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The task: scRNA-seq to cell type

 Cells of an organism have all the same DNA...

 ...but they can be very different!

 Different cell types use different genes 

from the huge DNA library (genome)

 Genes “in use” are transcribed to RNA

 Single-cell RNA sequencing (scRNA-seq)
detects the RNA molecules in the cells

 For each cell in a sample and each gene

in the genome we get a molecule count

 Task: classify cells by type, 

from gene counts of RNA
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The task: scRNA-seq to cell type

 Common approach: no neural networks (NN), unsupervised

clustering [Seurat, Scanpy]

 Alternative 1: use NN, unsupervised

variational autoencoder clustering [scvi]

 Alternative 2: no NN, self-supervised with pseudo-labels

logistic regression [CellTypist]

 Why not to use NN with pseudo-labels?
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Transcriptomics challenges

 Genes can be very different

 Constitutive genes are needed for all cell types

 Marker genes are specific to one type of cells

 Regulatory genes switch on/off other genes (low expression)

 Useful to rank genes by variability of expression in the sample

 Most methods restrict the genome to the highly variable genes
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Transcriptomics challenges

 Cell types are not well defined

 There is really a continuum of types

 They show a hierarchical structure

 Clustering yields pseudo-labels
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 Expression levels 𝑋𝑖,𝑗 = log(1 + 𝑐𝑅𝑖,𝑗/𝑅𝑖,∗) as input

 Pseudo-labels 𝑌𝑖 as output

 Some neural network as classifier

 There is no foundation model

 We investigate network architectures fit for scRNA-seq data
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The dataset: 10k PBMC sample

 Peripheral Blood Mononuclear Cells (PBMC) [10x]

 𝑀 = 10114 cells

 𝑁 = 13054 genes

 Sparse counts 𝑅𝑖,𝑗

 80% genes 𝑅∗,𝑗 < 0.2

 15% genes 𝑅∗,𝑗 < 0.01

 5% genes have counts only 0 and 1
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89% 7.5% 1.5% 2%
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The dataset: 10k PBMC sample

 𝑪 = 𝟖𝟔 classes (pseudo-labels)

 statistically uniform [COTAN]

 no biological information

 smallest has 17 cells, largest 404

 genes sorted by variability

 only the first 2000 used in the 

typical pipeline 
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 𝑛 highest variability genes are used as input

 𝑛 from 100 to 𝑁 = 13054

 AdamW optimizer

 Strong L² regularization, standard learning rate

 3 replicates per experiment

 10k cells split in 70% training, 15% validation, 15% test

(stratified for labels)

 Score is test accuracy (TA) for the model with best validation 

accuracy (checked at epoch end)
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 top TA 55.4% at 𝑛 = 1800

 for large 𝑛, TA decreases from 49% to 44%
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Fully connected NN (MLP)

 1 hidden layer with 64 units

 64(𝑛+86) parameters, from 12k to 0.84M

 top TA 63.7% at 𝑛 = 1800

 for large 𝑛, TA decreases from 57% to 52%
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65%
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n (input genes)
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Graphs of genes

 Gene networks are graphs of genes (10k+ papers per year)

 Connected by functionality or co-expression in cell types

 Common to start from a correlation matrix

 Get an adjacency matrix by hard threshold

 Can get several graphs with different thresholds

 We use the coex matrix [COTAN]

 G1: corr > 0.054, G2: corr < −0.06
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Straightforward GNN models

 Nodes are not exchangeable: global pooling does not 

work

 Basic structure:

 start with all 𝑁 genes

 two GNN layers with 16 and 1 features per node

 restrict to 𝑛 nodes (𝑛 highest variability genes)

 flatten, then MLP (as before, 1 hidden layer with 64 units)
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Straightforward GNN models

 Ideas to improve:

 skip connection (after GNN, add the input)

 extend 1-dim input with features of the gene population

 use several graphs in parallel for the first layer,

concatenate before second layer
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Common GNN layers

 Nothing works: best performance worse 

than MLP

 GNN layers average features among 

neighbours

 In gene networks, neighbours:

 are correlated with the central node, but

 they are not similar to each other

 they belong to different families

 they are correlated for different reasons

 We should make several averages within 
different families
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Common GNN layers

 Multi-head GAT

 Still doesn’t work

 (Maybe also because it needs richer input features)
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Graph Cheat-Attention Network
(tentative name)

 We add as input features, specific signatures of each gene

 these signatures are vectors in ℝ𝐷 (we use 𝐷 = 64)

 they are trained to be similar for genes that are similar for our task

 to this end, we introduce an auxiliary MLP using all genes

 the signatures are the weights of the first fully connected layer

the column 𝑊0
(𝑖)

is the signature of gene 𝑖
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 Compare GCAT and GAT

 𝑊 is different for 𝑖

 either 𝐾 or dim(𝑊𝑥) is large

 𝛼 does not depend on 𝑥...

...only on the signatures

 sum of 𝛼’s can be less than 1
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 auxiliary MLP (1 hidden layer with 64 units)

 64-dim gene signatures

 cheat-attention with 64 heads

 1 GCAT layer using two graphs

 1 graph convolutional layer with 1 output

 ~64(𝑁 + 𝑛) parameters, from 0.85M to 1.7M

 top TA 64.8% at 𝑛 = 1800

 for large 𝑛, TA stays at about 60%
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for the attention


