
Noemie Combe, Uniwersytet Warszawski 

Koszul domains & Souriau’s 
thermodynamics



Noemie Combe, 3 September 2024, University of Warsaw

Part 1: Bounded convex 
domains.



State of the art



Strictly convex Symmetric cones

Cartan—Hadamard 
1935
Koszul 1959

Vinberg 1963

Hessian geometry 
1997

(Wishart laws) /
machine learning

Piateski-Shapiro, 
Siegel, Maass

Number theory
Probabilities

Affine Geometry

Analysis/ Harmonic analysis

Monge—Ampere 
domain



Information Geometry side



Density of a measure 

❖ A measure   is absolutely continuous w.r.t.  if for every measurable set , 	 	 	 	
	 	 	 	 	 	 	   . 


 It implies the existence of a measurable function   such that:





Here  is called the density of the measure  and   is called the Radon—

Nikodym derivative.

P λ A
λ(A) = 0 ⟹ P(A) = 0

ρ

P(A) = ∫A
ρdλ, ∀A ⊂ ℱ .

ρ P ρ =
dP
dλ



The manifold of 
probability distributions

Let ( , ), where   is a - algebra of  be a measurable 
space.  

Consider a family of parametrised probability 
distributions on ( , ). 

The set of all probability distributions over a finite set 
forms a manifold. 

Ω ℱ ℱ σ Ω

Ω ℱ



2D TFT
• Combe—Manin 2020:  

Flat statistical exponential 
manifolds are Frobenius 
(i.e. satisfy WDVV equation). 

• WDVV PDE-equation

∀a, b, c, d : ∑
ef

ΦabegefΦfcd =(−1)a(b+c) ∑
ef

ΦbcegefΦfad

• Geometrisation: Frobenius manifold (Manin) 

• Hydrodynamical type (Novikov, Dubrovin)



Frobenius manifolds = geometrisation WDVV  

Source: Mike Feng for Quanta magazine 

mirror between two sources


 of Frobenius manifolds



Some new statements (2024)



But first … : the Monge problem
What is the most efficient way of transporting one distribution of mass into another?

Monge-Ampere equation

det(D2ϕ) =
ρ
ρ ⟺

xi qj

inf∑
i

|xi − qj |
2

T

Transport



Monge problem
What is the most efficient way of transporting one distribution of mass into another?

Monge-Ampere equation

det(D2ϕ) =
ρ
ρ ⟺

xi qj

inf∑
i

|xi − qj |
2

T

Transport

ρd3q = ρ(x)d3x
With change of 
variable q → x

Mass conservation gives
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Brenier 1991
T = ∇xϕ(x)



• COMBE 24: The cones  form a Monge—Ampere domain 


• (i.e. everywhere locally there exists a unique function  on the domain 
 s.t. where  is a nonnegative real function on . 


• COMBE 24: The cones  satisfy the axioms of a (pre-)Frobenius 
manifold 


(a preliminary structure of an object in Mirror symmetry). 

𝒫

Φ
𝒫 det HessΦ = f, f 𝒫

𝒫

Results



Monge problem

• There exists an adaptation of the Monge-Ampere problem for 
density of measures*. 

ρ̃ ρ̃′￼

*Measures a.c wrt Lebesgue measure

Monge Ampere operator

Brenier: ∇ϕ

μ1 μ2



Classical results on KV domains



One can add irreducible cones to obtain a new cone   <== symmetric monoidal category

Koszul—Vinberg domains In terms of matrix 


representation



• #1 An affine structure (flat torsionless affine connection)


• #2 Characteristic KV function


• #3 Hessian structure


• #4 rank 3 symmetric tensor 


• #5 Jordan algebra structure of the tangent space


• #6 KV algebra on the tangent space 

Properties of strictly convex symmetric cones



#1 Affine structure

An affine structure on  is defined by a collection of coordinate charts :


•   is an open cover and


•   is a local coordinate system, such that the coordinate change  is an 

affine transformation of  onto . 


        affine manifolds/affinely flat manifolds.  


This implies the existence of a flat affine connection  on the tangent space, and reciprocally. 
Therefore, on  there exists a  flat (affine) torsionless connection . 

M {Ua, ϕa}

{Ua}

ϕa : Ua → ℝn ϕb ∘ ϕ−1
a

ϕa(Ua ∩ Ub) ϕb(Ua ∩ Ub)

⟹

∇
M ∇



Let  be a strictly convex homogeneous cone. 


 (vector) the KV-characteristic function is:


 


where is a volume form invariant under translations in  (dual cone).

𝒫 ⊂ V

∀x ∈ 𝒫

χ(x) = ∫𝒫*
exp{ − ⟨x, a*⟩}da*

da* 𝒫*

#2. KV - Characteristic function



Let  be a potential function. 


Then there exists a Hessian metric on the KV cone such that


Given affine coordinates  (i.e. s.t. ) the metric tensor is


 ,


where .

Φ = ln χ

(xi) ∇(dxi) = 0

gij = ∂i∂jΦ

∂i =
∂

∂xi

#3. Hessian structure



Assuming that  is smooth, it is easy to define a rank 3 symmetric tensor 
by putting: 


.

Φ

Aijk = ∂i∂j∂kΦ

#4. Rank 3 symmetric tensor



Symmetries of the tangent space

For each irreducible 
cone   we have the 
following structure on 
the tangent space at a 
point .

𝒫

e

#5. Jordan algebra.



Symmetries of the tangent space 

Let  be a cone. 


At any point of , the tangent sheaf  forms a  pre-Lie algebra. The multiplication is given in 
local affine coordinates as follows: 





where  .


𝒫

𝒫 (T𝒫, ∘ )

(X ∘ Y)i = − ∑
j,k

Γi
jk(x)XjYk 1 ≤ i ≤ n,

Γi
jk =

1
2 ∑

l

∂jklΦgli

#6. KV algebra 



Symmetric spaces 

(Lie algebras/ groups)



Type Property

Compact Non negative sectional 
curvature

Non compact Non positive sectional 
curvature

Euclidean Vanishing curvature

Symmetric space classification
Definition. 


A Riemannian symmetric space  is 
diffeomorphic to a homogeneous space 

, where:  is a connected Lie group 
with an involutive automorphism, whose 
fixed point set is essentially the compact 
subgroup  

M

G/K G

K ⊂ G



•     -  group of all automorphisms;


•    - stability subgroup for some 
point  


•     - maximal connected triangular 
subgroup of 

G(𝒫)

Ge = K(𝒫)
e ∈ 𝒫

T(𝒫)
G(𝒫)

• Let  be a real affine space. 


• Let  be the convex cone. 

V

𝒫 ⊂ V

Then, we have 

where  
and the group   acts 
simply transitively.

G(𝒫) = K(𝒫) ⋅ T(𝒫),
K(𝒫) ∩ T(𝒫) = e

T⟹

𝒫

G(𝒫)
x
y = gx

Automorphism group 



•     identified with the tangent space of 
 at . 


•  is the Lie algebra associated to 






𝔱
𝒫 e

𝔎
K(𝒫)

[𝔱, 𝔱] ⊂ 𝔎,

[𝔎, 𝔱] ⊂ 𝔱 .

Lie algebra version
• We obtain , where:𝔤 = 𝔎 ⊕ 𝔱

e ⋅
𝔱



Classification



Some Lie groups



The KV cones are 

non-compact symmetric domains. 

— The sectional curvature is 0 on an algebraic torus


 


— The sectional curvature is <0 otherwise (=Cartan—Hadamard space)



Noemie Combe, 3 September 2024.

Part 2

Koszul domains & Souriau’s 
thermodynamics



Souriau model vs Probability 
theory



(Applications of the KV cone)

Souriau’s model

Statistical mechanics - Souriau’s model consists in considering Lie 
groups thermodynamics of dynamical systems. The (maximum entropy) 
Gibbs density is covariant wrt the action of the Lie group . 


  is a (geometric) temperature - element of a Lie algebra  of the 
group. 


 is a (geometric) heat - element of a dual Lie algebra  of the group.  

G

β 𝔤

Q 𝔤*

M

G
𝔤 𝔤*

Symplectic

Lie group  acts on M G

U

β Q

ζ

momentum



•  where   (KV function)


•   where  and 

I(β) = −
∂2Φ
∂β2

Φ(β) = − ∫M
exp − ⟨β, U(ζ)⟩dλ

S(Q) = ⟨β, Q⟩ − Φ(β) Q =
∂Φ(β)

∂β
∈ 𝔤* β =

∂S(Q)
∂Q

∈ 𝔤

Some relations

ouriau  EntropyS Heat 1/ temperature

dS = βdQ, β =
1
T Q =

∂Φ(β)
∂β

∈ 𝔤* β =
∂S(Q)

∂Q
∈ 𝔤

Legendre transformation



Recollections

Adjoint representation of Lie groups

•  - Lie group.                                             


• Let                                         


                                                





G

Ψ : G → Aut(G) Adg : (dΨg)e : 𝔤 → 𝔤

g ↦ Ψg(h) = ghg−1 X ↦ Adg(X) = gXg−1

ad = TeAd : TeG → End(TeG)

X, Y ∈ TeG ↦ adX(Y) = [X, Y]



 Dual of the adjoint representation. 


   


 

∀g ∈ G, Y ∈ 𝔤, F ∈ 𝔤* ⟹

⟨Ad*g F, Y⟩ = ⟨F, Adg−1Y⟩

Coadjoint representation

Coadjoint orbits
Given , a coadjoint orbit is given by   .F ∈ 𝔤* OF = {Ad*g F, g ∈ G} ⊂ 𝔤*

REMARK: Coadjoint orbits carry a symplectic structure 



A symplectic maniflold  

(homogeneous under the action of a Lie 

group) 

is isomorphic (up to covering) to a coadjoint 

orbit, possibly affine. 

Kostant—Kirillov—Souriau



G

𝔤*

𝔤

β

Q

Adg(β)

Ad*g (Q)

Q* = Q(Adg(β)) = Ad*g (Q) + θ(g)

Q(β)

Q(Adg(β))

θ(g)

e

g

where andAd*g = (Adg−1)*
⟨Ad*g F, Y⟩ = ⟨F, Ad−1

g Y⟩,
∀g ∈ G, Y ∈ 𝔤, F ∈ 𝔤*

Souriau’s fundamental equation



Information geometry / Gibbs 
density 



The (Gibbs) density  is given by:


 ,


Where: 








                   KV potential !

P(ζ) =
exp⟨−U(ζ), β⟩

∫
M

exp⟨−U(ζ), β⟩dλω

U : M → 𝔤*

Q =
∂Φ(β)

∂β
= ∫M

U(ζ)p(ζ)dλω

Φ = − log∫M
exp − ⟨U(ζ), β⟩dλ

From KV cone to information geometry.

𝒫



Let  .


Souriau entropy  has a property of invariance: 


,


 where 


S : 𝔤* → , ℝ Q ↦ S(Q)

S(Q)

S(Q(Adg(β)))) = S(Q)

Q(Adg(β)) = Ad*g (Q) + θ(g)

Coadjoint representation 

Cocyle



Entropy
•  - hamiltonian  ;   - Souriau entropy.     Then, 


Souriau equation =>  





By putting  where  we get: 


H ∀H : 𝔤* → ℝ S : 𝔤* → ℝ {S, H}(Q) = 0

ad*∂S
∂Q

Q + Θ( ∂S
∂Q ) = 0

{S, H}(Q) = ⟨Q, [ ∂S
∂Q

,
∂H
∂Q ]⟩ = − Ck

ijQk
∂S
∂Qi

∂H
∂Qj

Θ̃(X, Y) = ⟨Θ(X), Y⟩ Θ(β) =
∂Φ(β)

∂β

{S, H}Θ̃ = ⟨Q, ( ∂S
∂Q

,
∂H
∂Q )⟩ + Θ( ∂S

∂Q
,

∂H
∂Q ) = 0

Constant structures



Gibbs caa

S(Q) = ⟨β, Q⟩ − Φ(β)
Entropy

Φ(β) − ⟨θ(g−1), β⟩

Φ(β)

Characteristic function

ζ



Noemie Combe, 3 September 2024.

Part 3

Landau—Ginzburg theory & 
Souriau’s thermodynamics

Cooper pairs

Proba of finding Cooper pairs



LG theory à la Koopman-von Neuman

• Hilbert space   parameterised by a 
real domain  (space of density of 
probabilities).


•  


•  is a wave function (complex 
valued  integrable function. 

H
D

π :H → D

ψ ∈ H
L2

H

D

ψ ∈ H

∫M
| |ψ | |2 dx

ψ ∼ exp(ıα)ψ

Torus fiber 



• LG free energy can be represented in a symplectic manifold 
with the phase space content. This is achieved via a thermo 
group, Lie group structure associated with the thermofield 
dynamics and C* algebras.  

• The Euclidean group is a subgroup of the Galilei group. 

LG free energy + thermo-?



 Euclidean Lie group = semi-direct product of the group of rotations and group of 
translations, preserving the norm. 


Eulcidean Lie algebra:  Generators of rotations ; generators of space translations   
Relations:


 





 Prop. The vector space of self-adjoint linear operators acting on the Hilbert  space  
forms an  Eulcidean-Lie algebra.   


li pj

[li, lj] = ıℏδijklk

[li, pj] = ıℏδijk pk

H

Euclidean Lie algebra  on H




Fs(r) = F0 − α |ψ |2 +
β
2

|ψ |4 +
1

2m
| − ıℏ∇ − q

A
c

ψ |2 − ∫
Ba

0
M ⋅ dBa

LG - Free energy 

•   positive constants;


•  I free energy density of the normal state;


•  is a Landau form for the expansion of free energy 

vanishing at a second-order phase transition;


• the term in represents an increase in energy caused by a 
spatial variation of the order parameter. 


• the term   represents the increase in the superconducting 

free energy.

α, β, m

F0

−α |ψ |2 + β
2 |ψ |4

|∇ |ψ |2

∫ Ba

0
M ⋅ dBa



Prop.  Stationary solutions to the LG equation are invariant under the symmetry group of Galilei.

[
1

2m
(−ıℏ∇ − q

A
c

)2 − αψ + β |ψ |2 ]ψ = 0

LG equation



Theorem#

• The space of density of probabilities  
is a Monge—Ampere domain i.e. 
everywhere locally the Elliptic Monge—
Ampere operator  (EMA) is satisfied: 


• e.w locally there exists a unique 
function  such that   
where  is positive or null real valued 
function. 

D

Φ det HessΦ = f,
f

Ex: The KV cone is a EMA domain 



• One can represent the state space of an n-dimension quantum system by the set of 
 positive (semi)definite complex matrices of trace 1. These matrices are known as 

density matrices. 


• Relaxing the condition of Tr=1 gives the  complex KV cone. 

n × n

State space for n-quantum system 



Theorem #

• There exists an equivalence of categories  of the  complex KV cones and the von Neumann 
algebras. 



Last Theorem#
• LG theory plays an important role in Mirror symmetry. 

Theoreme Combe 24. 


There exists a Monge—Ampere domain parametrising a pair of mirror dual 


Calabi—Yau manifolds . The  Monge—Ampere  domain is a space of densities of probabilities. The 
construction forms a torus fibration.  

As an example one can take the real KV cone. It parametrises a complex Torus  


( simplest type of Calabi Yau manifold) 

H CY CY

D



THANKS


