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Talk Outline

◼ 1. Elements from Tropical Geometry and Max-Plus Algebra

◼ 2. Neural Networks with Piecewise-linear (PWL) Activations

◼ 3. Morphological (Max-plus) Neural Networks

◼ 4. Piecewise-linear (PWL) Regression

This research work was supported by the Hellenic Foundation for Research & Innovation

(H.F.R.I.) under the "2nd Call for H.F.R.I. Research Projects to support Faculty Members &

Researchers" (Project Number:2656, Acronym: TROGEMAL).
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Collaborators

TG&ML:  Petros Maragos, Vasilis Charisopoulos, Manos Theodosis

Neural Net Minimization: 

Georgios Smyrnis, Panos Misiakos, George Retsinas, Nikos Dimitriadis, Konst. Fotopoulos 

Tropical Approximation:  Ioannis Kordonis

Tropical Sparsity: Anastasios Tsiamis, Nikos Tsilivis



4

What does TROPICAL mean?

• The adjective “tropical” was coined by French mathematicians Dominique 

Perrin and Jean-Eric Pin, to honor their Brazilian colleague Imre Simon, a 

pioneer of min-plus algebra as applied to finite automata in computer science.

• Tropical (Τροπικός in Greek) comes from the greek word «Τροπή» which 

means “turning” or “changing the way/direction”.

Polygonal lines 
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Elements of 

Tropical Geometry

“TG is a marriage between algebraic geometry and polyhedral geometry. A piecewise-linear version of 

algebraic geometry.” [Maclagan & Sturmfels 2015]

Our view:  TG is a “dequantized” version of Euclidean geometry and analytic geometry.
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Books & Math Articles on Tropical Geometry (TG):

• D. Maclagan & B. Sturmfels, Introduction to Tropical Geometry, AMS 2015.

• I. Itenberg, G. Mikhalkin, and E. I. Shustin, Tropical Algebraic Geometry, Springer 2009.

• M. Joswig, Essentials of Tropical Combinatorics, AMS 2021.

• Max-plus Convex Sets/Cones: [Cuninghame-Green 1979; Butkovic 2007], [Litvinov, Maslov & Sphiz 2001], [Cohen,

Gaubert & Quadrat 2004; Gaubert & Katz 2007; Allamigeon et al 2010]

• Tropical Convexity, Tropical Halfspaces/Polyhedra: [Maslov 1987], [Develin & Sturmfels 2004], [Joswig 2005],

[Gaubert & Katz 2011]. TG and Mean Payoff Games: [Akian et al 2012; Akian et al 2021]

• O. Viro, Dequantization of Real Algebraic Geometry on Logarithmic Paper, ArXiv 2000.

Some Applications of TG to Machine Learning:

• L. Pachter & B. Sturmfels, Tropical geometry of statistical models, PNAS 2004.

• V.Charisopoulos & P.M., Tropical Approach to Neural Nets with Piecewise Linear Activations, ISMM2017, ArXiv2018.

• L. Zhang, G. Naitzat, L.-H. Lim, Tropical Geometry of Deep Neural Networks, ICML 2018.

• P.M., V. Charisopoulos & E. Theodosis, Tropical Geometry and Machine Learning, Proc. IEEE 2021.

• NTUA Group: P.M., Charisopoulos, Dimitriadis, Kordonis, Misiakos, Retsinas, Smyrnis, Theodosis, Tsiamis, Tsilivis

• + Other References in this talk.

References on TG and its Applications to Machine Learning & Optimization
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Tropical Semirings 
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Graphs of Max-plus Tropical 1D Polynomials 

Cubic polynomial
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Max-plus and Min-Plus Tropical 1D Polynomials 

Euclidean  Max-plus Min-plus  
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Tropical Curve of Max/Min-Polynomials 

Tropical curve of  p(x,y) =
“Zero locus” of a max/min polynomial is the set of points where the max/min is attained by 

more than one of the  “monomial” terms of the polynomial.

Tropical curve of the max-polynomial Tropical curve of the min-polynomial
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Newton Polytope of Tropical Polynomial

Max polynomial

Newton polytope N(p) of  max polynomial p

is the convex hull of its coefficients’ vectors.
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Tropical Curve vs Newton Polytope

Max polynomial:  p(x,y) = max(x,y,0) 

Newton polytope N(p) of  max polynomial p
is the convex hull of its coefficients’ vectors.

Tropical curve (“Zero locus” ) V(p) of a max 

polynomial p is the set of points where the max is 

attained by more than two polynomial terms.

Tropical curve V(p) 
of   p(x,y) = max(x,y,0) 

Duality between Newton polytope N(p)

and tropical curve V(p) 
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Graph and Tropical Curve of a tropical “Conic” polynomial 

Graph (“tent”) of  p(x,y)

and

its Tropical Curve = set of (x,y) points where 

the min is attained by more than one terms.

2 2classical:  " "

tropical:   min( 2( , , 2 , , , ), )    

ax bxy cy dy e fx

a x b x y c y dp yx y e f x

+ + + + +

= + + + + + +

Tropical Polynomial of degree 2 in two variables  
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Tropical Curves of Min-plus Polynomials on the plane
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Maslov Dequantization (Tropicalization) → Log - Sum - Exp approximation 

/ /

0

/ /

0

(Maslov "Dequantization" in idempotent mathematics [Maslov 1987, Litvinov 2007])
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Obtain Tropical Polynomials via Dequantization
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Tropical Half-spaces and Polytopes in 2D 

The region separating boundaries are tropical lines (or hyper-planes).

Tropical Polyhedra are formed from finite intersections of tropical  

half-spaces. Polytopes are compact polyhedra.

maxTropical (affine) Half-space of  n [ Gaubert & Katz 2011]
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Tropical Halfspaces and Polyhedra in 3D 
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(Extended) Newton Polytope

Let 𝑝 𝒙 = max
𝑖=1,…,𝑘

(𝒂𝑖
𝑇𝒙 + 𝑏𝑖) be a max-polynomial.

Definition ((Extended) Newton Polytope): We define as the 

(Extended) Newton Polytope of 𝑝 the following:

Newt 𝑝 = conv 𝒂𝑖 , 𝑖 = 1,… , 𝑘

ENewt 𝑝 = conv{(𝒂𝑖 , 𝑏𝑖), 𝑖 = 1,… , 𝑘}

where conv denotes the convex hull of the given set.

Theorem [Charisopoulos & Maragos, 2018; Zhang et al., 2018]:

Max-polynomials with the same vertices in the upper hull of their 

Extended Newton Polytope correspond to the same function.
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Examples of  (Ext) Newton Polytopes

Figure: Polytopes of

max(3𝑥, 2𝑥 + 1.5, 𝑥 + 1, 0).
Figure: Polytopes of

max(2𝑥, 𝑥 + 𝑦 + 1, 𝑥 + 1, 𝑦 + 1, 1).
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Newton Polytope and Max-polynomial Function

• “Upper” vertices of ENewt 𝑝

define 𝑝(𝑥) as a function.

• Geometrically: 

max 3𝑥 + 1, 2𝑥 + 1.25, 𝑥 + 2, 0

= max(3𝑥 + 1, 𝑥 + 2, 0)

(extra point is not on the upper hull).

ENewt(𝑝), 𝑝 𝑥 = max 3𝑥 + 1, 𝑥 + 2,0
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Tropical  Algebra of Max-plus Polynomials →

Tropical Geometry of their Newton Polytopes

Newton polytopes  of (a) two max-polynomials  

p1(x,y) = max(0, -x, y, y-x)  and  p2(x,y) = max(x+y, 3x+y, x+2y), 

(b) their  max(p1 , p2),  and (c) their sum  p1 + p2 
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Elements of Max-plus Algebra

(“Linear algebra of Dynamic Programming & Combinatorics”:  [Butkovic 2010] )

Some Earlier Special Cases

and Applications
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• Scheduling & Operations Research, Graphs: Minimax Algebra [Cuninghame-Green 1979]: mainly

Max-Plus.

• Tropical Arithmetic: Min-plus/Max-plus Semirings [I. Simon 1994; J.-E. Pin 1998]

• Image & Vision, Nonlinear SP: Image Algebra [Ritter et al, 1980s-90s], Math. Morphology [Serra 88;

Heijmans & Ronse 1990s]. Morphological & Rank Filters, [Maragos & Schafer 1987]. Nonlinear Scale-Space PDEs

[Brockett & Maragos 1992; Alvarez et al 1993]. Distance Transforms [Borgefors 1984; Felzenszwalb et al 2004].

• Control: Discrete-Event Dynamical Systems [Cohen et al 1985; Kamen 1993; Cassandras et al 2013; Heidergot et

al 2006]. Dioid algebra [Cohen et al 1989; Baccelli et al 1992-2001; Gaubert & Max-plus Group 1997; Lahaye &

Hardouin et al 2004; Gondran & Minoux 2008], Max-Linear Systems [Butkovic 2010, van den Boom & de Shutter

2012]. Optimization/Approximation on Semimodules [Cohen et al 2004, Akian et al 2011].

• Speech & Language Processing: Weighted Finite-StateAutomata/Transducers: Tropical Semiring Algorithms

on Graphs [Mohri, Pereira et al, 1990s; Hori & Nakamura 2013].

• Probabilistic Graphical Models: Max-Sum and Max-Product algorithms in Belief Propagation [Pearl

1988; Bishop 2006; Felzenszwalb 2011].

• Math-Physics: Convex analysis & Optimization [Bellman & Karush 1960’s; Rockafellar 1970; Lucet 2010].

Lattices [Birkhoff 1967]. Residuation and Ordered Algebraic Structures [Blyth 2005].

Idempotent Mathematics [Maslov 1987; Litvinov, Maslov et al 2000s].

Research Areas using Max/Min(+) Algebra
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Linear vs. Max-Plus Algebra: Scalar Operations

max  

Max-plus has properties similar to linear algebra:

◼ Commutativity: 

◼ Associativity: 

◼ Distributivity: 

◼ Idempotency:

◼ Inverse?:
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Max-plus Matrix 

Algebra

(Finite-dimensional 

Weighted Lattices)
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Tropical Semirings versus Weighted Lattices

Flat Lattice

ℝ ∪ −∞,+∞ ,∨,∧

Max-plus Semiring

ℝ ∪ −∞ ,∨,+
ℝ ∪ −∞ ,max is

Idempotent Semigroup

ℝ,+ is Group.

Addition +

distributes over ∨

Min-plus Semiring

ℝ ∪ +∞ ,∧,+′
ℝ ∪ +∞ ,min is

Idempotent Semigroup

ℝ,+′ is Group.

Dual Addition +′

distributes over ∧

Duality between ∨ and ∧

Weighted Lattice = Tropical Space 

[P. Maragos, “Dynamical Systems on Weighted Lattices: General Theory”,  Math. Control, Signals and Systems, 2017.]
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Linear and Nonlinear Spaces

Linear spaces  (Vector Spaces):
Signal Superposition (+):
Scaling (x): 

Nonlinear spaces (Tropical spaces = Weighted Lattices):
Signal Superposition : max: min: 

Scaling (+): 

( ) ( )f t g t+

( )c f t

( )]i i ic f t+

( ) ( )f t g t ( ) ( )f t g t

( )]i i

i

c f t
Linear

system Γ( )]i i

i

c f t

Tropical

system Δ
( )i i ic f t+

( )c f t+
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Morphological Operators  on Lattices
(  = partial ordering,   V = supremum,  = infimum) 

• is increasing iff

• is  dilation iff

• is  erosion iff

• is  opening iff increasing and antiextensive

and idempotent                  :  lattice projection

• is closing iff increasing and extensive

and idempotent                  :   lattice projection

• is adjunction iff

Then:   δ is dilation,      ε is erosion, 

δε is opening,   εδ is  closing. 

  ( ) ( ).f g f g   

  ( ) ( ).i i i if f =  

( ) ( ).i i i if f =  

  ( ( ) ), f f 

 ( ( ) ),f f 

( ) ( )f g f g   








2( )= 


2( )= 

( , ) 

[ Serra  1988;  Heijmans & Ronse 1990 ]

(Galois connection)
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Minkowski-Hadwiger Morphological  Set Operators

Translation:                                               Symmetric:

Dilation (Minkowski addition):

Erosion (Minkowski subtraction):

Hadwiger Opening: Closing:

{ : }zB b z b B+ = +  { : }sB b b B= − 

{ : ( ) }s

z b
b B

X B z B X X+ +


 =   =

{ : }z b
b B

X B z B X X −


=  =

( )X B X B B=  ( )X B X B B= •
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Max/Min-plus Convolutions and Filters-Projections

Max-plus Convolution (Dilation) by a square (flat g)

(= Max Pooling in CNNs)  

Serial compositions of max-convolution and adjoint min-plus correlation: Opening, Closing

Adjoint Min-plus Correlation (Erosion)

( )( ) ( ) ( )yf g x f y g x y = + −

( )( ) ( ) ( )yf g x f y g y x= − −

Idempotent Operators = Projections

on Nonlinear Spaces (Weighted Lattices)
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Examples  of  Adjunctions
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Solve  Max-plus Equations via Adjunctions
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Adjunction versus Residuation pairs



36

Some Earlier Special Cases

of Max-plus Algebra and Applications
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Linear versus Max-Plus Systems

• State space representation: linear vs. max-plus

• Matrix products

• Linear: 

• Max-plus:

• Example

• What can we model with max-plus systems?
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Automated  Manufacturing  as  Max-plus  System

Discrete event systems (*)

𝑥𝑖 𝑘 : time product 𝑘 enters conveyor 𝑖
𝑢 𝑘 : time we put product 𝑘 in conveyor 1

𝑡𝑖: conveyor 𝑖 waiting time

Only one product in a conveyor during each cycle

𝑡1 𝑡3𝑡2

(*) Example from:  [ G. Schullerus, V. Krebs, B. De Schutter & T. van den Boom,  “Input signal design for 

identification of max-plus-linear systems”, Automatica 2006. ]
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Longest/Shortest Paths as Max/Min-plus Systems

Dynamic Programming

❑ Taxi drivers (*)

(*) Example from: 

[ S. Gaubert and Max-Plus group,  "Methods and applications of (max,+) linear algebra“, STACS 1997.]
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Weighted Finite State Transducer (WFST)

HMM Transducer: converts an input speech signal into 
a seq of context-dependent phone units 

WFSTs for Speech Recognition: Tropical (Min-Plus) Algebra 

[ Mohri, Pereira & Ripley, CSL 2002 ]

[ Hori and Nakamura, 2013 ]
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Distance Computation with Min-plus Difference Eqns

Sequential Distance 

Computation with Obstacles
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Gaussian Scale-Space →Maslov Dequantiz→ Dilation/Erosion Scale-Space
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Main References:

Tropical Geometry of Neural Nets 
with Piecewise-Linear Activations

Related:
- M. Alfarra et al, On the decision boundaries of neural networks: A tropical geometry perspective, arXiv 2020.

- A. Humayun et al., SplineCam: Visualization of Deep Network Geometry and Decision Boundaries, CVPR 2023.
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[Charisopoulos & Maragos, 2017]
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1 2 1 1 2 2 1 2( , ) max(1 2 ,2 ,2,2 ,1 2 ,2 )p x x x x x x x x= + + + + + +
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[Charisopoulos & Maragos, 2018]
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[Charisopoulos & Maragos, 2018]
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Geometric Algorithm:  Randomized method for Sampling the Extreme Points of 
the Upper Hull of a Polytope  [Charisopoulos & Maragos 2019, arXiv:1805.08749v2], 
[Maragos, Charisopoulos & Theodosis, Proc. IEEE 2021]

Computational Geometry: [Karavelas & Tzanaki, ISCG 2015]: A Geometric Approach for 
the Upper Bound Theorem for Minkowski Sums of Convex Polytopes
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Geometry & Algebra of NNs with PWL Activations

Theorem (Wang 2004): A continuous piecewise linear function is 

equal to the difference of two max-polynomials.

Theorem (Charisopoulos & Maragos 2018): The essential terms 

of a tropical polynomial are in bijection 1 − 1 with the vertices on 

the upper hull of its extended Newton polytope.

Theorem (Zhang et al. 2018): A neural network with ReLU-type 

activations can be represented as the difference of two max-

polynomials(*), i.e. with a tropical rational function.

[(*) Zhang et al. only call “max polynomials" those polynomials with integer slopes] 
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References:
• V. Charisopoulos and P. Maragos, “Morphological Perceptrons: Geometry and Training

Algorithms”, Proc. ISMM 2017, LNCS 10225, Springer.

• N. Dimitriadis and P. Maragos, “Advances in Morphological Neural Networks: Training,

Pruning and Enforcing Shape Constraints”, Proc. ICASSP, 2021.

Morphological Networks: 
Geometry, Training, and Pruning
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Motivation

◼ Explosion of ML research in the last decade (now models with near-human or even human performance)

◼ Recent advances indicate shift towards nonlinearity, but…

◼ ...the “multiply-accumulate” (= linear) operations of the perceptron are still ubiquitous

Our Questions:

• Are dot products and convolutions the only biologically plausible models of neuronal computation?

• Can we use results and tools from “nonlinear” mathematics to reason about complexity and 

dimension of learning models in current literature?
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Rosenblatt's perceptron

◼ Introduced in 1943, still prevalent neural model

◼ Activation:

◼ Nonlinearity at the output (e.g logistic sigmoid, ReLU):

◼ Multiply-accumulate architecture → archetypal building block of all 

architectures (e.g. fully-connected, convolutional etc.)
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Morphological (Max-Plus) Perceptron

◼ Introduced in the 1990’s. Instead of multiply-accumulate, computes a 
dilation  (max-of-sums):

◼ Ritter & Urcid (2003): argued about biological plausibility and proved 
that every compact region in n-dim Euclidean space can be 
approximated by morphological perceptrons to arbitrary accuracy.

◼ Related to a Maxout unit.

or an erosion:
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Feasible Regions & Separability Condition for Max-plus Percepton

[ Charisopoulos & Maragos, ISMM 2017 ]

Max-plus perceptron

Feasible Region = Tropical Polyhedron

Separability Condition, equivalent 

to Nonempty Trop. Polyhedron
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Morphological Neural Nets (MNNs) and Training Approaches

• Constructive Algorithms

Dendrite Learning [Ritter & Urcid, 2003], Iterative Partitioning / Competitive Learning [Sussner & Esmi, 2011]: combine (max, +) 
and (min, +) classifiers, build “bounding boxes” around patterns

- "perfect" fit to data, no concept of outlier

• Morphological Associative Memories

Introduce a Hopfield-type network, computing (noniteratively) a morphological/fuzzy response (e.g. Sussner & Valle, 2006):

• PAC Learning 

Min-max classifiers [Yang & Maragos, 1995]

• Gradient Descent Variants

MRL nodes [Pessoa & Maragos, 2000], Dilation-Erosion Linear Perceptron [Araujo et al. 2012].

• Recent Approaches:

Convex-Concave Programming (CCP) for Max-plus Perceptron and DEP  (Binary Classification) [Charisopoulos & Maragos 2017 ]

Reduced Dilation-Erosion Perceptron (r-DEP)  trained via CCP  for Binary Classification [Valle 2020]

Dense Morphological Networks [Mondal et al. 2019] 

Deep Morphological Networks [Franchi et al. 2020]

r-DEP for Multiclass Classification via CCP,  L1 Pruning on Dense MNNs [Dimitriadis & Maragos 2021]
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A CCP Approach for Training MP on Non-separable Data

Training a (max, +) perceptron can be stated as a difference-of-convex (DC) optimization problem.
Solved iteratively (but global optimum not guaranteed) by the Convex-Concave Procedure (CCP)
[Yuille & Rangarajan 2003], implemented via Disciplined CCP (DCCP - CvxPy) [Shen et al. 2016]

Given a sequence of training data

Some measure of "being outlier“ (e.g. proportional to 1/distance of the k-th
pattern from its class centroid)

(slack variables) Positive only if misclassification occurs at k-th pattern

Negative target

Positive target 

Weighted DCCP
[Charisopoulos & Maragos 2017] 
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Gradient Descent vs. CCP for Training (max,+) Perceptron

Two Binary Classification Experiments with small datasets,

Ripley (GMM-2) and  WBCD (~1k):

Gradient descent with fixed N = 100 epochs vs. CCP using 

the DCCP toolkit for CvxPy (default parameters).

CCP: more robust results

Classification of initially separable Gaussian 
data with randomly flipped labels 20%:

…… : No regularization (DCCP)

---- : Regularization (Weighted DCCP)
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Dilation-Erosion Perceptron (DEP)

Convex combination of one dilation and one erosion neuron:
𝑦 = 𝑓 𝒙 = 𝜆𝛿𝑤 𝒙 + 1 − 𝜆 𝜖𝑚(𝒙)
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Dilation-Erosion Perceptron Training

𝑦 = 𝑓 𝒙 = 𝜆𝛿𝑤 𝒙 + 1 − 𝜆 𝜖𝑚 𝒙 = 𝜆𝛿𝑤 𝒙 − 1 − 𝜆 −𝜖𝑚 𝒙
= 𝑐𝑜𝑛𝑣𝑒𝑥 − −𝑐𝑜𝑛𝑐𝑎𝑣𝑒
= 𝑐𝑜𝑛𝑣𝑒𝑥 − 𝑐𝑜𝑛𝑣𝑒𝑥

Training as Difference-of-Convex Optimization via Convex-Concave Programming
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Dense Morphological Networks

Dense Morphological Network with 2 hidden layers [similar to Mondal et al. 2019]

Focus on Sparsity [Dimitriadis & Maragos 2021] → Apply ℓ1 Pruning
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Experiments: Pruning Dense MNN vs MLP-ReLU
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Qualitative Perspectives on Sparsity

Examples of hidden layer activations for various NN models  (MNIST dataset)

𝛿, 𝜖 − 𝐴𝑑𝑎𝑚

𝛿, 𝜖 − 𝑆𝐺𝐷 FF-ReLU −𝑆𝐺𝐷

FF−ReLU − 𝐴𝑑𝑎𝑚
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References:
• G. Smyrnis, P. Maragos and G. Retsinas, “MaxPolynomial Division With Application to Neural

Network Simplification”, Proc. ICASSP 2020.

• G. Smyrnis and P. Maragos, “Multiclass Neural Network Minimization Via Tropical Newton

Polytope Approximation”, Proc. ICML 2020.

Minimization of Neural Nets via 
Tropical Division
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General idea for Geometric NN Minimization

Original Network Polytope Approximate Network Polytope
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Reminder: Tropical Polynomials and Newton Polytopes

Tropical Polynomials

Tropical Semiring 

Real coefficients

Newton Polytopes

Polytope computation
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Example: Polytope Computation
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Max-polynomial Division

Problem: Assume we have two max-polynomials 𝑝(𝒙), 𝑑(𝒙)

(dividend and divisor). We want to find two max-polynomials 

𝑞(𝒙), 𝑟(𝒙) (quotient and remainder) such that:

𝑝(𝒙) = max(𝑞(𝒙) + 𝑑(𝒙), 𝑟(𝒙))

However! The above is not always feasible (non-trivially).

Approximate Division: We relax the requirements, so that 

the polynomials we want to find satisfy:

𝑝 𝒙 ≥ max(𝑞(𝒙) + 𝑑(𝒙), 𝑟(𝒙))

We also require that 𝑞(𝒙), 𝑟(𝒙) satisfy the above maximally. 
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Algorithm for Approximate Maxpolynomial Division

1. Let 𝐶 be the set of possible 

vectors 𝒄 by which we can h-shift 

Newt(𝑑) (each of which 

corresponds to a linear term in 𝑞).

2. We raise the shifted version of 

ENewt(𝑑) as high as possible so 

that it still lies below ENewt(𝑝), 

and we mark the vertical shift as 

𝑞𝑐.

3. We set the quotient equal to:

𝑞(𝒙) = max
𝒄∈𝐶

(𝑞𝒄 + 𝒄𝑇𝒙)

and add all terms not covered by

an h-shift 𝒄 to the remainder 𝑟(𝒙).

Figure: Division Method 

Division of  𝑝 𝑥 = max 3𝑥, 2𝑥 + 1.5, 𝑥 + 1, 0
by 𝑑(𝑥) = max(𝑥, 0). 
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Division Example

Figure: Division of 𝑝(𝑥) = max(3𝑥, 2𝑥 + 1.5, 𝑥 + 1, 0) by 𝑑(𝑥) = max(𝑥, 0). 

Note: The Newton Polytope of the divisor is raised as much as possible, but it cannot 

match the polytope of the dividend exactly. Thus, only 3 out of the 4 vertices are 

perfectly matched.
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Application to Neural Network Minimization

General idea: Our algorithm seeks to minimize the network by 

matching the most important vertices of the ENewton Polytopes of 

its maxpolynomials.

2-layer 1-output NN:

The NN considered is the difference of two maxpolynomials.

For each of the two (+,-) maxpolynomials 𝑝(𝒙) of the network, we 

first find a divisor 𝑑(𝒙). This is done by:

Finding the most important vertices of ENewt(𝑝), via the weights of 

the network (based on which combination of neurons is activated).
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Method for Single Output Neuron

• Final polytope (right) is precisely under the original (left).

• The process is a “smoothing” of the original polytope. 

(From the 8 vertices of the original-yellow polytope we keep only the 

4 blue which comprise the vertices of the final-red polytope.)
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Properties of Trop. Div. Approximation  Method

1. Approximate polytope contains only vertices of the original.

2. The input samples activating the chosen vertices have the same output in the two networks.

3. At least    
𝑁

σ𝑗=0
𝑑 𝑛

𝑗

𝑂(log 𝑛′) samples retain their output 

(𝑁 is # of samples, 𝑛 and 𝑛′ the # of neurons in hidden layer before and after the approximation). 

Note: this is not a tight bound.

Original Network Polytope Approximate Network Polytope
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Extension with Multiple Output Neurons

• What we have: Multiple polytopes (one pair for each output 

neuron), interconnected (Minkowski sums of same hidden 

neurons but with different scaling weights).

• What we want: Simultaneous approximation of all polytopes.

Upper hull of polytope, Neuron 1 Upper hull of polytope, Neuron 2
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Trop. Div. method for Multiple Outputs: One-Vs-All Framework

Duplicate Compress



79

Neurons Kept TropDiv Method, 

Avg. Accuracy

TropDiv Method, 

St. Deviation

Original 98.604 0.027

75% 96.560 1.245

50% 96.392 1.177

25% 95.154 2.356

10% 93.748 2.572

5% 92.928 2.589

Neurons Kept TropDiv Method, 

Avg. Accuracy

TropDiv Method, 

St. Deviation

Original 88.658 0.538

75% 83.556 2.885

50% 83.300 2.799

25% 82.224 2.845

10% 80.430 3.267

Fashion-

MNIST

Dataset

Experiments: Trop. Division NN Minimization

MNIST

Dataset

[G. Smyrnis & P. Maragos, “Multiclass Neural Net Minimization, Tropical Newton Polytope Approximation”, ICML 2020]
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Reference:
• P. Misiakos, G. Smyrnis, G. Retsinas and P. Maragos, “Neural Network Approximation

based on Hausdorff distance of Tropical Zonotopes”, Proc. ICLR 2022.

• K. Fotopoulos, P. Maragos and P. Misiakos, “Structured Neural Network Compression

Using Tropical Geometry”, ArXiv 2024.

Minimization of Neural Nets via 
Newton Polytope Approximation
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Neural Network Compression

SoA architectures improve accuracy by adding 

complexity! 

✓ e.g. Increasing depth/width/connectivity

Optimize/compress a model with respect to:

∎ #parameters ∎ FLOPS

∎ memory footprint ∎ parallelization

Solutions: 

Bottleneck layers, Shared Weights, Tensor 

Decomposition, Quantization, Pruning/Sparsification

DNNs

Data

Resources

DNNs

Real-life
applications

Real-time 
applications

Pruning: Find weights/neurons with the least contribution

✓ Pruning individual weights vs channels/neurons

Two notable approaches: 

▪ Minimum magnitude

▪ Minimum inducing error

Iterative process:

1) Prune 2) Re-train

S. Han et al. “Learning both weights and connections for efficient neural network”, NIPS 2015

Pruning via Zonotope Approximation
P. Misiakos,…, P. Maragos, “Neural Network Approximation 

based on Hausdorff Distance of Tropical Zonotopes”, ICLR, 2022
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Neural Network Tropical Geometry: Polynomials

Tropical polynomial

Tropical rational function

th hidden layer neuron

th output layer neuron

1 hidden layer with ReLU

activations
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Neural Network Tropical Geometry: Polytopes

Generators of the zonotopes

is a linear segment

Positive and Negative 

zonotopes – or polytopes 

for deeper NNs
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Approximate Extended Newton Polytopes

vertices of the upper envelope of the 

extended Newton polytope
linear regions

Approximate extended Newton 

polytopes

Approximate tropical 

polynomials
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Approximating Tropical Polynomials

Hausdorff distance

of polytopes

Proposition Let                               and consider 

the polytopes                                                        . 

Then,
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Neural Network Approximation Theorem

Theorem: Consider two neural networks         with 

output size      and                           be the positive and 

negative extended Newton polytopes of         

respectively. Then,

Approximately equal 

polytopes 

Approximately equivalent 

networks 

[ P. Misiakos, G. Smyrnis, G. Retsinas and P. M., Proc. ICLR 2022. ]
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Zonotope K-Means

K-means on the positive and negative zonotope generators
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Neural Path K-means

K-means on the vectors associated with the 

neural paths

Generalization for multi-output networks
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Performance Results: Comparison with tropical division

[ P. Misiakos, G. Smyrnis, G. Retsinas and P. M., “Neural Network Approximation based on Hausdorff Distance of Tropical Zonotopes”, Proc. ICLR 2022 ]

Binary Classification Experiments

Multiclass Classification Experiments
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Comparison with Baselines
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Comparison with ThiNet and Baselines

[ P. Misiakos, G. Smyrnis, G. Retsinas and P. M., “Neural Network Approximation based on Hausdorff Distance of Tropical Zonotopes”, Proc. ICLR 2022 ]
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Recent Results on Compressing Linear/Conv ReLU NNs on (F)MINST db

[ K. Fotopoulos, P.M., P. Misiakos, 

ArXiv 2024. ]
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Recent Results on Compressing Linear/Conv ReLU NNs on CIFAR db

[ K. Fotopoulos, P.M., P. Misiakos, 

ArXiv 2024. ]
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Tropical Regression and 
Piecewise-Linear Surface Fitting

Main References:
▪ P. Maragos and E. Theodosis, “Multivariate Tropical Regression and Piecewise-Linear Surface Fitting”,

Proc. ICASSP, 2020.

▪ P. Maragos, V. Charisopoulos and E. Theodosis, “Tropical Geometry and Machine Learning”,

Proceedings of the IEEE, 2021.

Related:
▪ A. Magnani and S. Boyd, “Convex piecewise-linear fitting,” Optim. Eng., 2009.

▪ J. Hook, “Linear regression over the max-plus semiring: Algorithms and applications,” ArXiv 2017.

▪ A. Ghosh et al., “Max-Affine Regression: Parameter Estimation for Gaussian Designs”, IEEE T-Info. Theory, 2022.
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Optimal Regression for Fitting Euclidean vs Tropical Lines
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Solve  Max-plus Equations

Sparse solutions: [Tsiamis & Maragos 2019], [Tsilivis et al. 2021]

Lattice Projection:
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Optimally Fitting Tropical Lines to Data

1,...,

i

: Fit a tropical line  to noisy ,   1,..., ,

where    by minimizing  norm of error

Greatest Subsolution 

max( ,

(GLE)

) data ( , )

+err :

ˆ ˆˆ ˆ ˆ:  ( , ),   MIN  ,  MIN
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i

i i
i i
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= =

=

−

+

=

=

 
ˆ:  ,   GLE error /2

                                

Min Max Abs. Error (MMAE) Solution w w   = + =
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Numerical Examples of Optimally Fitting Tropical Lines to Data

1,...,

i

: Fit a tropical line  to noisy ,   1,..., 200,

where    by minimizing  of error:

Greatest Subsolution ( ˆ ˆˆ ˆ ˆ:  ( , ),   MIN  

max( , ) data ( , )

+error

,GLE)

M

  MIN

Problem i

i

i

i

i
i i

i

y a x b i m

w a b a f x

x f

f y

b f



= +

=

= =

= = − =

 i ˆ:  ,   GLE error /2

                                

n Max Abs. Error (MMAE) Solution w w   = + =

Ground Truth:

y = max(x-2,3)
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Optimal Fitting 1D Max-Plus Tropical Polynomials to Data
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Optimal Fitting Max-Plus Tropical Planes to Data

1,...,

: Fit a   to noisy ,

where  +error, 1,..., 100,  by minimizing  norm of error:
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) Greatest Subsolution (G

(

L

, , ) data ( , , )

 

Min Max 

 

Abs

E)

Problem

i i

i i i

f z i m

z a x b y c x y

w a b c

f



= + +

= = =

=

 
ˆ:  ,   GLE error. Error (MMAE) So /2
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GLE MMAE

Ground Truth:

z = max(x + 5, y + 7, 9)

Noise: N(0,1)
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Optimal Fitting 2D Higher-degree Tropical Polynomials to Data
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Optimal Solutions of Max-Plus 

Equations and Sparsity

References:
• A. Tsiamis and P. Maragos, “Sparsity in Max-plus Algebra”, Discrete Events Dynamic Systems, 2019.

• N. Tsilivis, A. Tsiamis and P. Maragos, “Sparsity in Max-plus Algebra And Applications in Multivariate Convex Regression”,

ICASSP, 2021.

• N. Tsilivis, A. Tsiamis and P. Maragos, “Sparse Approximate Solutions to Max-Plus Equations”, Int’l Conf. Discrete Geometry

and Mathematical Morphology, 2021.

• N. Tsilivis, A. Tsiamis and P. Maragos, “Toward a Sparsity Theory on Weighted Lattices”, Journal of Mathematical Imaging and

Vision, 2022.
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◼ A sparse vector 𝒛 ∈ ℝmax
𝑛 has many −∞ elements.

◼ Let supp(𝒙) be the support (the set of finite indices)

◼ We solve the following problems:

Exact 
solution

Approximate 
solution

• NP-complete problem (~minimum set cover).  Use greedy algorithms.

• Submodularity tools provide suboptimality bounds. 

• Extensions to other Lp norms  [Tsilivis, Tsiamis & Maragos, DGMM 2021]

Sparsest  Solution to Max-Plus Equation [Tsiamis & Maragos, DEDS 2019]Sparsest  Solution to Max-Plus Equation
[Tsiamis & Maragos, DEDS 2019]
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Sparsest  Solution to Max-Plus Equation [Tsiamis & Maragos, DEDS 2019]Sparsest Solution to Max-Plus Equation – General Norms

• Extensions to other Lp norms [Tsilivis, Tsiamis & Maragos, DGMM 2021]​

• Greedy algorithm, as in p=1 – similar analysis.

• Provides heuristic for sparse solutions without the monotonicity constraint:

• Best approximation error among all vectors with same support.

• Applications:

o Morphological Neural Networks Minimization

o Convex Regression
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Sparsest  Solution to Max-Plus Equation [Tsiamis & Maragos, DEDS 2019]Morphological Neural Networks Minimization

• Sparse Solutions to Max-Plus Equations: neuron pruning in Morphological Neural Networks.

• Experiments on image classification datasets:

[Tsilivis, Tsiamis & Maragos, 

DGMM 2021]

Same performance, 

Less neurons
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Sparsest  Solution to Max-Plus Equation [Tsiamis & Maragos, DEDS 2019]Multivariate Convex Regression

• Convex functions as piecewise linear

• Approximation from data by solving max-plus systems of equations.

• Sparsity = Few affine regions.

• Improved results over non-sparse 

approximation:

[Tsilivis, Tsiamis & Maragos, ICASSP 2021]
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Generalized Tropical Versions of Lines & Planes over Max-* Algebras

Max-plus Tropical Line Max-product Tropical Line Max-min Tropical Line

max( , )y a x b= + max( , )y a x b=  max(min( , ), )y a x b=

SoftMax-SoftMin Tropical Line
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▪ Tropical Geometry, and its underlying  max-plus algebra, provide principled and 
insightful tools for analysis of NNs with PWL activations and other ML systems. 

▪ NNs with nonlinear max/min-plus nodes: similar performance and superior 
compression ability compared to linear counterparts. Trained via CCP or SGD/Adam.

▪ Tropical Regression: Tropical Polynomials for multidimensional data fitting using 
PWL functions. Low-complexity algorithm from optimal solutions of max-plus eqns.

▪ NN Minimization: TG offers effective and insightful tools for compression of NNs.

▪ Future work: deeper networks, nonconvex settings, more general functions using 
max-* algebra on weighted lattices.  Tropical Approximation: theory & applications.

Conclusions

For more information, demos, and current results:  

http://robotics.ntua.gr and  http://cvsp.cs.ntua.gr

http://robotics.ntua.gr/
http://cvsp.cs.ntua.gr/
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