Geometric Deep Learning for gene networks

FRANCESCO MORANDIN
UNIVERSITY OF PARMA

Curios Al lab

- Maurizio Parton (University of Chieti-Pescara)
- Carlo Metta (ISTI, CNR Pisa)
- Marco Fantozzi (University of Parma)
- Alessandro Marchetti (Campus Biomedico, Roma)
- Silvia Galfrè (University of Pisa)
- Antonio Di Cecco (University of Chieti-Pescara) f
- **...**

Super work-in-progress

- Super work-in-progress
- ► There is some biology

- Super work-in-progress
- ► There is some biology
- Very applied research

Cells of an organism have all the same DNA...

- ▶ Cells of an organism have all the same DNA...
- ...but they can be very different!

- Cells of an organism have all the same DNA...
- ...but they can be very different!
- Different cell types use different genes from the huge DNA library (genome)

- Cells of an organism have all the same DNA...
- ...but they can be very different!
- Different cell types use different genes from the huge DNA library (genome)
- ► Genes "in use" are transcribed to RNA

- Cells of an organism have all the same DNA...
- ...but they can be very different!
- Different cell types use different genes from the huge DNA library (genome)
- Genes "in use" are transcribed to RNA
- Single-cell RNA sequencing (scRNA-seq) detects the RNA molecules in the cells

- Cells of an organism have all the same DNA...
- ...but they can be very different!
- Different cell types use different genes from the huge DNA library (genome)
- Genes "in use" are transcribed to RNA
- Single-cell RNA sequencing (scRNA-seq) detects the RNA molecules in the cells
- For each cell in a sample and each gene in the genome we get a molecule count

- Cells of an organism have all the same DNA...
- ...but they can be very different!
- Different cell types use different genes from the huge DNA library (genome)
- Genes "in use" are transcribed to RNA
- Single-cell RNA sequencing (scRNA-seq) detects the RNA molecules in the cells
- For each cell in a sample and each gene in the genome we get a molecule count
- Task: classify cells by type, from gene counts of RNA

	TUBB2A	ZNF217	SNHG7	STK19	KIAA1324	RNF41	RASA3	ELP1	THRA	LINC01431	label
AAACCTGAGAGTGAGA	0	0	0	0	0	0	1	0	0	0	82
AAACCTGAGGCATTGG	0	0	0	1	0	0	0	0	0	0	19
AAACCTGCACCAGGTC	0	0	0	0	0	0	0	0	0	0	28
AAACCTGCAGGGATTG	0	0	0	0	0	0	2	0	0	0	58
AAACCTGCAGTCAGAG	0	0	0	0	0	0	1	0	0	0	66
TTTGTCAGTTGATTCG	0	0	0	0	0	0	0	0	0	0	37
TTTGTCATCATAACCG	0	0	0	0	0	0	1	0	0	0	63
TTTGTCATCATCATTC	0	0	0	0	0	0	0	0	0	0	34
TTTGTCATCATGCTCC	0	0	3	0	1	1	1	0	0	0	65
TTTGTCATCCACGTTC	0	0	0	0	0	0	0	0	0	0	63
10137 rows × 13055 column	S										

Common approach: no neural networks (NN), unsupervised

Common approach: no neural networks (NN), unsupervised clustering [Seurat, Scanpy]

- Common approach: no neural networks (NN), unsupervised clustering [Seurat, Scanpy]
- Alternative 1: use NN, unsupervised

- Common approach: no neural networks (NN), unsupervised clustering [Seurat, Scanpy]
- Alternative 1: use NN, unsupervised
 variational autoencoder clustering [scvi]

- Common approach: no neural networks (NN), unsupervised clustering [Seurat, Scanpy]
- Alternative 1: use NN, unsupervised
 variational autoencoder clustering [scvi]
- Alternative 2: no NN, self-supervised with pseudo-labels

- Common approach: no neural networks (NN), unsupervised clustering [Seurat, Scanpy]
- Alternative 1: use NN, unsupervised
 variational autoencoder clustering [scvi]
- Alternative 2: no NN, self-supervised with pseudo-labels logistic regression [CellTypist]

- Common approach: no neural networks (NN), unsupervised clustering [Seurat, Scanpy]
- Alternative 1: use NN, unsupervised
 variational autoencoder clustering [scvi]
- Alternative 2: no NN, self-supervised with pseudo-labels logistic regression [CellTypist]
- Why not to use NN with pseudo-labels?

Sparsity: most counts are zero, some are hundreds

- **Sparsity:** most counts are zero, some are hundreds
- Many genes are expressed at few RNA molecules per cell

- **Sparsity:** most counts are zero, some are hundreds
- Many genes are expressed at few RNA molecules per cell
- **Low efficiency:** RNA molecules have a small probability of detection

- **Sparsity:** most counts are zero, some are hundreds
- Many genes are expressed at few RNA molecules per cell
- **Low efficiency**: RNA molecules have a small probability of detection
- Many zeros would be non-zero with a higher efficiency

- **Sparsity:** most counts are zero, some are hundreds
- Many genes are expressed at few RNA molecules per cell
- Low efficiency: RNA molecules have a small probability of detection
- Many zeros would be non-zero with a higher efficiency
- ▶ **High dimensionality:** number of genes $N \sim 15k$

- **Sparsity:** most counts are zero, some are hundreds
- Many genes are expressed at few RNA molecules per cell
- Low efficiency: RNA molecules have a small probability of detection
- Many zeros would be non-zero with a higher efficiency
- ▶ **High dimensionality:** number of genes $N \sim 15k$
- Non-continuity: small integers are hardly Gaussian variables

- **Sparsity:** most counts are zero, some are hundreds
- Many genes are expressed at few RNA molecules per cell
- Low efficiency: RNA molecules have a small probability of detection
- Many zeros would be non-zero with a higher efficiency
- ▶ **High dimensionality**: number of genes $N \sim 15k$
- Non-continuity: small integers are hardly Gaussian variables
- Expression levels X behave a little better than raw counts R

- **Sparsity:** most counts are zero, some are hundreds
- Many genes are expressed at few RNA molecules per cell
- **Low efficiency**: RNA molecules have a small probability of detection
- Many zeros would be non-zero with a higher efficiency
- ▶ **High dimensionality**: number of genes $N \sim 15k$
- Non-continuity: small integers are hardly Gaussian variables
- Expression levels X behave a little better than raw counts R

$$\{0, 1, 2, \dots\} \ni R_{i,j} \to X_{i,j} := \log\left(1 + \frac{10^4}{N} \frac{R_{i,j}}{R_{i,*}}\right), \quad \text{cell } i, \text{gene } j$$

Genes can be very different

- Genes can be very different
- Constitutive genes are needed for all cell types

- Genes can be very different
- Constitutive genes are needed for all cell types
- Marker genes are specific to one type of cells

- Genes can be very different
- Constitutive genes are needed for all cell types
- Marker genes are specific to one type of cells
- Regulatory genes switch on/off other genes (low expression)

- Genes can be very different
- Constitutive genes are needed for all cell types
- Marker genes are specific to one type of cells
- Regulatory genes switch on/off other genes (low expression)
- Useful to rank genes by variability of expression in the sample

- Genes can be very different
- Constitutive genes are needed for all cell types
- Marker genes are specific to one type of cells
- Regulatory genes switch on/off other genes (low expression)
- Useful to rank genes by variability of expression in the sample
- Most methods restrict the genome to the highly variable genes

Cell types are not well defined

- Cell types are not well defined
- There is really a continuum of types

- Cell types are not well defined
- There is really a continuum of types
- They show a hierarchical structure

- Cell types are not well defined.
- There is really a continuum of types
- They show a hierarchical structure
- Clustering yields pseudo-labels

Expression levels $X_{i,j} = \log(1 + cR_{i,j}/R_{i,*})$ as input

- **Expression levels** $X_{i,j} = \log(1 + cR_{i,j}/R_{i,*})$ as input
- ightharpoonup Pseudo-labels Y_i as output

- **Expression levels** $X_{i,j} = \log(1 + cR_{i,j}/R_{i,*})$ as input
- ightharpoonup Pseudo-labels Y_i as output
- Some neural network as classifier

- **Expression levels** $X_{i,j} = \log(1 + cR_{i,j}/R_{i,*})$ as input
- \triangleright Pseudo-labels Y_i as output
- Some neural network as classifier
- There is no foundation model

- **Expression levels** $X_{i,j} = \log(1 + cR_{i,j}/R_{i,*})$ as input
- \triangleright Pseudo-labels Y_i as output
- Some neural network as classifier
- There is no foundation model
- We investigate network architectures fit for scRNA-seq data

Peripheral Blood Mononuclear Cells (PBMC) [10x]

- Peripheral Blood Mononuclear Cells (PBMC) [10x]
- M = 10114 cells

- Peripheral Blood Mononuclear Cells (PBMC) [10x]
- M = 10114 cells
- N = 13054 genes

- Peripheral Blood Mononuclear Cells (PBMC) [10x]
- M = 10114 cells
- N = 13054 genes
- \triangleright Sparse counts $R_{i,j}$

0	1	2	3+		
89%	7.5%	1.5%	2%		

- Peripheral Blood Mononuclear Cells (PBMC) [10x]
- M = 10114 cells
- N = 13054 genes
- \triangleright Sparse counts $R_{i,i}$

0	1	2	3+
89%	7.5%	1.5%	2%

▶ 80% genes $R_{*,j} < 0.2$

- Peripheral Blood Mononuclear Cells (PBMC) [10x]
- M = 10114 cells
- N = 13054 genes
- \triangleright Sparse counts $R_{i,j}$

0	1	2	3+		
89%	7.5%	1.5%	2%		

- ▶ 80% genes $R_{*,j} < 0.2$
- ▶ 15% genes $R_{*,j}$ < 0.01

- Peripheral Blood Mononuclear Cells (PBMC) [10x]
- M = 10114 cells
- N = 13054 genes
- \triangleright Sparse counts $R_{i,j}$

0	1	2	3+		
89%	7.5%	1.5%	2%		

- ▶ 80% genes $R_{*,j} < 0.2$
- ▶ 15% genes $R_{*,j} < 0.01$
- ▶ 5% genes have counts only 0 and 1

	TUBB2A	ZNF217	SNHG7	STK19	KIAA1324	RNF41	RASA3	ELP1	THRA	LINC01431	label
AAACCTGAGAGTGAGA	0	0	0	0	0	0	1	0	0	0	82
AAACCTGAGGCATTGG	0	0	0	1	0	0	0	0	0	0	19
AAACCTGCACCAGGTC	0	0	0	0	0	0	0	0	0	0	28
AAACCTGCAGGGATTG	0	0	0	0	0	0	2	0	0	0	58
AAACCTGCAGTCAGAG	0	0	0	0	0	0	1	0	0	0	66
TTTGTCAGTTGATTCG	0	0	0	0	0	0	0	0	0	0	37
TTTGTCATCATAACCG	0	0	0	0	0	0	1	0	0	0	63
TTTGTCATCATCATTC	0	0	0	0	0	0	0	0	0	0	34
TTTGTCATCATGCTCC	0	0	3	0	1	1	1	0	0	0	65
TTTGTCATCCACGTTC	0	0	0	0	0	0	0	0	0	0	63
10137 rows × 13055 column	S										

	TUBB2A	ZNF217	SNHG7	STK19	KIAA1324	RNF41	RASA3	ELP1	THRA	LINC01431	label
AAACCTGAGAGTGAGA	0.0	0.0	0.000	0.000	0.00	0.000	1.265	0.0	0.0	0.0	82
AAACCTGAGGCATTGG	0.0	0.0	0.000	2.678	0.00	0.000	0.000	0.0	0.0	0.0	19
AAACCTGCACCAGGTC	0.0	0.0	0.000	0.000	0.00	0.000	0.000	0.0	0.0	0.0	28
AAACCTGCAGGGATTG	0.0	0.0	0.000	0.000	0.00	0.000	1.806	0.0	0.0	0.0	58
AAACCTGCAGTCAGAG	0.0	0.0	0.000	0.000	0.00	0.000	1.265	0.0	0.0	0.0	66
TTTGTCAGTTGATTCG	0.0	0.0	0.000	0.000	0.00	0.000	0.000	0.0	0.0	0.0	37
TTTGTCATCATAACCG	0.0	0.0	0.000	0.000	0.00	0.000	1.265	0.0	0.0	0.0	63
TTTGTCATCATCATTC	0.0	0.0	0.000	0.000	0.00	0.000	0.000	0.0	0.0	0.0	34
TTTGTCATCATGCTCC	0.0	0.0	2.408	0.000	3.66	2.434	1.265	0.0	0.0	0.0	65
TTTGTCATCCACGTTC	0.0	0.0	0.000	0.000	0.00	0.000	0.000	0.0	0.0	0.0	63
10137 rows × 13055 column	s										

C = 86 classes (pseudo-labels)

- C = 86 classes (pseudo-labels)
- statistically uniform [COTAN]

- C = 86 classes (pseudo-labels)
- statistically uniform [COTAN]
- no biological information

- C = 86 classes (pseudo-labels)
- statistically uniform [COTAN]
- no biological information
- smallest has 17 cells, largest 404

- C = 86 classes (pseudo-labels)
- statistically uniform [COTAN]
- no biological information
- smallest has 17 cells, largest 404
- genes sorted by variability

- ightharpoonup C = 86 classes (pseudo-labels)
- statistically uniform [COTAN]
- no biological information
- smallest has 17 cells, largest 404
- genes sorted by variability
- only the first 2000 used in the typical pipeline

n highest variability genes are used as input

- n highest variability genes are used as input
- \rightarrow *n* from 100 to N = 13054

- \triangleright *n* highest variability genes are used as input
- \rightarrow *n* from 100 to N = 13054
- AdamW optimizer

- n highest variability genes are used as input
- \rightarrow *n* from 100 to N = 13054
- AdamW optimizer
- ▶ Strong L² regularization, standard learning rate

- n highest variability genes are used as input
- \rightarrow *n* from 100 to *N* = 13054
- AdamW optimizer
- ▶ Strong L² regularization, standard learning rate
- ▶ 3 replicates per experiment

- n highest variability genes are used as input
- \rightarrow *n* from 100 to N = 13054
- AdamW optimizer
- Strong L² regularization, standard learning rate
- 3 replicates per experiment
- ▶ 10k cells split in 70% training, 15% validation, 15% test (stratified for labels)

Vanilla models

- n highest variability genes are used as input
- \rightarrow *n* from 100 to *N* = 13054
- AdamW optimizer
- Strong L² regularization, standard learning rate
- 3 replicates per experiment
- 10k cells split in 70% training, 15% validation, 15% test (stratified for labels)
- Score is test accuracy (TA) for the model with best validation accuracy (checked at epoch end)

▶ 86n parameters, from 9k to 1.1M

- ▶ 86n parameters, from 9k to 1.1M
- ightharpoonup top TA 55.4% at n = 1800

- ▶ 86n parameters, from 9k to 1.1M
- \blacktriangleright top TA 55.4% at n=1800
- for large n, TA decreases from 49% to 44%

1 hidden layer with 64 units

- 1 hidden layer with 64 units
- \rightarrow 64(n+86) parameters, from 12k to 0.84M

- 1 hidden layer with 64 units
- \triangleright 64(n+86) parameters, from 12k to 0.84M
- \blacktriangleright top TA 63.7% at n=1800

- 1 hidden layer with 64 units
- \triangleright 64(n+86) parameters, from 12k to 0.84M
- \blacktriangleright top TA 63.7% at n=1800
- for large n, TA decreases from 57% to 52%

Gene networks are graphs of genes (10k+ papers per year)

- Gene networks are graphs of genes (10k+ papers per year)
- Connected by functionality or co-expression in cell types

- Gene networks are graphs of genes (10k+ papers per year)
- Connected by functionality or co-expression in cell types
- Common to start from a correlation matrix

	TUBB2A	ZNF217	SNHG7	STK19	KIAA1324	RNF41	RASA3	ELP1	THRA	LINC01431
TUBB2A	0.00000	0.00089	-0.00036	0.00866	0.01848	0.00160	-0.00428	0.00304	0.00128	-0.00438
ZNF217	0.00089	0.00000	-0.00257	0.02519	0.00926	0.01145	0.01328	0.00838	0.01100	0.00054
SNHG7	-0.00036	-0.00257	0.00000	-0.01815	-0.00393	0.00915	-0.02798	-0.01806	-0.02084	0.00027
STK19	0.00866	0.02519	-0.01815	0.00000	-0.01672	0.00245	0.00713	0.00877	0.00178	-0.00003
KIAA1324	0.01848	0.00926	-0.00393	-0.01672	0.00000	-0.00223	0.00609	0.00391	-0.01231	-0.00165
RNF41	0.00160	0.01145	0.00915	0.00245	-0.00223	0.00000	-0.02768	-0.00850	-0.01359	0.01427
RASA3	-0.00428	0.01328	-0.02798	0.00713	0.00609	-0.02768	0.00000	-0.00533	0.01680	-0.00589
ELP1	0.00304	0.00838	-0.01806	0.00877	0.00391	-0.00850	-0.00533	0.00000	-0.01805	-0.00478
THRA	0.00128	0.01100	-0.02084	0.00178	-0.01231	-0.01359	0.01680	-0.01805	0.00000	-0.00994
LINC01431	-0.00438	0.00054	0.00027	-0.00003	-0.00165	0.01427	-0.00589	-0.00478	-0.00994	0.00000

- Gene networks are graphs of genes (10k+ papers per year)
- Connected by functionality or co-expression in cell types
- Common to start from a correlation matrix
- Get an adjacency matrix by hard threshold

	TUBB2A	ZNF217	SNHG7	STK19	KIAA1324	RNF41	RASA3	ELP1	THRA	LINC01431
TUBB2A	0.00000	0.00089	-0.00036	0.00866	0.01848	0.00160	-0.00428	0.00304	0.00128	-0.00438
ZNF217	0.00089	0.00000	-0.00257	0.02519	0.00926	0.01145	0.01328	0.00838	0.01100	0.00054
SNHG7	-0.00036	-0.00257	0.00000	-0.01815	-0.00393	0.00915	-0.02798	-0.01806	-0.02084	0.00027
STK19	0.00866	0.02519	-0.01815	0.00000	-0.01672	0.00245	0.00713	0.00877	0.00178	-0.00003
KIAA1324	0.01848	0.00926	-0.00393	-0.01672	0.00000	-0.00223	0.00609	0.00391	-0.01231	-0.00165
RNF41	0.00160	0.01145	0.00915	0.00245	-0.00223	0.00000	-0.02768	-0.00850	-0.01359	0.01427
RASA3	-0.00428	0.01328	-0.02798	0.00713	0.00609	-0.02768	0.00000	-0.00533	0.01680	-0.00589
ELP1	0.00304	0.00838	-0.01806	0.00877	0.00391	-0.00850	-0.00533	0.00000	-0.01805	-0.00478
THRA	0.00128	0.01100	-0.02084	0.00178	-0.01231	-0.01359	0.01680	-0.01805	0.00000	-0.00994
LINC01431	-0.00438	0.00054	0.00027	-0.00003	-0.00165	0.01427	-0.00589	-0.00478	-0.00994	0.00000

- Gene networks are graphs of genes (10k+ papers per year)
- Connected by functionality or co-expression in cell types
- Common to start from a correlation matrix
- Get an adjacency matrix by hard threshold

	TUBB2A	ZNF217	SNHG7	STK19	KIAA1324	RNF41	RASA3	ELP1	THRA	LINC01431
TUBB2A	0	0	0	0	1	0	0	0	0	0
ZNF217	0	0	0	1	1	1	1	0	1	0
SNHG7	0	0	0	0	0	1	0	0	0	0
STK19	0	1	0	0	0	0	0	0	0	0
KIAA1324	1	1	0	0	0	0	0	0	0	0
RNF41	0	1	1	0	0	0	0	0	0	1
RASA3	0	1	0	0	0	0	0	0	1	0
ELP1	0	0	0	0	0	0	0	0	0	0
THRA	0	1	0	0	0	0	1	0	0	0
LINC01431	0	0	0	0	0	1	0	0	0	0

- Gene networks are graphs of genes (10k+ papers per year)
- Connected by functionality or co-expression in cell types
- Common to start from a correlation matrix
- Get an adjacency matrix by hard threshold

	TUBB2A	ZNF217	SNHG7	STK19	KIAA1324	RNF41	RASA3	ELP1	THRA	LINC01431
TUBB2A	0	0	0	0	1	0	0	0	0	0
ZNF217	0	0	0	1	1	1	1	0	1	0
SNHG7	0	0	0	0	0	1	0	0	0	0
STK19	0	1	0	0	0	0	0	0	0	0
KIAA1324	1	1	0	0	0	0	0	0	0	0
RNF41	0	1	1	0	0	0	0	0	0	1
RASA3	0	1	0	0	0	0	0	0	1	0
ELP1	0	0	0	0	0	0	0	0	0	0
THRA	0	1	0	0	0	0	1	0	0	0
LINC01431	0	0	0	0	0	1	0	0	0	0

- Gene networks are graphs of genes (10k+ papers per year)
- Connected by functionality or co-expression in cell types
- Common to start from a correlation matrix
- Get an adjacency matrix by hard threshold
- Can get several graphs with different thresholds

	TUBB2A	ZNF217	SNHG7	STK19	KIAA1324	RNF41	RASA3	ELP1	THRA	LINC01431
TUBB2A	0	0	0	0	1	0	0	0	0	0
ZNF217	0	0	0	1	1	1	1	0	1	0
SNHG7	0	0	0	0	0	1	0	0	0	0
STK19	0	1	0	0	0	0	0	0	0	0
KIAA1324	1	1	0	0	0	0	0	0	0	0
RNF41	0	1	1	0	0	0	0	0	0	1
RASA3	0	1	0	0	0	0	0	0	1	0
ELP1	0	0	0	0	0	0	0	0	0	0
THRA	0	1	0	0	0	0	1	0	0	0
LINC01431	0	0	0	0	0	1	0	0	0	0

- Gene networks are graphs of genes (10k+ papers per year)
- Connected by functionality or co-expression in cell types
- Common to start from a correlation matrix
- Get an adjacency matrix by hard threshold
- Can get several graphs with different thresholds

	TUBB2A	ZNF217	SNHG7	STK19	KIAA1324	RNF41	RASA3	ELP1	THRA	LINC01431
TUBB2A	0	0	0	0	0	0	0	0	0	0
ZNF217	0	0	0	0	0	0	0	0	0	0
SNHG7	0	0	0	1	0	0	1	1	1	0
STK19	0	0	1	0	1	0	0	0	0	0
KIAA1324	0	0	0	1	0	0	0	0	1	0
RNF41	0	0	0	0	0	0	1	0	1	0
RASA3	0	0	1	0	0	1	0	0	0	0
ELP1	0	0	1	0	0	0	0	0	1	0
THRA	0	0	1	0	1	1	0	1	0	0
LINC01431	0	0	0	0	0	0	0	0	0	0

- Gene networks are graphs of genes (10k+ papers per year)
- Connected by functionality or co-expression in cell types
- Common to start from a correlation matrix
- Get an adjacency matrix by hard threshold
- Can get several graphs with different thresholds
- We use the coex matrix [COTAN]

- Gene networks are graphs of genes (10k+ papers per year)
- Connected by functionality or co-expression in cell types
- Common to start from a correlation matrix
- Get an adjacency matrix by hard threshold
- Can get several graphs with different thresholds
- We use the coex matrix [COTAN]
- ► G1: corr > 0.054, G2: corr < -0.06

Atypical GNN task

The graph is **fixed** and independent from the samples (gene network)

- The graph is **fixed** and independent from the samples (gene network)
- ▶ Features at each node depend on the sample (=cell) to classify

- The graph is fixed and independent from the samples (gene network)
- Features at each node depend on the sample (=cell) to classify
- Only one scalar feature per node (expression levels)

- The graph is **fixed** and independent from the samples (gene network)
- Features at each node depend on the sample (=cell) to classify
- Only one scalar feature per node (expression levels)
- Graph-level task

- The graph is **fixed** and independent from the samples (gene network)
- Features at each node depend on the sample (=cell) to classify
- Only one scalar feature per node (expression levels)
- Graph-level task
- Nodes are not exchangeable: global pooling does not work

Nodes are not exchangeable: global pooling does not work

- Nodes are not exchangeable: global pooling does not work
- Basic structure:

- Nodes are not exchangeable: global pooling does not work
- Basic structure:
 - ▶ start with all *N* genes

- Nodes are not exchangeable: global pooling does not work
- Basic structure:
 - ▶ start with all *N* genes
 - **two GNN layers** with 16 and 1 features per node

- Nodes are not exchangeable: global pooling does not work
- Basic structure:
 - start with all N genes
 - **two GNN layers** with 16 and 1 features per node
 - restrict to n nodes (n highest variability genes)

- Nodes are not exchangeable: global pooling does not work
- Basic structure:
 - start with all N genes
 - ▶ two GNN layers with 16 and 1 features per node
 - ightharpoonup restrict to n nodes (n highest variability genes)
 - ▶ flatten, then MLP (as before, 1 hidden layer with 64 units)

Ideas to improve:

Straightforward GNN models

- Ideas to improve:
 - skip connection (after GNN, add the input)

Straightforward GNN models

- Ideas to improve:
 - skip connection (after GNN, add the input)
 - extend 1-dim input with features of the gene population

Straightforward GNN models

- Ideas to improve:
 - skip connection (after GNN, add the input)
 - extend 1-dim input with features of the gene population
 - use several graphs in parallel for the first layer, concatenate before second layer

► **GraphSAGE** [Hamilton, Ying, Leskovec, 2017]

GraphSAGE [Hamilton, Ying, Leskovec, 2017]

$$x_i' = W_1 x_i + W_2 \frac{1}{|\mathcal{N}(i)|} \sum_{j \in \mathcal{N}(i)} x_j$$

► **GraphSAGE** [Hamilton, Ying, Leskovec, 2017]

$$x_i' = W_1 x_i + W_2 \frac{1}{|\mathcal{N}(i)|} \sum_{j \in \mathcal{N}(i)} x_j$$

Graph Convolutional Network [Kipf, Welling, 2017]

GraphSAGE [Hamilton, Ying, Leskovec, 2017]

$$x_i' = W_1 x_i + W_2 \frac{1}{|\mathcal{N}(i)|} \sum_{j \in \mathcal{N}(i)} x_j$$

Graph Convolutional Network [Kipf, Welling, 2017]

$$x_i' = W \sum_{j \in \mathcal{N}(i) \cup \{i\}} \frac{1}{\sqrt{\hat{d}_i \, \hat{d}_j}} x_j$$

▶ Graph Attention Networks [Veličković et al, 2018]
GATv2 [Brody, Alon, Yahav, 2021]

Graph Attention Networks [Veličković et al, 2018]
GATv2 [Brody, Alon, Yahav, 2021]

$$x_i' = W_2 \sum_{j \in \mathcal{N}(i) \cup \{i\}} \alpha_{i,j} x_j$$

$$\alpha_{i,j} = \underset{j \in \mathcal{N}(i) \cup \{i\}}{\operatorname{softmax}} (a^{\mathsf{T}} \varphi(W_1 x_i + W_2 x_j))$$

Nothing works: best performance worse than MLP

Nothing works: best performance worse than MLP

- Nothing works: best performance worse than MLP
- GNN layers average features among neighbours

- Nothing works: best performance worse than MLP
- GNN layers average features among neighbours
- In gene networks, neighbours:

- Nothing works: best performance worse than MLP
- GNN layers average features among neighbours
- In gene networks, neighbours:
 - are correlated with the central node, but

- Nothing works: best performance worse than MLP
- GNN layers average features among neighbours
- In gene networks, neighbours:
 - are correlated with the central node, but
 - they are not similar to each other

- Nothing works: best performance worse than MLP
- GNN layers average features among neighbours
- In gene networks, neighbours:
 - are correlated with the central node, but
 - they are not similar to each other
 - they belong to different families

- Nothing works: best performance worse than MLP
- GNN layers average features among neighbours
- In gene networks, neighbours:
 - are correlated with the central node, but
 - they are not similar to each other
 - they belong to different families
 - they are correlated for different reasons

- Nothing works: best performance worse than MLP
- GNN layers average features among neighbours
- In gene networks, neighbours:
 - are correlated with the central node, but
 - they are not similar to each other
 - they belong to different families
 - they are correlated for different reasons
- We should make several averages within different families

Multi-head GAT

$$x_i' = \prod_{h=1}^K W_2^h \sum_{j \in \mathcal{N}(i) \cup \{i\}} \alpha_{i,j}^h x_j$$

$$\alpha_{i,j}^h = \underset{j \in \mathcal{N}(i) \cup \{i\}}{\operatorname{softmax}} (a_h^\mathsf{T} \varphi(W_1^h x_i + W_2^h x_j))$$

Multi-head GAT

$$x_i' = \prod_{h=1}^K W_2^h \sum_{j \in \mathcal{N}(i) \cup \{i\}} \alpha_{i,j}^h x_j$$

$$\alpha_{i,j}^h = \underset{j \in \mathcal{N}(i) \cup \{i\}}{\operatorname{softmax}} (a_h^\mathsf{T} \varphi(W_1^h x_i + W_2^h x_j))$$

Still doesn't work

Multi-head GAT

$$x_i' = \prod_{h=1}^K W_2^h \sum_{j \in \mathcal{N}(i) \cup \{i\}} \alpha_{i,j}^h x_j$$

$$\alpha_{i,j}^h = \underset{j \in \mathcal{N}(i) \cup \{i\}}{\operatorname{softmax}} (a_h^\mathsf{T} \varphi(W_1^h x_i + W_2^h x_j))$$

- Still doesn't work
- (Maybe also because it needs richer input features)

Graph Cheat-Attention Network

(TENTATIVE NAME)

We add as input features, specific signatures of each gene

- We add as input features, specific signatures of each gene
 - ▶ these signatures are vectors in \mathbb{R}^D (we use D = 64)

- ▶ We add as input features, specific signatures of each gene
 - ▶ these signatures are vectors in \mathbb{R}^D (we use D = 64)
 - they are trained to be similar for genes that are similar for our task

- ▶ We add as input features, specific signatures of each gene
 - ▶ these signatures are vectors in \mathbb{R}^D (we use D = 64)
 - they are trained to be similar for genes that are similar for our task
 - ▶ to this end, we introduce an auxiliary MLP using all genes

- We add as input features, specific signatures of each gene
 - ▶ these signatures are vectors in \mathbb{R}^D (we use D = 64)
 - they are trained to be similar for genes that are similar for our task
 - ▶ to this end, we introduce an auxiliary MLP using all genes

$$y = b_1 + W_1 \varphi(b_0 + W_0 x), \qquad W_0: \mathbb{R}^N \to \mathbb{R}^D, \quad W_1: \mathbb{R}^D \to \mathbb{R}^C$$

- We add as input features, specific signatures of each gene
 - ▶ these signatures are vectors in \mathbb{R}^D (we use D = 64)
 - they are trained to be similar for genes that are similar for our task
 - ▶ to this end, we introduce an auxiliary MLP using all genes

$$y = b_1 + W_1 \varphi(b_0 + W_0 x), \qquad W_0: \mathbb{R}^N \to \mathbb{R}^D, \quad W_1: \mathbb{R}^D \to \mathbb{R}^C$$

the **signatures** are the **weights** of the first fully connected layer the column $W_0^{(i)}$ is the signature of gene i

The signatures are used only for the attention

The signatures are used only for the attention

$$\alpha_i = \sigma(b + A W_0^{(i)}), \qquad A: \mathbb{R}^D \to \mathbb{R}^K$$

The signatures are used only for the attention

$$\alpha_i = \sigma(b + A W_0^{(i)}), \qquad A: \mathbb{R}^D \to \mathbb{R}^K$$

▶ The attention is an attribute of the node, not the edge

The signatures are used only for the attention

$$\alpha_i = \sigma(b + A W_0^{(i)}), \qquad A: \mathbb{R}^D \to \mathbb{R}^K$$

- ▶ The attention is an attribute of the node, not the edge
- We use multi-head attention, with K = 64 heads

The signatures are used only for the attention

$$\alpha_i = \sigma(b + A W_0^{(i)}), \qquad A: \mathbb{R}^D \to \mathbb{R}^K$$

- ▶ The attention is an attribute of the node, not the edge
- We use multi-head attention, with K = 64 heads

$$x_{i}' = \prod_{h=1}^{K} \left[W_{2}^{h} \alpha_{i}^{h} x_{i} + W_{3}^{h} \frac{1}{|\mathcal{N}(i)|} \sum_{j \in \mathcal{N}(i)} \alpha_{j}^{h} x_{j} \right]$$

Compare GCAT and GAT

Compare GCAT and GAT

$$x_i' = \prod_{h=1}^K \left[W_2^h \alpha_i^h x_i + W_3^h \frac{1}{|\mathcal{N}(i)|} \sum_{j \in \mathcal{N}(i)} \alpha_j^h x_j \right]$$

Compare GCAT and GAT

$$x_i' = \prod_{h=1}^K \left[W_2^h \alpha_i^h x_i + W_3^h \frac{1}{|\mathcal{N}(i)|} \sum_{j \in \mathcal{N}(i)} \alpha_j^h x_j \right]$$

$$x_i' = \prod_{h=1}^K W_2^h \sum_{j \in \mathcal{N}(i) \cup \{i\}} \alpha_{i,j}^h x_j$$

- Compare GCAT and GAT
 - \triangleright W is different for i
 - \triangleright either K or $\dim(Wx)$ is large

$$x_i' = \prod_{h=1}^K \left[W_2^h \alpha_i^h x_i + W_3^h \frac{1}{|\mathcal{N}(i)|} \sum_{j \in \mathcal{N}(i)} \alpha_j^h x_j \right]$$

$$x_i' = \prod_{h=1}^K W_2^h \sum_{j \in \mathcal{N}(i) \cup \{i\}} \alpha_{i,j}^h x_j$$

- Compare GCAT and GAT
 - \triangleright W is different for i
 - \triangleright either K or dim(Wx) is large

$$x_i' = \prod_{h=1}^K \left[W_2^h \alpha_i^h x_i + W_3^h \frac{1}{|\mathcal{N}(i)|} \sum_{j \in \mathcal{N}(i)} \alpha_j^h x_j \right]$$

$$x_i' = \prod_{h=1}^K W_2^h \sum_{j \in \mathcal{N}(i) \cup \{i\}} \alpha_{i,j}^h x_j$$

$$\alpha_i^h = \sigma \left(b^h + a_h^\mathsf{T} W_0^{(i)} \right)$$

- Compare GCAT and GAT
 - \triangleright W is different for i
 - \triangleright either K or $\dim(Wx)$ is large

$$x_i' = \prod_{h=1}^K \left[W_2^h \alpha_i^h x_i + W_3^h \frac{1}{|\mathcal{N}(i)|} \sum_{j \in \mathcal{N}(i)} \alpha_j^h x_j \right]$$

$$x_i' = \prod_{h=1}^K W_2^h \sum_{j \in \mathcal{N}(i) \cup \{i\}} \alpha_{i,j}^h x_j$$

$$\alpha_i^h = \sigma \left(b^h + a_h^\mathsf{T} W_0^{(i)} \right)$$

$$\alpha_{i,j}^h = \underset{j \in \mathcal{N}(i) \cup \{i\}}{\operatorname{softmax}} (a_h^{\mathsf{T}} \varphi(W_1^h x_i + W_2^h x_j))$$

- Compare GCAT and GAT
 - \triangleright W is different for i
 - \triangleright either K or dim(Wx) is large

 α does not depend on x... ...only on the signatures

$$x_i' = \prod_{h=1}^K \left[W_2^h \alpha_i^h x_i + W_3^h \frac{1}{|\mathcal{N}(i)|} \sum_{j \in \mathcal{N}(i)} \alpha_j^h x_j \right]$$

$$x_i' = \prod_{h=1}^K W_2^h \sum_{j \in \mathcal{N}(i) \cup \{i\}} \alpha_{i,j}^h x_j$$

$$\alpha_i^h = \sigma \left(b^h + a_h^\mathsf{T} W_0^{(i)} \right)$$

$$\alpha_{i,j}^h = \underset{j \in \mathcal{N}(i) \cup \{i\}}{\operatorname{softmax}} (a_h^{\mathsf{T}} \varphi(W_1^h x_i + W_2^h x_j))$$

- Compare GCAT and GAT
 - \triangleright W is different for i
 - \blacktriangleright either K or $\dim(Wx)$ is large

- α does not depend on x... ...only on the signatures
- \triangleright sum of α 's can be less than 1

$$x_i' = \prod_{h=1}^K \left[W_2^h \alpha_i^h x_i + W_3^h \frac{1}{|\mathcal{N}(i)|} \sum_{j \in \mathcal{N}(i)} \alpha_j^h x_j \right]$$

$$x_i' = \prod_{h=1}^K W_2^h \sum_{j \in \mathcal{N}(i) \cup \{i\}} \alpha_{i,j}^h x_j$$

$$\alpha_i^h = \sigma \left(b^h + a_h^\mathsf{T} W_0^{(i)} \right)$$

$$\alpha_{i,j}^h = \underset{j \in \mathcal{N}(i) \cup \{i\}}{\operatorname{softmax}} (a_h^{\mathsf{T}} \varphi(W_1^h x_i + W_2^h x_j))$$

▶ GCAT works

(tentative name)

▶ GCAT works

(tentative name)

(tentative name)

auxiliary MLP (1 hidden layer with 64 units)

(tentative name)

- auxiliary MLP (1 hidden layer with 64 units)
- ▶ 64-dim gene signatures

(tentative name)

- auxiliary MLP (1 hidden layer with 64 units)
- ► 64-dim gene signatures
- **cheat-attention** with 64 heads

- auxiliary MLP (1 hidden layer with 64 units)
- ► 64-dim gene signatures
- **cheat-attention** with 64 heads
- ▶ 1 GCAT layer using two graphs

- auxiliary MLP (1 hidden layer with 64 units)
- ► 64-dim gene signatures
- **cheat-attention** with 64 heads
- ▶ 1 GCAT layer using two graphs
- ▶ 1 graph convolutional layer with 1 output

- auxiliary MLP (1 hidden layer with 64 units)
- ► 64-dim gene signatures
- **cheat-attention** with 64 heads
- 1 GCAT layer using two graphs
- 1 graph convolutional layer with 1 output
- \sim 64(N + n) parameters, from 0.85M to 1.7M

(tentative name)

- auxiliary MLP (1 hidden layer with 64 units)
- ▶ 64-dim gene signatures
- **cheat-attention** with 64 heads
- ▶ 1 GCAT layer using two graphs
- 1 graph convolutional layer with 1 output
- \sim 64(N + n) parameters, from 0.85M to 1.7M
- \blacktriangleright top TA 64.8% at n=1800

(tentative name)

auxiliary MLP (1 hidden layer with 64 units)

- ▶ 64-dim gene signatures
- **cheat-attention** with 64 heads
- ▶ 1 GCAT layer using two graphs
- 1 graph convolutional layer with 1 output
- \sim 64(N + n) parameters, from 0.85M to 1.7M
- \blacktriangleright top TA 64.8% at n=1800
- for large n, TA stays at about 60%

Thanks for the attention