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The classical and Bayesian learning setups

Classically: find θ∗ ∈ Θ minimizing ℓ.

Bayesian : find a distribution q ∈ P(Θ) ....
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Classical vs. Bayesian learning

The loss function is highly nonconvex. Usually

ℓ(θ) =

N∑
i=1

ℓi(θ) +R(θ)

where ℓi(θ) is the loss contribution from the ith

data point and R(θ) regularizer.

θ∗1 and θ∗2 are both equally valid explanations of the same data.
A distribution over the data considers both explanations “at the same time”.
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Betting it all on one outcome

Say two dice are thrown and I tell you that the sum is greater than 7.

, satisfies this.

We could say the result was definitely , .

But there are a total of 15 possibilities

, , , , ,
, , , ,
, , ,
, ,
,

It is much more sensible to say it is one of these 15 outcomes, with equal probability.

(principle of indifference, principle of maximum entropy)
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The Bayesian Learning Problem

ℓ(θ), a loss function on model parameters θ ∈ Θ. Pick a base measure ν on Θ.

We solve

q∗ ∈ arg min
q∈Q

Eq[ℓ]− τHν(q)

for some family of distributions Q ⊆ Pν(Θ) = {q(θ)dν(θ)} on the parameters.

The expectation Eq[ℓ] =
∫
Θ ℓ(θ)q(θ)dν(θ) prefers regions with low loss.

The entropy Hν(q) = −
∫
Θ q(θ) log q(θ)dν(θ) prefers a higher spread of q.

The temperature τ > 0 is a balancing term.
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The exact posterior.

If Q = Pν(Θ) then there is a unique minimizer pτ (θ) ∝ e−
1
τ
ℓ(θ):

arg min
q∈Q

Eqdν [ℓ]− τH(q) =

Θ

loss landscape
ℓ(θ)

pτ(θ)

Minimize the objective E(q) := D(q∥pτ ) for q ∈ Q...

Q

pτ
optimizer in
all distributions

q∗
closest dist in Q
in KL-sense

...an approximate Bayesian solution.
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Previously. . . BLR: The Bayesian Learning Rule, [KR21]1

[KR21] take Q as exponential families are qλ(θ) ∝ e−λ⊤T (θ).
T : Θ→ Rd is a sufficient statistic, λ are natural parameters.

Gaussians, Exponential
distributions, Gamma,
inverse Gamma, Wishart,
von-Mises, etc.

λ←− λ− αF (λ)−1∇λE(qλ)
α > 0 step size
F (λ) the Fisher matrix

BLR is Natural Gradient Descent on λ parameters.

Issue 1 The candidates Q is required to be an exponential family,

Issue 2 Not every λ is allowed as a natural parameter, and the linear update rule could
overshoot the constraints.

Issue 3 Computing ∇λE(qλ) is not efficient in general but for special exponential
families.

1[KR21]: Khan, M. E. and Rue H., The Bayesian Learning Rule
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Parametrizing Q by groups.

Assuma a Lie group G acts on the parameter manifold Θ,

it also acts on distributions on Θ.
Q is formed as the orbit of such an action for any base distribution q0:

Q = {qg : g ∈ G}. where qg(θ) =
1

χ(g)
q0(g

−1 · θ).

G = (R,+), Θ = R,

G = (R>0,×), Θ = R>0,

G = Aff(R) = R>0 ⋉R, Θ = R
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Optimization on the group

We now solve

arg min
g∈G

E(qg) = arg min
g∈G

∫
Θ
qg log

(
qg

e−
1
τ
ℓ

)
Given X ∈ g = TeG the differential in the direction of X is

d

dt
E(qgetX )

∣∣
t=0

=
d

dt

∫
Θ
qge

tX
(θ) 1τ ℓ(θ)dν(θ)︸ ︷︷ ︸

data contribution

+

∫
Θ
qge

tX
(θ) log qge

tX
(θ)dν(θ)︸ ︷︷ ︸

entropy contribution

∣∣∣∣
t=0

The data contribution can be rewritten as∫
Θ
qg(θ)(∇θℓ(θ))

⊤(Adg(X) · θ)dν(θ) ≈ 1

K

K∑
i=1

θi∼qg

∇ℓ(θi)⊤(Adg(X) · θi)
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Classical Learning vs. Learning via Group

The point based gradient descent updates parameters: θ ← θ − α∇ℓ(θ)
Bayesian Learning Rule(s) update the distribution over the parameters θ.

Y ∈ TeG is the direction of fastest ascent of E(qg) w.r.t. the Fisher metric.
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Solved issues

Issue 1 Q is required to be an exponential family.

Solution Can choose q0 freely and push it around with a group.

Issue 2 The updates could overshoot and leave the manifold.

Solution Closure of the group under operation keeps updates on Q.
Issue 3 The gradient ∇λE(qλ) can only be computed in special cases.

Also called pathwise gradient estimators2

Bonus 1 The Fisher metric is invariant under translations by G.

Bonus 2 The tangent directions Y at each step lie in the same vector space TeG, so they
can be accumulated from previous steps.

2Mohamed et. al. Monte carlo Gradient Estimation in Machine Learning JMLR 2020
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Specific Update Formulas: The Additive Group

g ∈ RP additive =⇒ g ←− g − αEqg

[
∇θℓ

]

Instead of going in the direction of the derivative at g, the direction is chosen by consensus
with at points sampled from qg.
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Multiplicative and Affine Update Formulas

g ∈ R>0 multiplicative =⇒

(A, b) ∈ Aff(R) affine group =⇒

g ←− g exp
(
− α

(
Eqg [θ∂θℓ]− τ

))

b←− b+ cX
cy
Aexp(−αU)−1

U V

A←− A exp(−αU)

where U = Eqg [(θ − b)∂θℓ]− τ

V = AEqg [∂θℓ]
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Filters of the multiplicative group

Label nodes in a neural network “excitatory” or
“inhibitory” like biology.

Magnitudes of the weights (in R>0) are the
parameters (signs are fixed).
At each layer the map is x 7→ σ(W+x−W−x).

Given g ∈ RP
>0, and q0 Rayleigh, say, and θj ∼ qP0

for j = 1, . . . ,K

M ← βM + (1− β)
1

K

K∑
j=1

(gθj)∇ℓ(gθj)− τ

g ← g exp (−αM)

1st hidden layer

excitatory

inhibitory

...

sparse weights
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Multiplicative vs Additive filters

Model &
Dataset

Method
Accuracy ↑

(higher is better)
NLL ↓

(lower is better)
ECE ↓

(lower is better)

MNIST
MLP

add. 98.38±0.02 0.083±0.001 0.012±0.000
mult. 98.59±0.02 0.058±0.001 0.006±0.000

CIFAR–10
MLP

add. 58.85±0.08 1.236±0.002 0.085±0.001
mult. 59.19±0.07 1.160±0.001 0.026±0.001

Additive rule is similar to SGD

with momentum, multiplicative is

different.

They both learn.
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The additive vs multiplicative filters for RGB images
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Further Results on the multiplicative update (modified) by Keigo Nishida
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Exponential Families

Let T : Θ→ V , called the sufficient statistic. Call

Ω = Ων(T ) =

{
λ ∈ V ∨ : A(λ) := log

∫
Θ
e−⟨λ,T (θ)⟩dν(θ) <∞

}
.

Then qλ(θ) = e−⟨λ,T (θ)⟩−A(λ) form an exponential family of distributions.

− ∂A

∂λi
=

∫
Θ
Ti(θ)e

−⟨λ,T (θ)⟩−A(λ)dν(θ) = Eqλdν [Ti] =: µi

∂2A

∂λi∂λj
=

∫
Θ
(Ti(θ)− µi)(Tj(θ)− µj)qλ(θ)dν(θ)

= Eqλ

[(
∂

∂λi
log qλ

)(
∂

∂λj
log qλ

)]
=: Fi,j(λ) Fisher Matrix

Ω

V ∨

λ

Example: If T (θ) =
[

θ
θ2

]
then we get 1-D Gaussians qλ(θ) ∝ e−λ1θ−λ2θ2 for λ2 > 0.
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Harmonic exponential families (by Koichi Tojo & Taro Yoshino)

What about exponential families on Θ which are closed under a Lie group action?

Homogeneous space Θ ∼= G/H.

ν a relatively invariant base measure
dν(g · θ) = χ(g)dν(θ).

A finite dimensional representation
π : G→ GL(V ).

A 1-cocycle of π such that α
∣∣
H
≡ 0. So

α : G→ V satisfies

α(gh) = π(g)α(h) + α(g) = α(g).

Thus α : Θ→ V .

Let λ ∈ Ων(α) ⊆ V ∨ i.e.,
A(λ) = log

∫
Θ e−⟨λ,α(θ)⟩dν(θ) <∞.

qλ(θ)dν(θ) := e−⟨λ,α(θ)⟩−A(λ)dν(θ)

forms an exponential family closed under
pushforwards
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Linear Approximation of Lie group update is NGD on natural parameters

The Lie group rule is for transformation families. BLR is NGD on λ’s of exponential families.

The overlap is harmonic exponential families:

Pushforwards of qλ are still in the family,

(qλ)
g = qλ′ with λ′ = π∨(g)λ

Thus Q̃ = {λ ∈ Ω : λ = π∨(g)λ0, g ∈ G} and
updates are given by λupdated = π∨(gupdated)λ0.

Other quantities of qλ also vary with g:

µ(λ′) = π(g)λ+ α(g)

A(λ′) = A(λ) + log(χ(g)) + α(g−1)

Ω

V ∨

Q̃

λ0

π∨(g)λ0

V ∨

Q̃

λ0

λ

W F−1
λ ∇λE(qλ)

RY
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Overview and Future work

The Bayesian Learning Problem is a promising and fertile setting.

The BLR of Khan & Rue both specialized to many existing algorithms and gave rise to
many new and successful algorithms.

Yet there are some issues with BLR such as: closure in the statistical manifold under
updates, and calculation of derivatives w.r.t. distribution parameters.

The group framework solves the closure problem by design and is able to very generally
employ the reparametrization trick.

Each new group would deserve an empirical study to investigate their learning behaviours
(like multiplicative vs. additive)

There may be implementation problems with arbitrary Lie groups,
e.g. the exponential map may not always be feasible to compute,
so approximations may be necessary.
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e.g. the exponential map may not always be feasible to compute,
so approximations may be necessary.

Kıral Lie Group Bayesian Learning Sept 2024 21 / 26



Overview and Future work

The Bayesian Learning Problem is a promising and fertile setting.

The BLR of Khan & Rue both specialized to many existing algorithms and gave rise to
many new and successful algorithms.

Yet there are some issues with BLR such as: closure in the statistical manifold under
updates, and calculation of derivatives w.r.t. distribution parameters.

The group framework solves the closure problem by design and is able to very generally
employ the reparametrization trick.

Each new group would deserve an empirical study to investigate their learning behaviours
(like multiplicative vs. additive)

There may be implementation problems with arbitrary Lie groups,
e.g. the exponential map may not always be feasible to compute,
so approximations may be necessary.

Kıral Lie Group Bayesian Learning Sept 2024 21 / 26



Overview and Future work

The Bayesian Learning Problem is a promising and fertile setting.

The BLR of Khan & Rue both specialized to many existing algorithms and gave rise to
many new and successful algorithms.

Yet there are some issues with BLR such as: closure in the statistical manifold under
updates, and calculation of derivatives w.r.t. distribution parameters.

The group framework solves the closure problem by design and is able to very generally
employ the reparametrization trick.

Each new group would deserve an empirical study to investigate their learning behaviours
(like multiplicative vs. additive)

There may be implementation problems with arbitrary Lie groups,
e.g. the exponential map may not always be feasible to compute,
so approximations may be necessary.

Kıral Lie Group Bayesian Learning Sept 2024 21 / 26



Teşekkürler
ありがとうございます

Vielen Danke
Merci

Thank you.
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Stiefel Manifold Update

Assume parameters are given as a matrix and want to preserve orthogonality of columns.

Θ = St(n,m) = {θ ∈ Mat(n,m) : θ⊤θ = Im×m}

The group S = SO(n) preserves this manifold. And given a loss function ℓ : Θ→ R≥0

Y ∈ so(n) the update direction Y = SkewY0 =
Y0−Y ⊤

0
2

Y0 = EqΛ [∇ℓθ⊤]

Here the distributions are parametrized by Λ ∈ Mat(n,m)

qΛ(θ) ∝ e−Tr(Λ⊤θ)

and the update is given by

Λ← e−αY Λ (actually an efficient variation is used)
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Koichi Tojo, Taro Yoshino’s: “Harmonic Exponential Families”.

G a Lie group H ≤ G. Let ν be a relatively invariant measure on G π : G→ GL(V ) a
representation of G. Let α be a 1-cocycle of π such that α

∣∣
H
≡ 0. So α : G→ V satisfies

α(gh) = π(g)α(h) + α(g) = α(g). So α : G/H︸ ︷︷ ︸
:=Θ

→ V

Let ν be a relatively invariant measure on Θ, meaning ν(gE) = χ(g)ν(E) for some
homomorphism χ. Let λ ∈ V ∨ s.t. A(λ) = log

∫
Θ e−⟨λ,α(θ)⟩dν(θ) <∞. For such λ

qλ(θ)dν(θ) := e−⟨λ,α(θ)⟩−A(λ)dν(θ)

forms an exponential family satisfying

1

χ(g)
qλ(g

−1θ) := qπ∨(g)λ(θ) where ⟨π∨(g)λ, v⟩ = ⟨λ, π(g)v⟩.
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Constrained maximization: Statistical mechanics interpretation

Assume θ to be a kind of “microstate” with energy level ℓ(θ). So Θ is some “state space”.

Statistical mechanics:
Assume a distribution of the microstates (across “particles”)
maximizing entropy, constrained to have expected energy ≤ E0.

Lagrange multiplier β ≥ 0:

arg min
q∈Pν(Θ)

−Hν(q) + β(Eqdν [ℓ]− E0) = arg min
q∈Pν(Θ)

Eqdν [ℓ]−
1

β
Hν(q)

τ = 1
β corresponds to the thermodynamical notion of temperature.
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Why call it Bayesian?

Let ℓ(θ) =
∑N

i=1 ℓi(θ) +R(θ). Observe new data (xnew, ynew) with loss contribution ℓnew.

How to update pτ? Take τ = 1

Bayes’ rule is about conditional probabilities, and updating priors:

P (A|B) =
P (B|A)P (A)

P (B)

Interpret e−ℓi(θ) as the likelihood of observing label yi given the model parameter θ and xi.
Interpret π(θ) ∝ e−R(θ) as the prior on the parameters.

After one round of learning the posterior p ∝ e−
∑

i ℓiπ is our prior belief about θ distribution.
According to Bayes rule updated belief should be after a new data point.

pupdated(θ) ∝ e−ℓnew(θ)p(θ).

This is also the optimizer if we had initially considered the loss function ℓupdated = ℓ+ ℓnew.
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