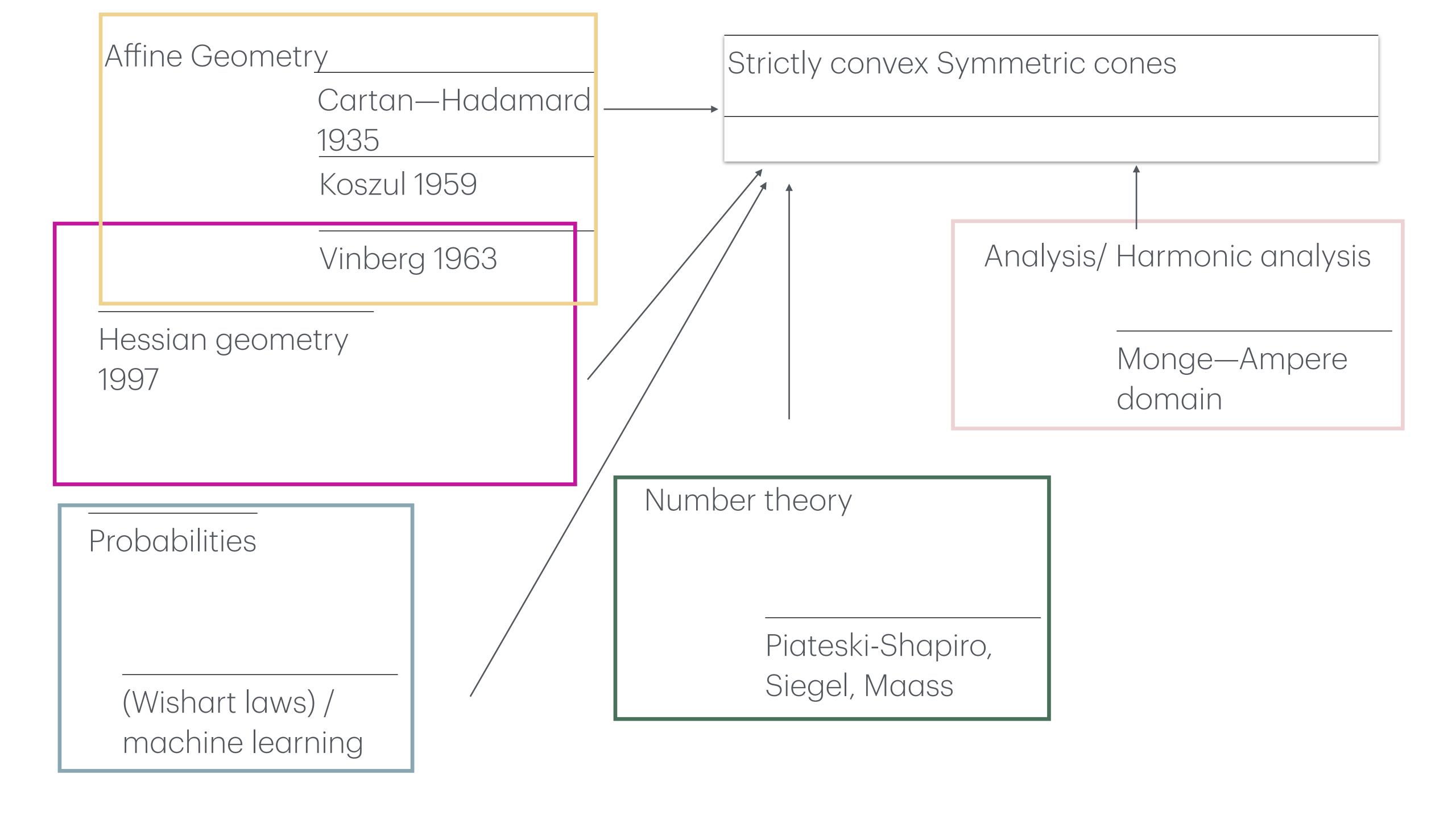


Koszul domains & Souriau's thermodynamics

Noemie Combe, Uniwersytet Warszawski

Part 1: Bounded convex domains.

State of the art



Information Geometry side

Density of a measure

* A measure P is <u>absolutely continuous</u> w.r.t. λ if for every measurable set A ,

$$\lambda(A) = 0 \Longrightarrow P(A) = 0.$$

It implies the existence of a measurable function ρ such that:

$$P(A) = \int_{A} \rho d\lambda, \quad \forall A \subset \mathcal{F}.$$

Here ρ is called the density of the measure P and $\rho=\frac{dP}{d\lambda}$ is called the Radon—Nikodym derivative.

The manifold of probability distributions

Let (Ω, \mathcal{F}) , where \mathcal{F} is a σ - algebra of Ω be a **measurable** space.

Consider a family of parametrised probability distributions on (Ω, \mathcal{F}) .

The set of all probability distributions over a finite set forms a manifold.

2D TFT

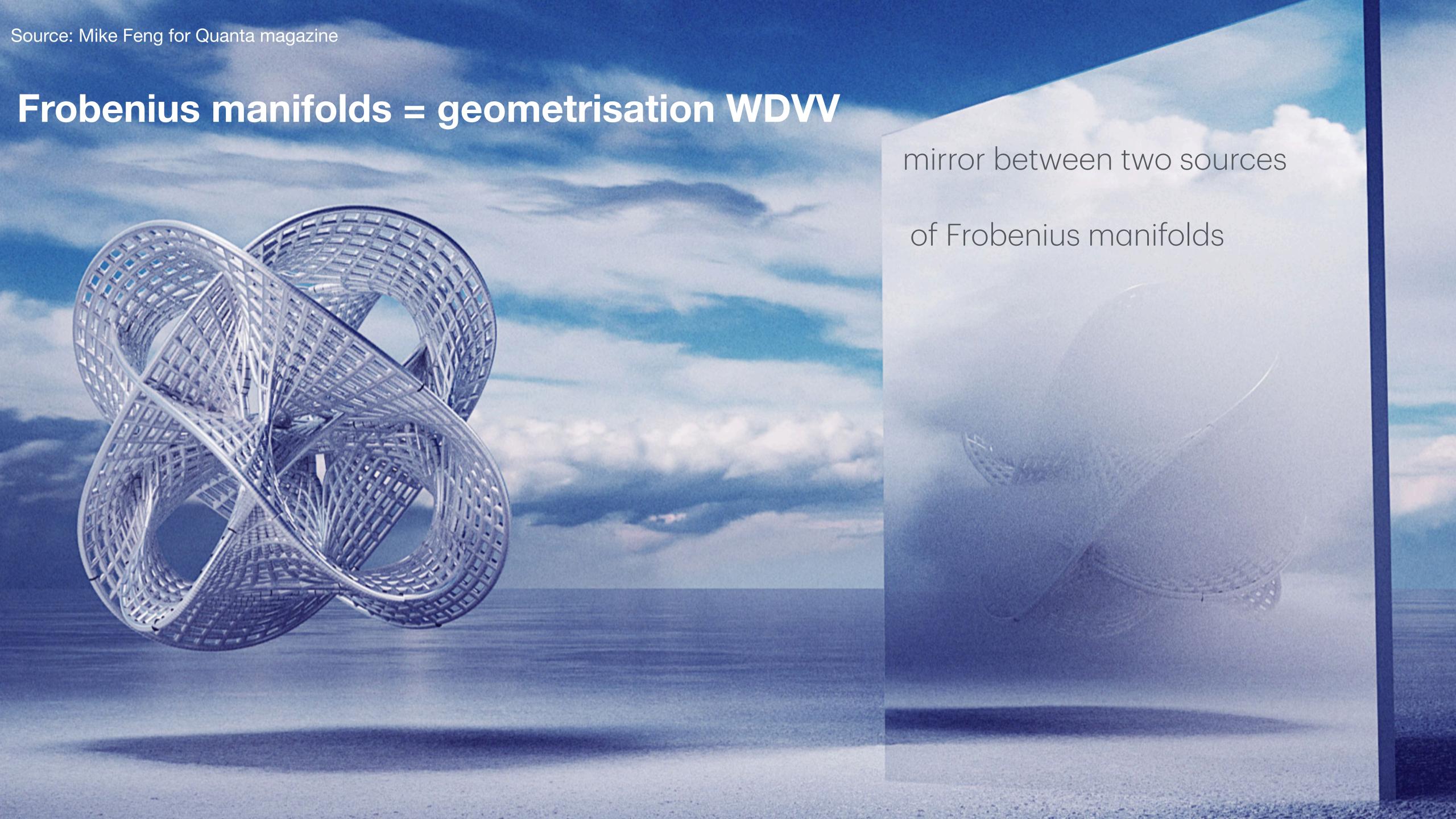
Combe – Manin 2020:

Flat statistical exponential manifolds are Frobenius (i.e. satisfy WDVV equation)

WDVV PDE-equation

$$\forall a, b, c, d: \sum_{ef} \Phi_{abe} g^{ef} \Phi_{fcd} = (-1)^{a(b+c)} \sum_{ef} \Phi_{bce} g^{ef} \Phi_{fad}$$

- Geometrisation: Frobenius manifold (Manin)
- Hydrodynamical type (Novikov, Dubrovin)



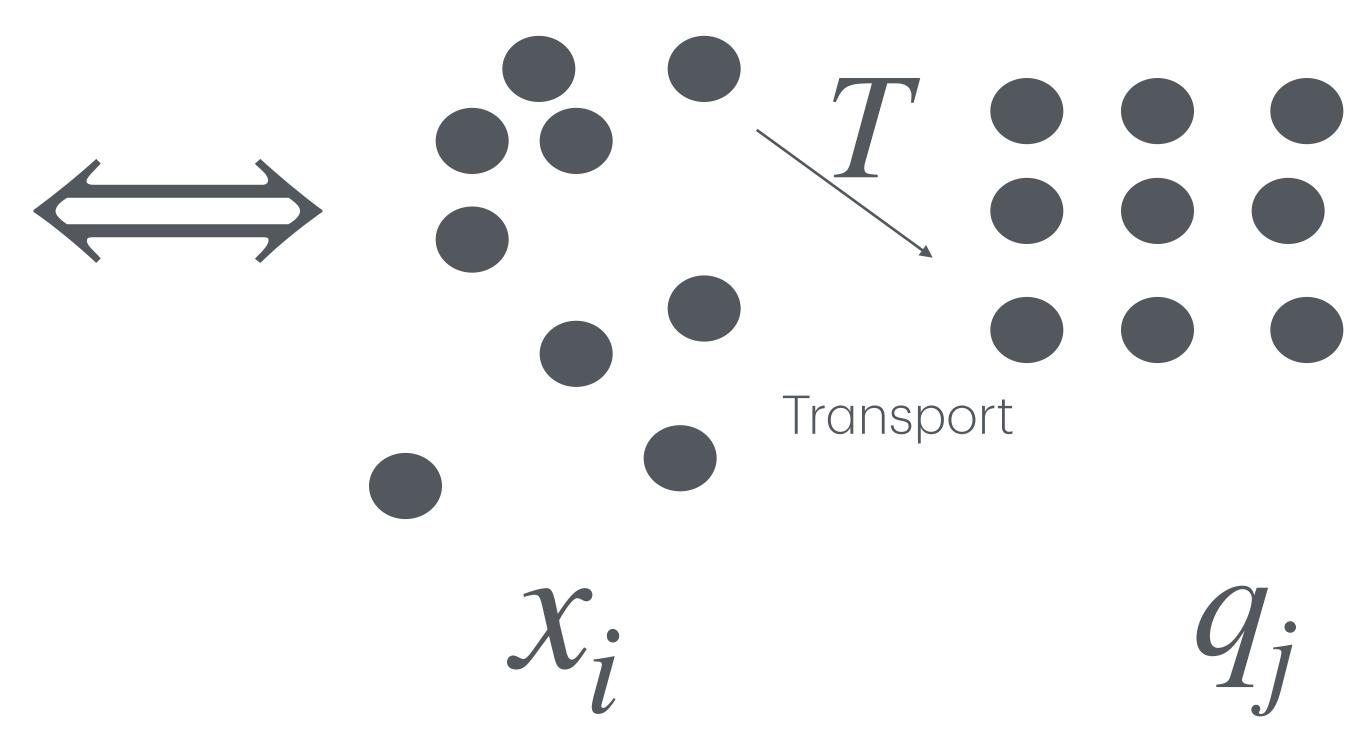
Some new statements (2024)

But first ...: the Monge problem

What is the most efficient way of transporting one distribution of mass into another?

$$\det(D^2\phi) = \frac{\rho}{\overline{\rho}}$$

Monge-Ampere equation



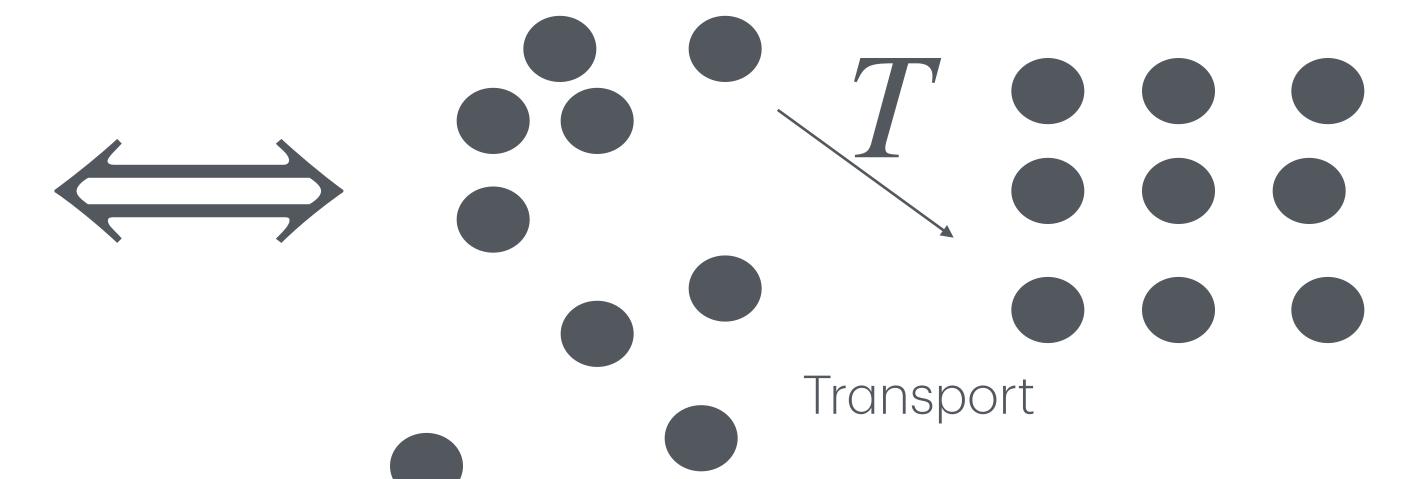
$$\inf_{i} \sum_{j} |x_i - q_j|^2$$

Monge problem

What is the most efficient way of transporting one distribution of mass into another?

$$\det(D^2\phi) = \frac{\rho}{\overline{\rho}}$$

Monge-Ampere equation



Mass conservation gives

$$\overline{\rho}d^3q = \rho(x)d^3x$$

With change of variable $q \rightarrow x$

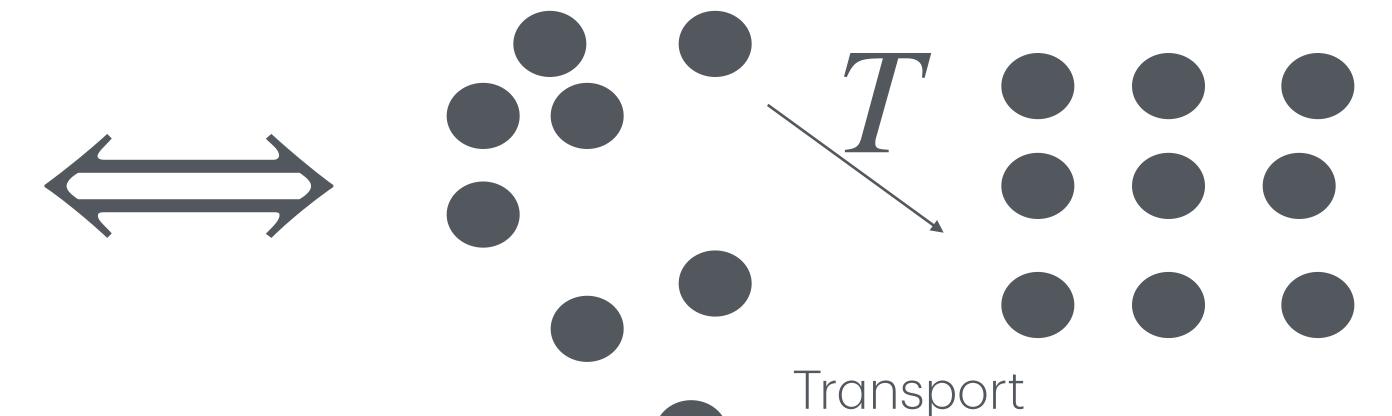
$$\inf \sum_{i} |x_i - q_j|^2$$

Monge problem

What is the most efficient way of transporting one distribution of mass into another?

$$\det(D^2\phi) = \frac{\rho}{\overline{\rho}}$$

Monge-Ampere equation



Mass conservation gives $\mathcal{X}_{z} \overset{\text{Brenier}}{=} 1991$

$$\overline{\rho}d^3q = \rho(x)d^3x$$

With change of variable $q \rightarrow x$

$$\inf_{i} \sum_{j=1}^{n} |x_i - q_j|^2$$

Results

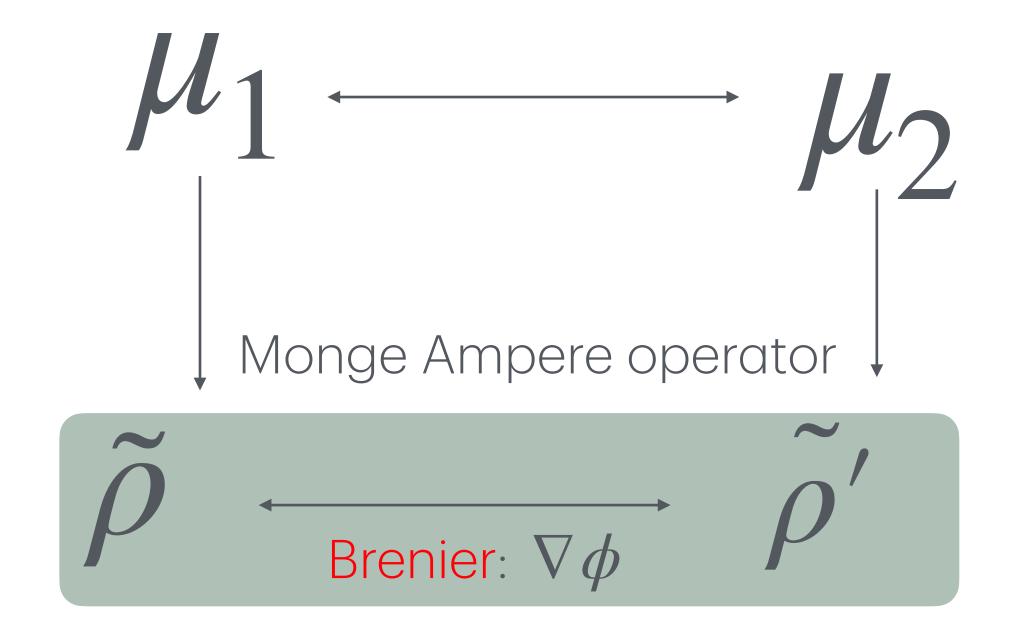
- COMBE 24: The cones ${\mathscr P}$ form a Monge—Ampere domain
- (i.e. everywhere locally there exists a unique function Φ on the domain \mathscr{P} s.t. $\det \operatorname{Hess}\Phi = f$, where f is a nonnegative real function on \mathscr{P} .

- COMBE 24: The cones ${\mathscr P}$ satisfy the axioms of a **(pre-)Frobenius manifold**

(a preliminary structure of an object in Mirror symmetry).

Monge problem

• There exists an adaptation of the Monge-Ampere problem for density of measures*.



*Measures a.c wrt Lebesgue measure

Classical results on KV domains

Koszul-Vinberg domains

representation

Nb	Symbol	$Irreducible\ symmetric\ cones$				
1.	$\mathscr{P}_n(\mathbb{R})$	Cone of $n \times n$ positive definite symmetric real matrices.				
2.	$\mathscr{P}_n(\mathbb{C})$	Cone of $n \times n$ positive definite self-adjoint complex matrices.				
3.	$\mathscr{P}_n(\mathbb{H})$	Cone of $n \times n$ positive definite self-adjoint quaternionic matrices.				
4.	$\mathscr{P}_3(\mathbb{O})$	Cone of 3×3 positive definite self-adjoint octavic matrices.				
5.	Λ_n	Lorentz cone given by $x_0 > \sqrt{\sum_{i=1}^n x_i^2}$ (aka spherical cone).				

One can add irreducible cones to obtain a new cone <== symmetric monoidal category

Properties of strictly convex symmetric cones

- #1 An affine structure (flat torsionless affine connection)
- #2 Characteristic KV function
- #3 Hessian structure
- #4 rank 3 symmetric tensor
- #5 Jordan algebra structure of the tangent space
- #6 KV algebra on the tangent space

#1 Affine structure

- ullet An affine structure on M is defined by a collection of coordinate charts $\{\,U_a,\phi_a\}$:
 - $\{U_a\}$ is an open cover and
 - $\phi_a:U_a\to\mathbb{R}^n$ is a local coordinate system, such that the coordinate change $\phi_b\circ\phi_a^{-1}$ is an affine transformation of $\phi_a(U_a\cap U_b)$ onto $\phi_b(U_a\cap U_b)$.
 - => affine manifolds/affinely flat manifolds.

 $^{\circ}$ This implies the existence of a flat affine connection ∇ on the tangent space, and reciprocally. Therefore, on M there exists a flat (affine) torsionless connection ∇ .

#2. KV - Characteristic function

Let $\mathcal{P} \subset V$ be a strictly convex homogeneous cone.

 $\forall x \in \mathcal{P}$ (vector) the KV-characteristic function is:

$$\chi(x) = \int_{\mathscr{P}^*} \exp\{-\langle x, a^* \rangle\} da^*$$

where da^* is a volume form invariant under translations in \mathscr{P}^* (dual cone).

#3. Hessian structure

Let $\Phi = \ln \chi$ be a potential function.

Then there exists a Hessian metric on the KV cone such that

Given affine coordinates (x_i) (i.e. s.t. $\nabla(dx_i) = 0$) the metric tensor is

$$g_{ij} = \partial_i \partial_j \Phi$$

where
$$\partial_i = \frac{\partial}{\partial x_i}$$

#4. Rank 3 symmetric tensor

Assuming that Φ is smooth, it is easy to define a rank 3 symmetric tensor by putting:

$$A_{ijk} = \partial_i \partial_j \partial_k \Phi.$$

#5. Jordan algebra.

Symmetries of the tangent space

For each irreducible cone \mathscr{P} we have the following structure on the tangent space at a point e.

Formally real simpl Jordan algebras

Jordan algebra of $n \times n$ self-adjoint real matrices.

Jordan algebra of $n \times n$ self-adjoint complex matrices.

Jordan algebra of $n \times n$ self-adjoint quaternionic matrices.

Jordan algebra of 3×3 self-adjoint octonionic matrices: Albert algebra.

Spin factor algebra $JSpin^+$ on the space $\mathbb{R}1 \oplus \mathbb{R}^n$ for $n \geq 2$.

#6. KV algebra

Symmetries of the tangent space

Let \mathcal{P} be a cone.

At any point of \mathscr{P} , the tangent sheaf $(T\mathscr{P}, \circ)$ forms a **pre-Lie algebra.** The multiplication is given in local affine coordinates as follows:

$$(X \circ Y)^{i} = -\sum_{j,k} \Gamma^{i}_{jk}(x) X^{j} Y^{k} \quad 1 \le i \le n,$$

where
$$\Gamma^i_{jk} = rac{1}{2} \sum_l \partial_{jkl} \Phi g^{li}$$
 .

Symmetric spaces (Lie algebras/ groups)

Symmetric space classification

Type	Property		
Compact	Non negative sectional curvature		
Non compact	Non positive sectional curvature		
Euclidean	Vanishing curvature		

Definition.

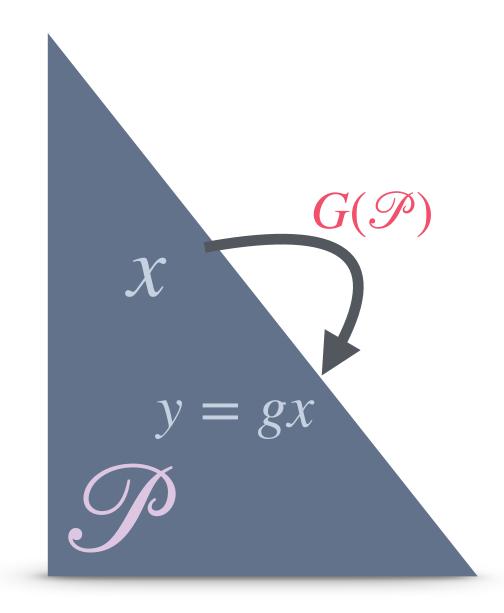
A Riemannian symmetric space M is diffeomorphic to a homogeneous space G/K, where: G is a connected Lie group with an involutive automorphism, whose fixed point set is essentially the compact subgroup $K \subset G$

Automorphism group

- ullet Let V be a real affine space.
- Let $\mathcal{P} \subset V$ be the convex cone.

$$G_e = K(\mathcal{P})$$
 - stability subgroup for some point $e \in \mathcal{P}$

 $T(\mathcal{P})$ - maximal connected triangular subgroup of $G(\mathcal{P})$



• Then, we have $G(\mathcal{P}) = K(\mathcal{P}) \cdot T(\mathcal{P}),$ where $K(\mathcal{P}) \cap T(\mathcal{P}) = e$ and the group T acts simply transitively.

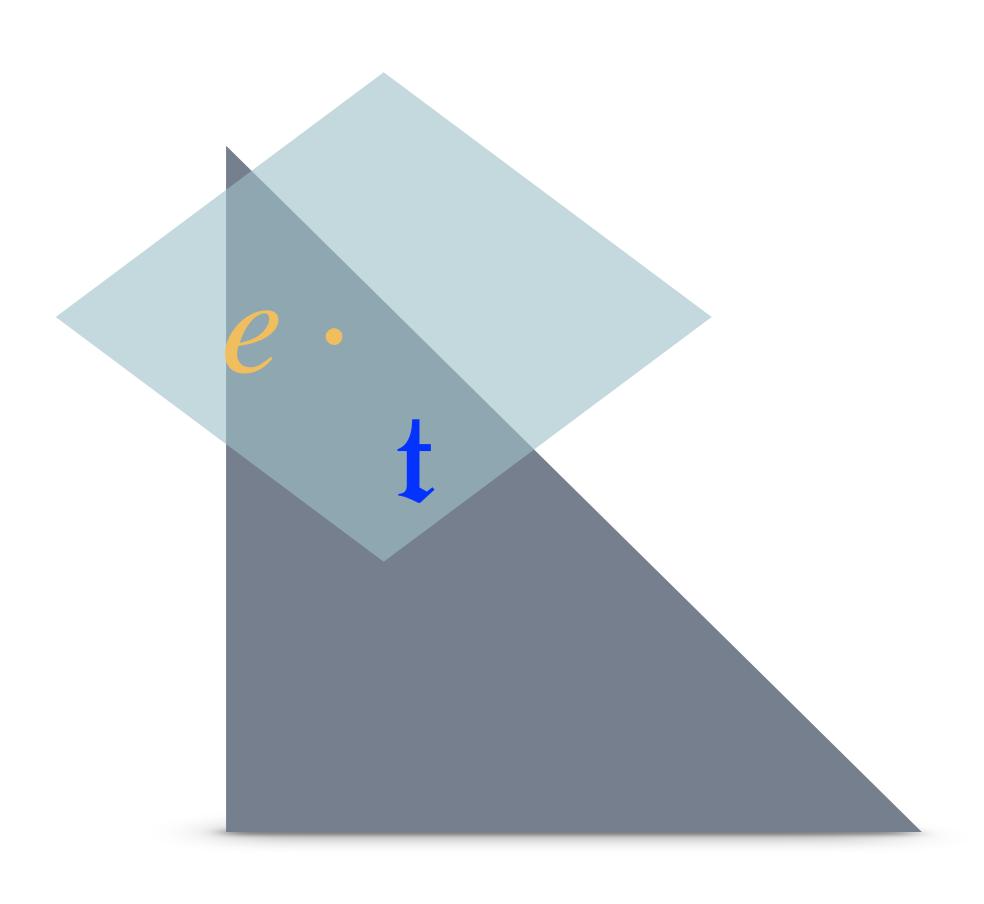
Lie algebra version

• We obtain $g = \Re \oplus t$, where:

- t identified with the tangent space of \mathscr{P} at e.
- \Re is the Lie algebra associated to $K(\mathcal{P})$

$$[t,t]\subset \mathfrak{K},$$

$$[\mathfrak{R}, t] \subset t$$
.



Classification

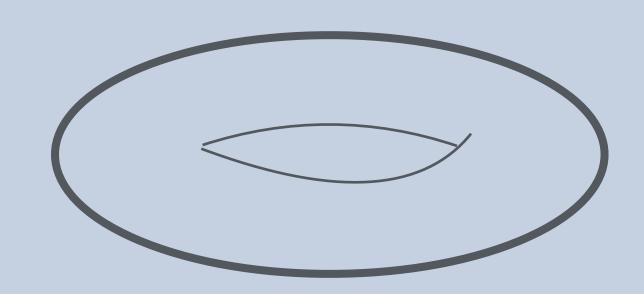
\mathcal{J}	Ω	\mathfrak{g}	Æ	$dim {\cal J}$	$\mathrm{rank}\; \mathcal{J}$	d
$Sym(n,\mathbb{R})$	$\mathscr{P}_n(\mathbb{R})$	$\mathfrak{sl}(n,\mathbb{R})\oplus\mathbb{R}$	$\mathfrak{o}(n)$	$\frac{1}{2}n(n+1)$	n	1
$Herm(n,\mathbb{C})$	$\mathscr{P}_n(\mathbb{C})$	$\mathfrak{sl}(n,\mathbb{C})\oplus \mathbb{R}$	$\mathfrak{su}(n)$	n^2	n	2
$Herm(n, \mathbb{H})$	$\mathscr{P}_n(\mathbb{H})$	$\mathfrak{sl}(m,\mathbb{H})\oplus \mathbb{R}$	$\mathfrak{su}(n,\mathbb{H})$	n(2n-1)	n	
$\mathbb{R} \times \mathbb{R}^{n-1}$	Λ_n	$\mathfrak{o}(1,n-1)\oplus \mathbb{R}$	$\mathfrak{o}(n-1)$	n	2	n-2
$Herm(3,\mathbb{O})$	$\mathscr{P}_3(\mathbb{O})$	$\mathfrak{e}_{(-26)}\oplus \mathbb{R}$	\mathfrak{f}_4	27	3	8

Some Lie groups

```
SL_{n}(\mathbb{R}) = \{x \in GL_{n}(\mathbb{R}) : \det x = 1\}
SL_{n}(\mathbb{C}) = \{x \in GL_{n}(\mathbb{C}) : \det x = 1\}
O(n) = \{x \in GL_{n}(\mathbb{R}) : {}^{t}x \, x = I_{n}\}
SO(n) = O(n) \cap SL_{n}(\mathbb{R})
O(p,q) = \{x \in GL_{p+q}(\mathbb{R}) : {}^{t}x \, I_{p,q} \, x = I_{p,q}\}
SO(p,q) = O(p,q) \cap SL_{p+q}(\mathbb{R})
U(n) = \{x \in GL_{n}(\mathbb{C}) : x^{*}x = I_{n}\}
SU(n) = U(n) \cap SL_{n}(\mathbb{C})
```

The KV cones are non-compact symmetric domains.

— The sectional curvature is 0 on an algebraic torus



— The sectional curvature is <0 otherwise (=Cartan—Hadamard space)

Koszul domains & Souriau's thermodynamics

Part 2

Souriau model vs Probability theory

Souriau's model

(Applications of the KV cone)

Lie group G acts on M

Statistical mechanics - Souriau's model consists in considering $\bf Lie$ $\bf groups$ $\bf thermodynamics$ of dynamical systems. The (maximum entropy) $\bf G$ $\bf the consists$ $\bf the$

- ° eta is a (geometric) <u>temperature</u> element of a Lie algebra ${\mathfrak g}$ of the group.
- $^{\circ}~~Q$ is a (geometric) <u>heat</u> element of a dual Lie algebra \mathfrak{g}^* of the group.



Some relations

.
$$I(\beta)=-\frac{\partial^2\Phi}{\partial\beta^2}$$
 where $\Phi(\beta)=-\int_M \exp{-\langle\beta,U(\zeta)\rangle}d\lambda$ (KV function)

$$S(Q) = \langle \beta, Q \rangle - \Phi(\beta) \text{ where } Q = \frac{\partial \Phi(\beta)}{\partial \beta} \in \mathfrak{g}^* \text{ and } \beta = \frac{\partial S(Q)}{\partial Q} \in \mathfrak{g}$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow$$

$$Souriau \ \text{Entropy} \qquad \qquad \text{Heat} \qquad \qquad 1/ \text{ temperature}$$

$$dS = \beta dQ, \quad \beta = \frac{1}{T}$$

Legendre transformation
$$Q = \frac{\partial \Phi(\beta)}{\partial \beta} \in \mathfrak{g}^* \longleftrightarrow \beta = \frac{\partial S(Q)}{\partial Q} \in \mathfrak{g}$$

Adjoint representation of Lie groups

Recollections

• G - Lie group.

. Let
$$\Psi:G\to Aut(G)$$

$$Ad_g:(d\Psi_g)_e:\mathfrak{g}\to\mathfrak{g}$$

$$g\mapsto \Psi_g(h)=ghg^{-1}$$

$$X\mapsto Ad_g(X)=gXg^{-1}$$

$$ad = T_eAd : T_eG \rightarrow End(T_eG)$$

$$X, Y \in T_eG \mapsto ad_X(Y) = [X, Y]$$

Coadjoint representation

Dual of the adjoint representation.

$$\forall g \in G, Y \in \mathfrak{g}, F \in \mathfrak{g}^* \Longrightarrow$$

$$\langle Ad_g^*F, Y \rangle = \langle F, Ad_{g^{-1}}Y \rangle$$

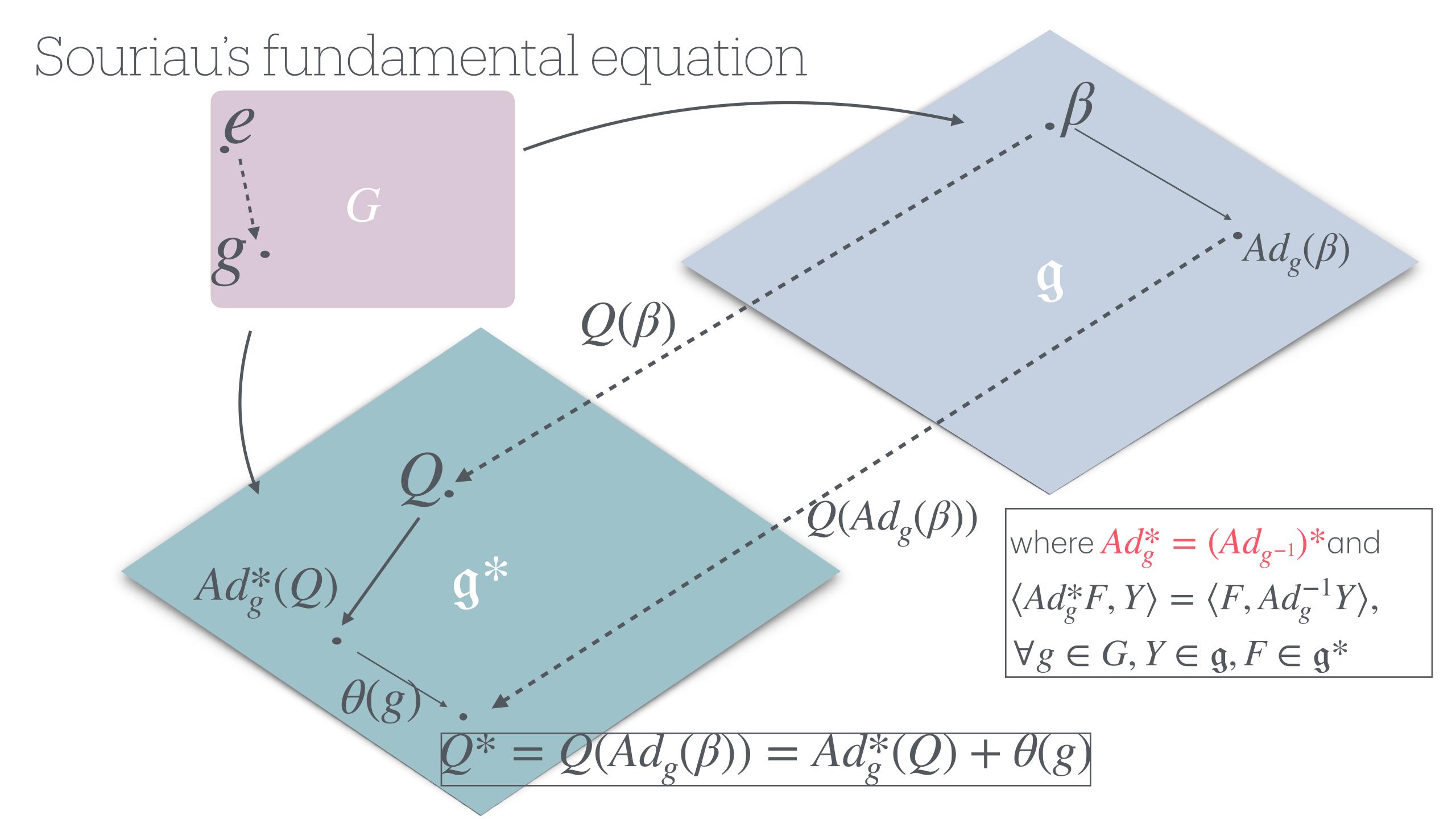
Coadjoint orbits

Given $F \in \mathfrak{g}^*$, a coadjoint orbit is given by $O_F = \{Ad_g^*F, \ g \in G\} \subset \mathfrak{g}^*$.

REMARK: Coadjoint orbits carry a symplectic structure

Kostant—Kirillov—Souriau

A symplectic maniflold
(homogeneous under the action of a Lie group)
is isomorphic (up to covering) to a coadjoint orbit, possibly affine.



Information geometry / Gibbs density

From KV cone to information geometry.

The (Gibbs) density is given by:

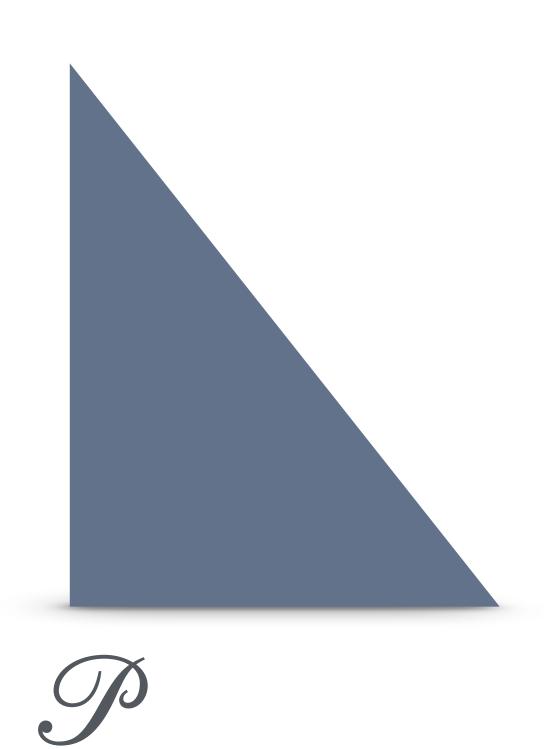
$$P(\zeta) = \frac{\exp\langle -U(\zeta), \beta \rangle}{\int_{M} \exp\langle -U(\zeta), \beta \rangle d\lambda_{\omega}}$$

Where:

$$U:M\to \mathfrak{g}^*$$

$$Q = \frac{\partial \Phi(\beta)}{\partial \beta} = \int_{M} U(\zeta)p(\zeta)d\lambda_{\omega}$$

$$\Phi = -\log \int_{M} \exp{-\langle U(\zeta), \beta \rangle} d\lambda \quad \leftarrow \quad \text{KV potential !}$$



Coadjoint representation

Let
$$S: \mathfrak{g}^* \to \mathbb{R}$$
 $Q \mapsto S(Q)$.

Souriau entropy S(Q) has a property of invariance:

$$S(Q(Ad_g(\beta)))) = S(Q),$$

where

$$Q(Ad_g(\beta)) = Ad_g^*(Q) + \theta(g) \qquad \longleftarrow \qquad \text{Cocyle}$$

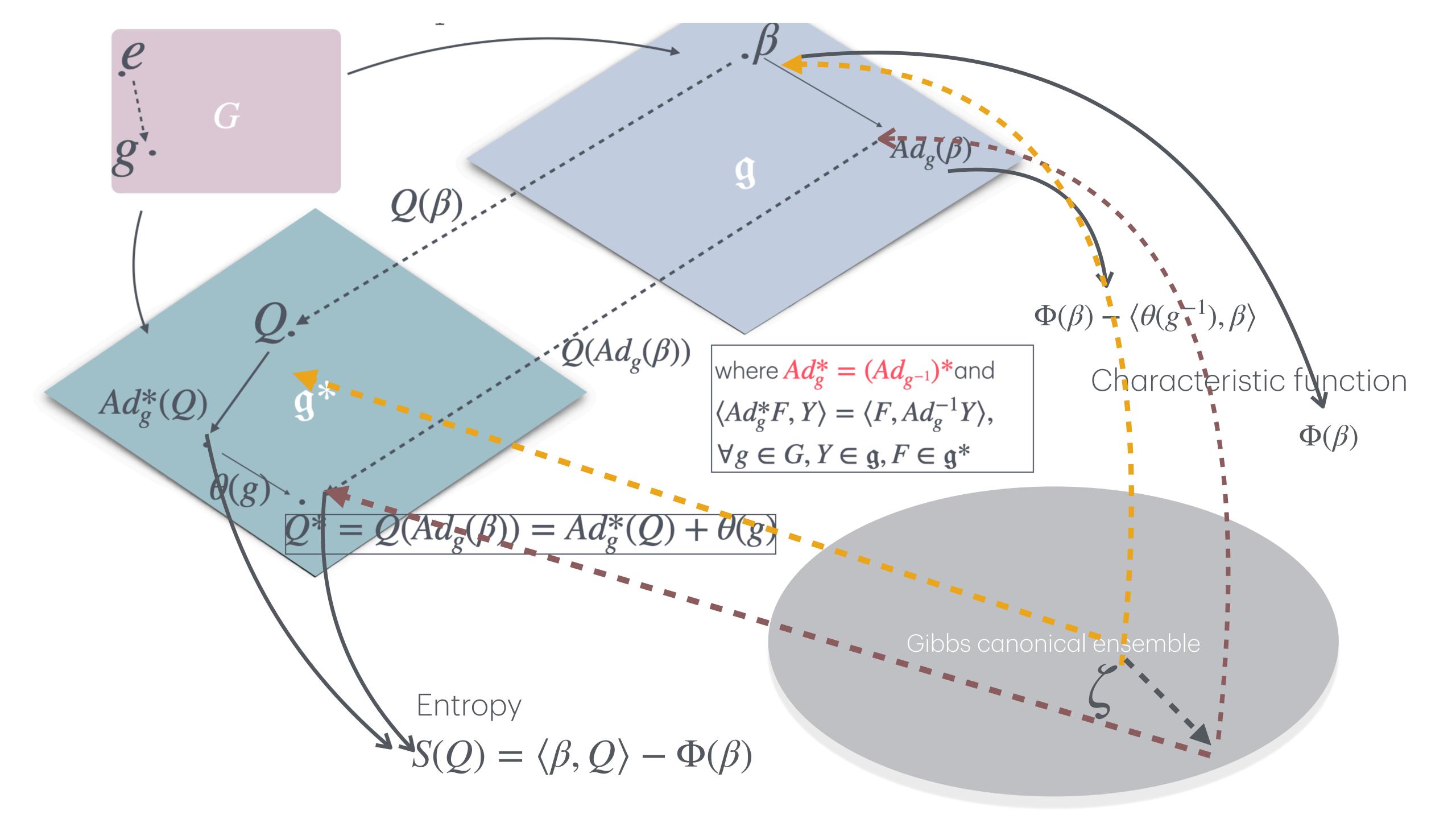
Entropy

• H - hamiltonian $\forall H:\mathfrak{g}^* o\mathbb{R}:S:\mathfrak{g}^* o\mathbb{R}$ - Souriau entropy. Then, $\{S,H\}(Q)=0$

Souriau equation =>
$$ad_{\frac{\partial S}{\partial Q}}^*Q + \Theta\left(\frac{\partial S}{\partial Q}\right) = 0$$
 Constant structures $\{S, H\}(Q) = \left\langle Q, \left[\frac{\partial S}{\partial Q}, \frac{\partial H}{\partial Q}\right] \right\rangle = -C_{ij}^k Q_k \frac{\partial S}{\partial Q_i} \frac{\partial H}{\partial Q_j}$

By putting $\tilde{\Theta}(X,Y) = \langle \Theta(X),Y \rangle$ where $\Theta(\beta) = \frac{\partial \Phi(\beta)}{\partial \beta}$ we get:

$$\{S, H\}_{\tilde{\Theta}} = \left\langle Q, \left(\frac{\partial S}{\partial Q}, \frac{\partial H}{\partial Q}\right) \right\rangle + \Theta\left(\frac{\partial S}{\partial Q}, \frac{\partial H}{\partial Q}\right) = 0$$



Landau—Ginzburg theory & Souriau's thermodynamics

Part 3

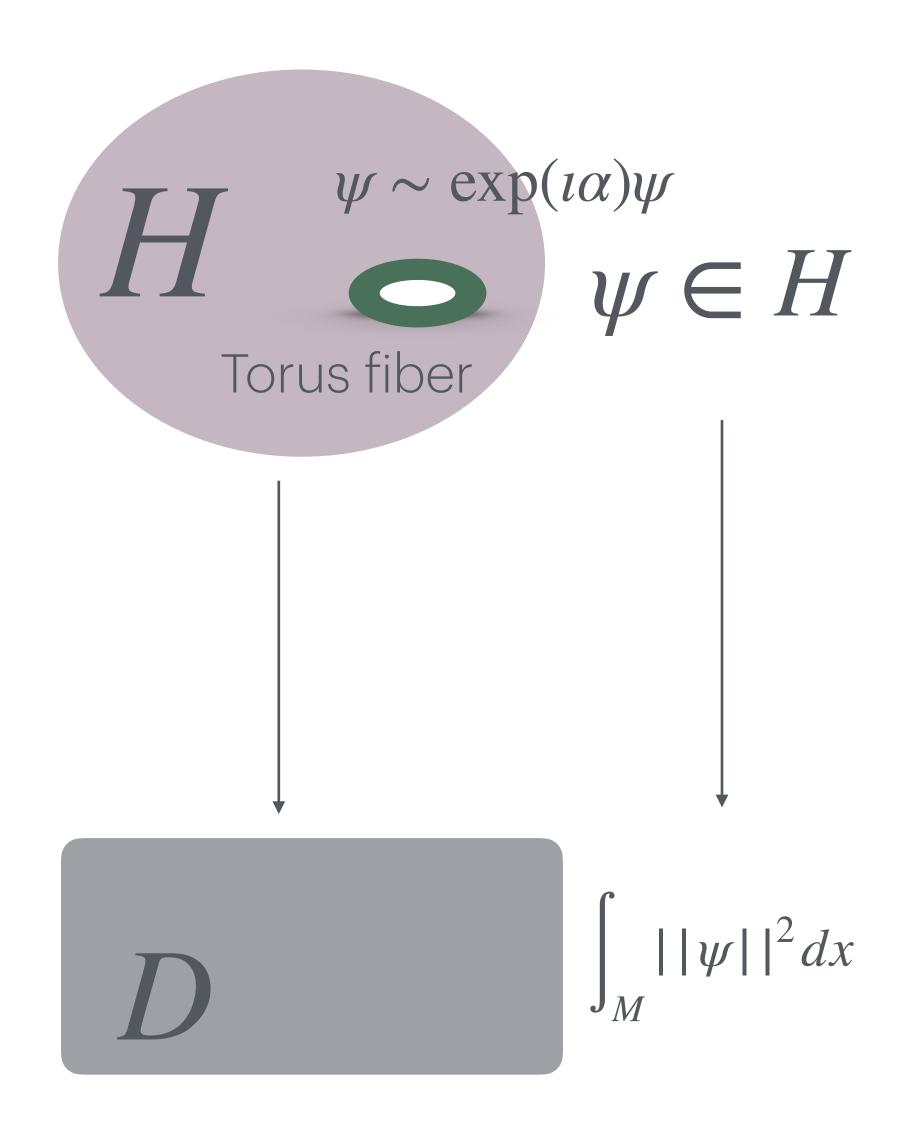
Proba of finding Cooper pairs

Cooper pairs

LG theory à la Koopman-von Neuman

• Hilbert space H parameterised by a real domain D (space of density of probabilities).

- $\pi:H\to D$
- $\psi \in H$ is a wave function (complex valued L^2 integrable function.



LG free energy + thermo-?

• LG free energy can be represented in a symplectic manifold with the phase space content. This is achieved via a thermo group, Lie group structure associated with the thermofield dynamics and C* algebras.

• The Euclidean group is a subgroup of the Galilei group.

Euclidean Lie algebra on H

Euclidean Lie group = semi-direct product of the group of rotations and group of translations, preserving the norm.

Eulcidean Lie algebra: Generators of rotations $l_{i'}$ generators of space translations p_j Relations:

$$[l_i, l_j] = \iota \hbar \delta_{ijk} l_k$$

$$[l_i, p_j] = i\hbar \delta_{ijk} p_k$$

Prop. The vector space of self-adjoint linear operators acting on the Hilbert space H forms an **Eulcidean-Lie algebra**.

LG-Free energy

$$F_{s}(r) = F_{0} - \alpha |\psi|^{2} + \frac{\beta}{2} |\psi|^{4} + \frac{1}{2m} |-i\hbar\nabla - q\frac{A}{c}\psi|^{2} - \int_{0}^{B_{a}} M \cdot dB_{a}$$

- α, β, m positive constants;
- F_0 I free energy density of the normal state;
- $-\alpha |\psi|^2 + \frac{\beta}{2} |\psi|^4$ is a Landau form for the expansion of free energy vanishing at a second-order phase transition;
- the term in $|\nabla|\psi|^2$ represents an increase in energy caused by a spatial variation of the order parameter.
- the term $\int_0^{B_a} M \cdot dB_a$ represents the increase in the superconducting free energy.

LGequation

$$\left[\frac{1}{2m}(-i\hbar\nabla - q\frac{A}{c})^2 - \alpha\psi + \beta|\psi|^2\right]\psi = 0$$

Prop. Stationary solutions to the LG equation are invariant under the symmetry group of Galilei.

Theorem#

- The space of density of probabilities D
 is a Monge—Ampere domain i.e.
 everywhere locally the Elliptic Monge—
 Ampere operator (EMA) is satisfied:
- e.w locally there exists a unique function Φ such that $\det \operatorname{Hess}\Phi = f$, where f is positive or null real valued function.

Ex: The KV cone is a EMA domain

State space for n-quantum system

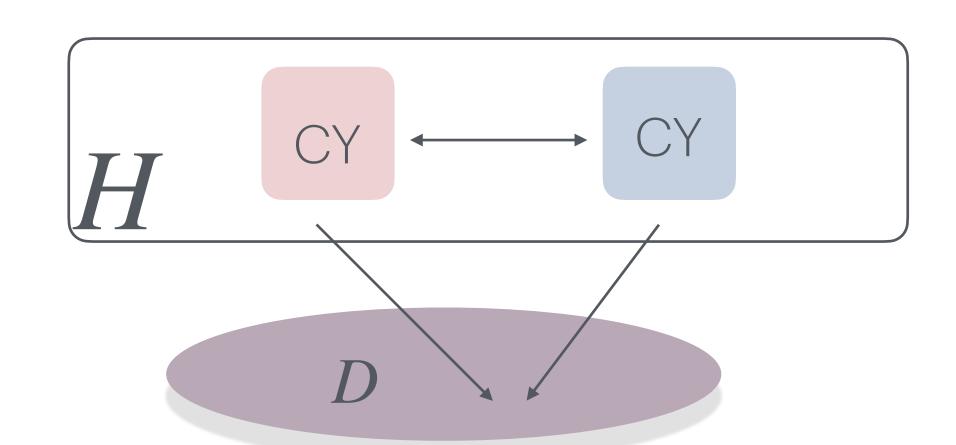
- One can represent the state space of an n-dimension quantum system by the set of $n \times n$ positive (semi)definite **complex** matrices of trace 1. These matrices are known as density matrices.
- Relaxing the condition of Tr=1 gives the complex KV cone.

Theorem

• There exists an equivalence of categories of the complex KV cones and the von Neumann algebras.

Last Theorem#

• LG theory plays an important role in Mirror symmetry.



Theoreme Combe 24.

There exists a Monge—Ampere domain parametrising a pair of mirror dual

Calabi—Yau manifolds . The Monge—Ampere domain is <u>a space of densities of probabilities</u>. The construction forms a torus fibration.

As an example one can take the real KV cone. It parametrises a complex Torus

(simplest type of Calabi Yau manifold)

THANKS