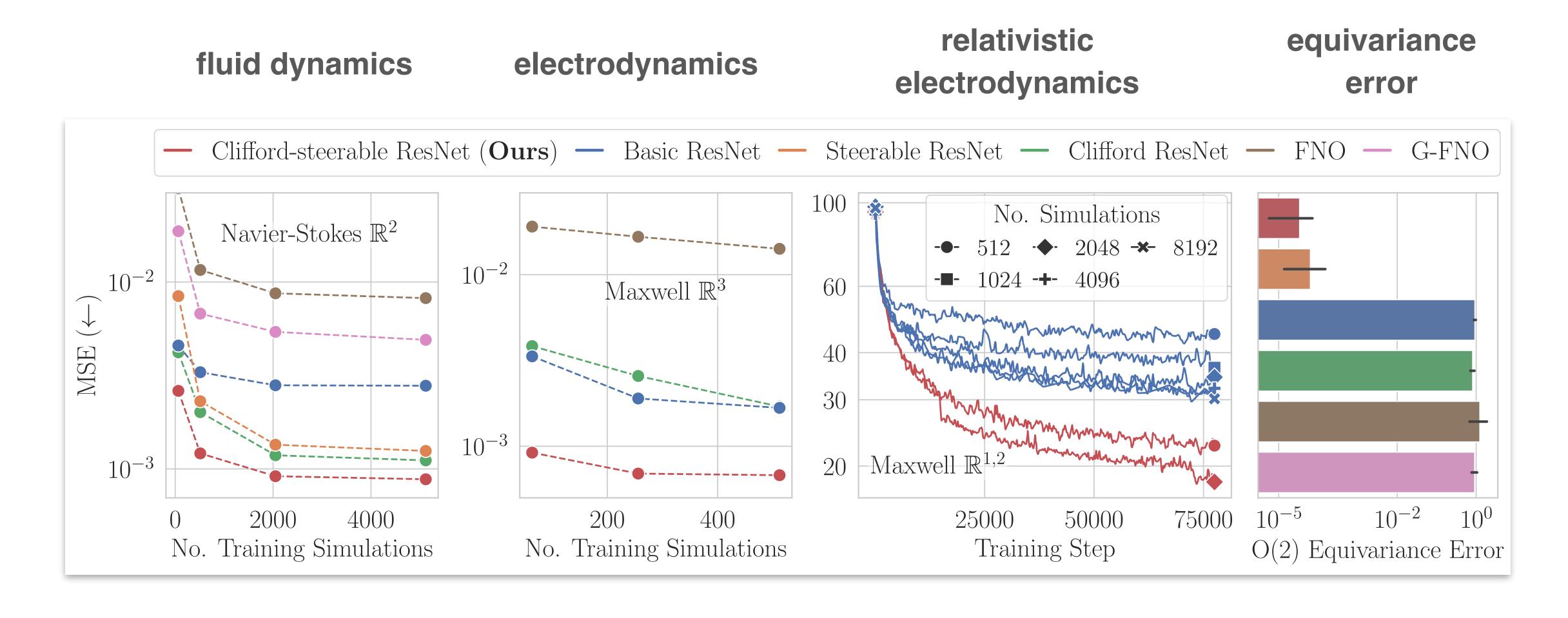
define kernel grid
 (e.g. 3x3)

- in every experiment, the task is to predict a future state given the history.
- → for classical physics, each time step is a separate image.
- → for relativistic physics, time is part of the grid (aka video).

example: fluid dynamics

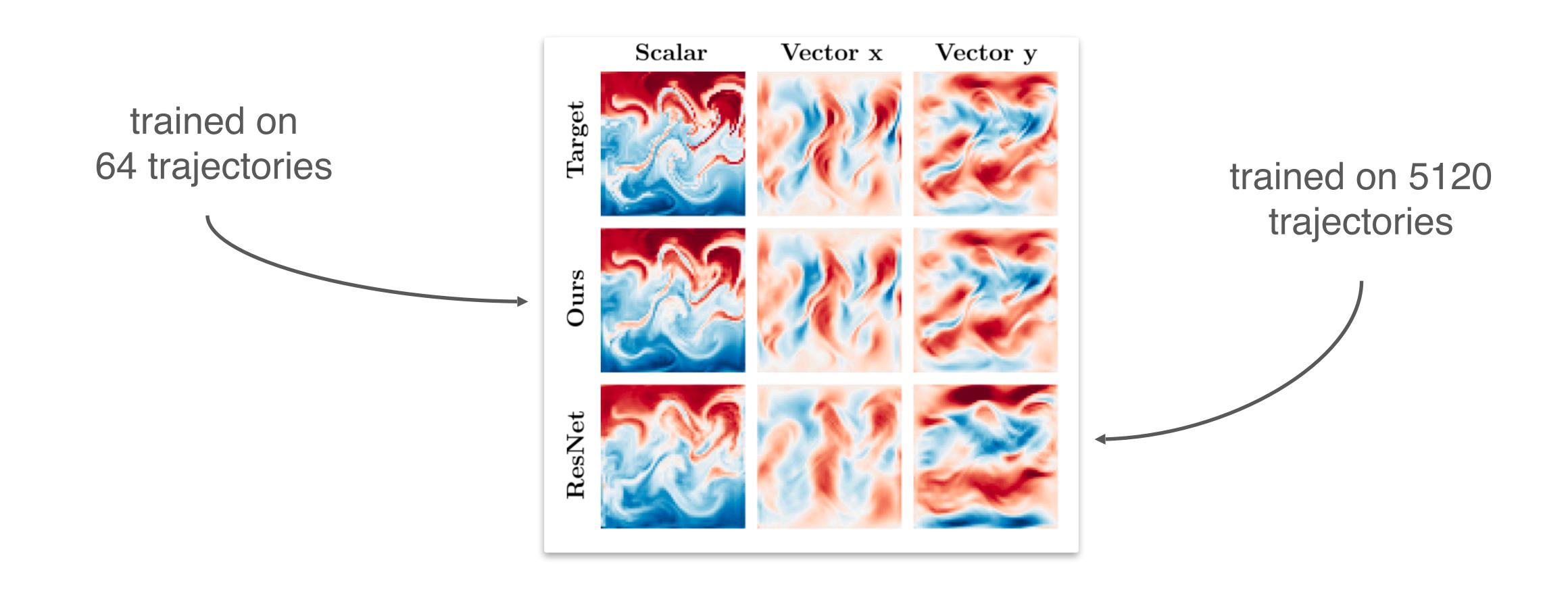


we compare the framework against multiple (equiv-t) convolutional operators:



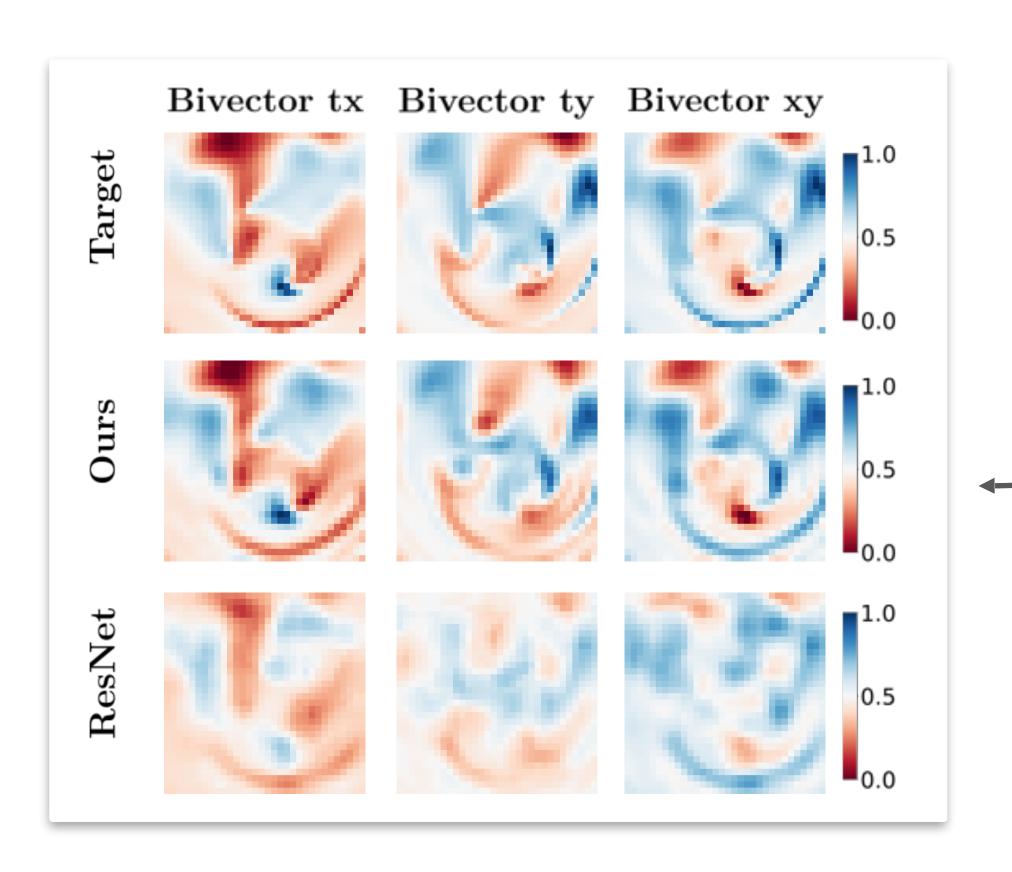
Fluid Mechanics

equivariance allows for out-of-distribution generalizability across isometries:



Electrodynamics

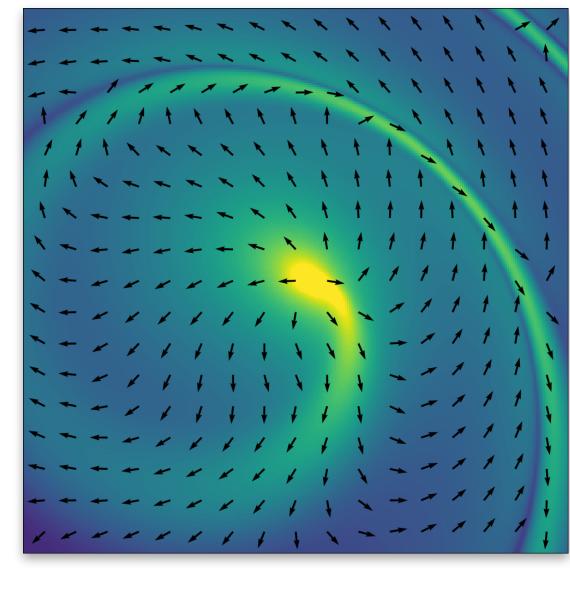
equivariance allows for out-of-distribution generalizability across isometries:



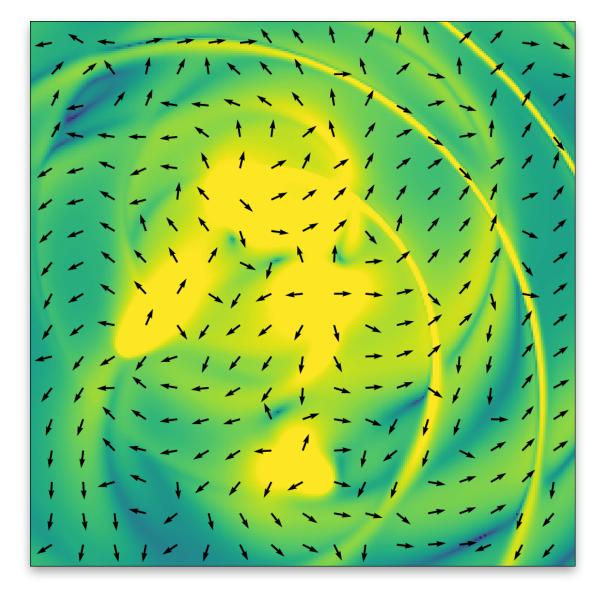
CSCNNs capture crisper details

Relativistic Electrodynamics

data: EM fields are emitted by point sources that move, orbit and oscillate at relativistic speeds.

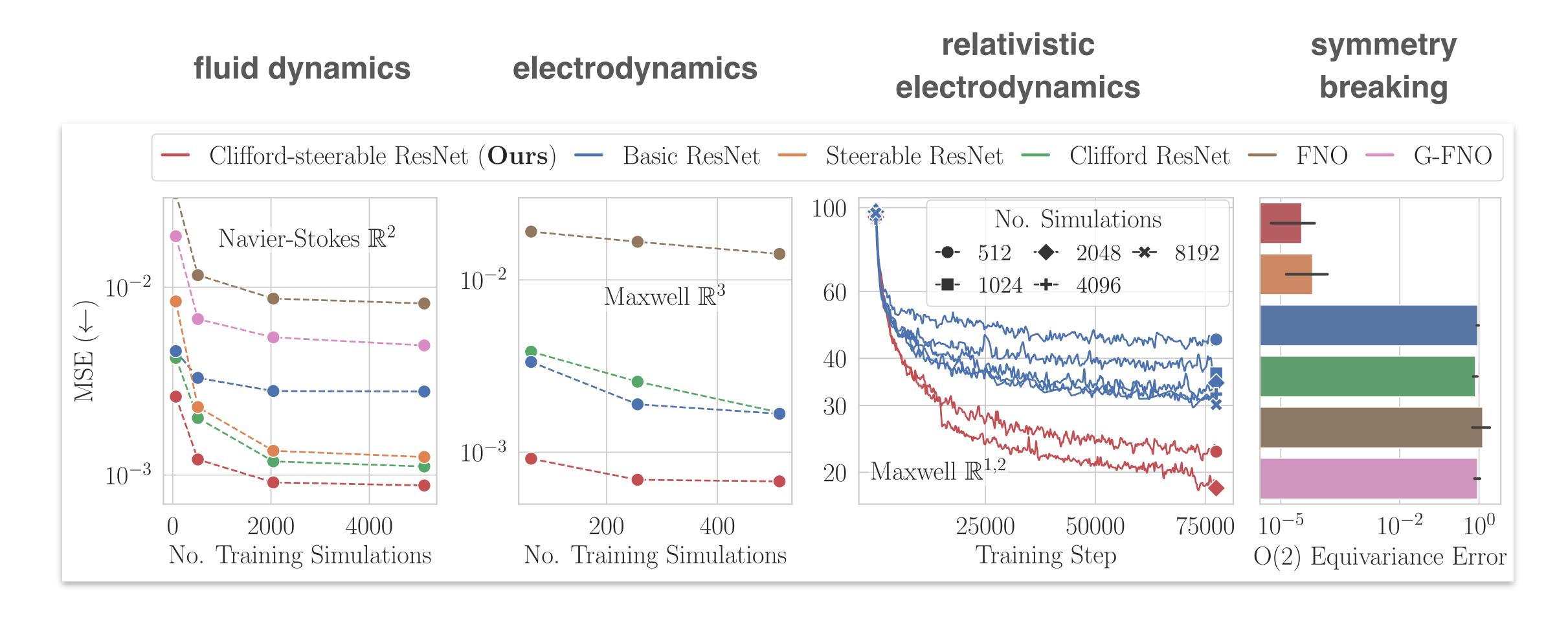


1 charge

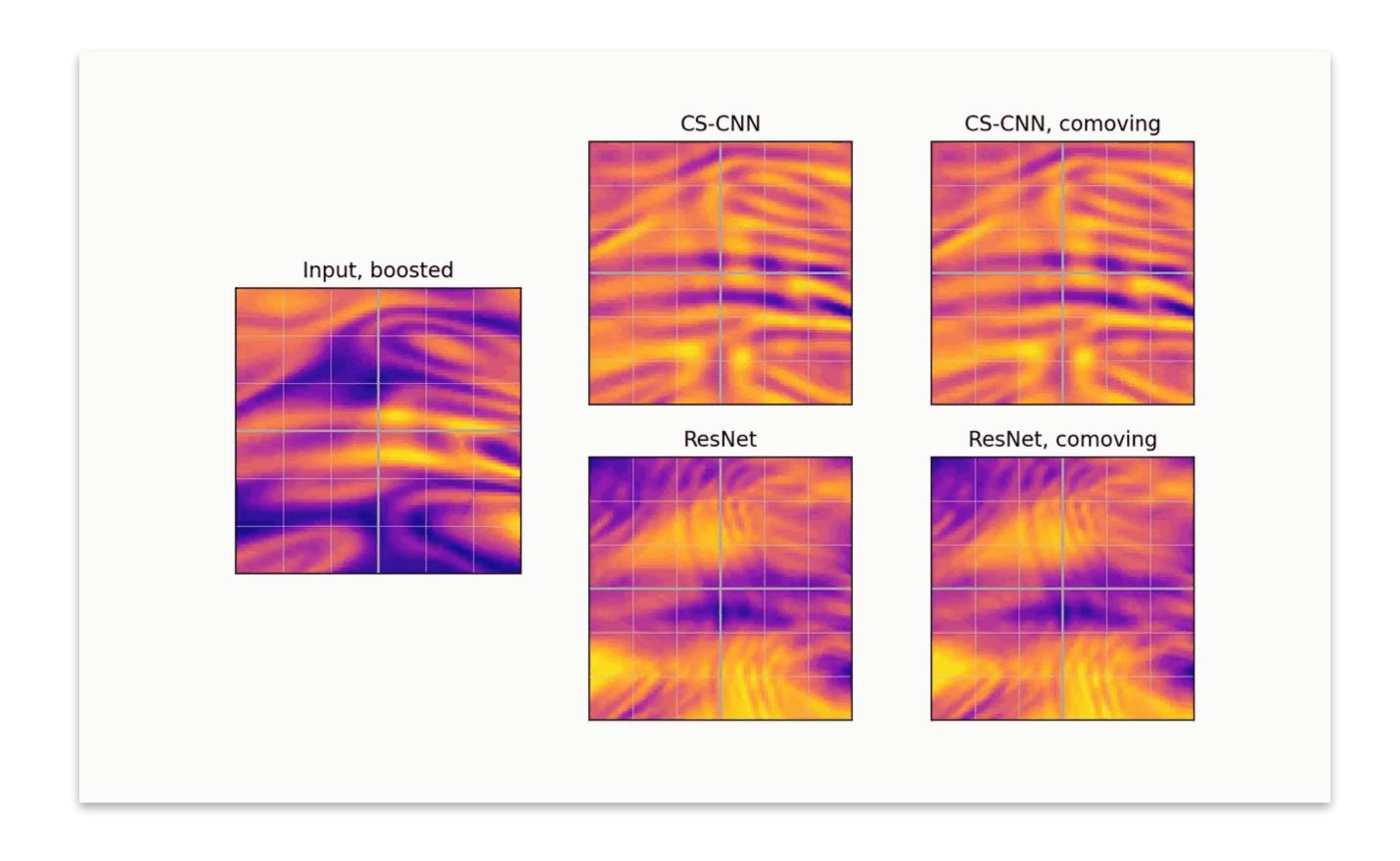


5 charges

we compare the framework against multiple (equiv-t) convolutional operators:



we are now able to implement Lorentz-equivariant CNNs, e.g. equivariant to Lorentz boosts:



Thanks

Please contact me at <u>david.ruhe@gmail.com</u>!