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The task: scRNA-seq fo cell type

» Cells of an organism have all the same DNA...
» ..butf they can be very different!

» Different cell types use different genes
from the huge DNA library (genome)

» Genes 'in use” are transcribed fo RNA

» Single-cell RNA sequencing (scRNA-seq)
detects the RNA molecules in the cells

» Foreach cellin a sample and each gene
in the genome we get a molecule count

» Task: classity cells by type,
from gene counts of RNA
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The task: scRNA-seq fo cell type

TUBB2A ZNF217 SNHG7 STK19 KIAA1324 RNF41 RASA3 ELP1 THRA LINCO1431 label

AAACCTGAGAGTGAGA
AAACCTGAGGCATTGG
AAACCTGCACCAGGTC
AAACCTGCAGGGATTG

AAACCTGCAGTCAGAG

TTTGTCAGTTGATTCG
TTTGTCATCATAACCG
TTTGTCATCATCATTC
TTTGTCATCATGCTCC

TTTGTCATCCACGTTC

10137 rows x 13055 columns
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The task: scRNA-seq fo cell type

» Common approach: no neural networks (NN), unsupervised
clustering [ , ]

» Alternative 1: use NN, unsupervised
variational auvtoencoder clustering | ]

» Alternative 2: no NN, self-supervised with pseudo-labels
logistic regression | ]

» Why not to use NN with pseudo-labels?
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Transcriptomics challenges

Sparsity: most counts are zero, some are hundreds
Many genes are expressed at few RNA molecules per cell
Low efficiency: RNA molecules have a small probability of detection

High dimensionality: number of genes N~15k

>
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» Many zeros would be non-zero with a higher efficiency

>

» Non-confinuity: small integers are hardly Gaussian variables
>

Expression levels X behave a little better than raw counts R

‘ ‘), cell 2, gene 3
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Transcriptomics challenges

Genes can be very different
Constitutive genes are needed for all cell types
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» Regulatory genes switch on/off other genes (low expression)
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Useful to rank genes by variability of expression in the sample
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Genes can be very different

Constitutive genes are needed for all cell types

Marker genes are specific 1o one type of cells

Regulatory genes switch on/off other genes (low expression)
Useful to rank genes by variability of expression in the sample
Most methods restrict the genome 1o the highly variable genes
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Transcriptomics challenges

» Cell types are not well defined Lymphoid Myeloi

» There is really a continuum of types /
» They show a hierarchical structure e @ @
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Transcriptomics challenges

» Cell types are not well defined

» There is really a continuum of types
» They show a hierarchical structure
» Clustering yields pseudo-labels
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The task: scCRNA-seq to cell type
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The dataset: 10k PBMC sample

» Peripheral Blood Mononuclear Cells (PBMC) [ ]
» M =10114 cells
» N = 13054 genes
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The dataset: 10k PBMC sample

» Peripheral Blood Mononuclear Cells (PBMC) [ ]
» M =10114 cells

» N = 13054 genes
> Sparse counts R; ;

89% 7.5% 1.5% 2%

» 80% genes R, ; < 0.2
» 15% genes

» 5% genes have countsonly 0 and 1
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The dataset: 10k PBMC sample

TUBB2A ZNF217 SNHGY STK19 KIAA1324 RNF41 THRA LINCO1431 1label
AAACCTGAGAGTGAGA 0.0 0.0 0.000 0.000 0.00 0.000 . 0.0 0.0 82

AAACCTGAGGCATTGG 0.0 0.0 0.000 2.678 0.00 0.000 . 0.0 0.0 19

AAACCTGCACCAGGTC 0.0 0.0 0.000 0.000 0.00 0.000 . 0.0 0.0 28

AAACCTGCAGGGATTG 0.0 0.0 0.000 0.000 0.00 0.000 . 0.0 0.0 58

AAACCTGCAGTCAGAG 0.0 0.0 0.000 0.000 0.00 0.000 . 0.0 0.0 66

TTTGTCAGTTGATTCG
TTTGTCATCATAACCG
TTTGTCATCATCATTC
TTTGTCATCATGCTCC
TTTGTCATCCACGTTC
10137 rows x 13055 columns
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The dataset: 10k PBMC sample

C = 86 classes (pseudo-labels)
staftistically uniform | ]

no biological information
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The dataset: 10k PBMC sample

C = 86 classes (pseudo-labels)
statistically uniform [ ]

no biological information
smallest has |/ cells, largest 404
genes sorted by variability.

only the first 2000 used in the
typical pipeline
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Vanilla models

n highest variability genes are used as input

n from 100 fo N = 13054

AdamW optimizer

Strong L? regularization, standard learning rate
3 replicates per experiment

10k cells split in 70% training, 15% validation, 15% test
(straftified for labels)

Ny ..V VvV Vv

» Score is test accuracy (TA) for the model with best validation
accuracy (checked at epoch end)
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Vanilla models
Logistic Regression (LR)

» 86n parameters, from 9k to 1.1M
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Logistic Regression (LR)

» 86n parameters, from 9k to 1.1M
» top TA 55.4% at n = 1800
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Vanilla models
Logistic Regression (LR)

» 86n parameters, from 9k to 1.1M
» top TA 55.4% at n = 1800
» forlarge n, TA decreases from 49% to 44%
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Vanilla models
Fully connected NN (MLP)

» 1 hidden layer with 64 units
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Vanilla models
Fully connected NN (MLP) e .

75%

» 1 hidden layer with 64 units
» 64(n+86) parameters, from 12k to 0.84M  **

» top TA 63.7% atn = 1800 \\\"N—.‘
55% \\‘\\\._——‘

» forlarge n, TA decreases from 57% to 52%
45% \‘_—.\0-\./‘ —o—IR

—0— MLP
35%

25%

15%
0 2000 4000 6000 8000 10000 12000 14000

n (input genes)
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Graphs of genes

» Gene networks are graphs of genes (10k+ papers per year)
» Connected by functionality or co-expression in cell types

Papers referring to gene networks by year
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Graphs of genes

» Gene networks are graphs of genes (10k+ papers per year)
» Connected by functionality or co-expression in cell types

» Common to start from a correlation maftrix
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Graphs of genes

» Gene networks are graphs of genes (10k+ papers per year)
» Connected by functionality or co-expression in cell types
» Common to start from a correlation marfrix

» Get an adjacency mairix by hard threshold
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Graphs of genes

» Gene networks are graphs of genes (10k+ papers per year)
» Connected by functionality or co-expression in cell types
» Common to start from a correlation matrix

» Get an adjacency mairix by hard threshold
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» Gene networks are graphs of genes (10k+ papers per year)
» Connected by functionality or co-expression in cell types
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Graphs of genes

Gene networks are graphs of genes (10k+ papers per year)
Connected by functionality or co-expression in cell types
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» Common to start from a correlation martrix
» Get an adjacency mairix by hard threshold
>

Can get several graphs with different thresholds
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Graphs of genes

Gene networks are graphs of genes (10k+ papers per year)
Connected by functionality or co-expression in cell types

>

>

» Common to start from a correlation martrix
» Get an adjacency mairix by hard threshold
>

Can get several graphs with different thresholds
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Graphs of genes
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Gene networks are graphs of genes (10k+ papers per year)
Connected by functionality or co-expression in cell types
Common to start from a correlation martrix

Get an adjacency matrix by hard threshold

Can get several graphs with different thresholds

We use the coex matrix [ ]




Graphs of genes
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Gene networks are graphs of genes (10k+ papers per year)
Connected by functionality or co-expression in cell types
Common to start from a correlation martrix

Get an adjacency matrix by hard threshold

Can get several graphs with different thresholds

We use the coex matrix [ ]

G1: corr > 0.054, G2: corr < —0.06
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Atypical GNN task

» The graph is fixed and independent from the samples
(gene network)

» Features at each node depend on the sample (=cell) to classify
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Graphs of genes
and neurdal networks

Atypical GNN task

» The graph is fixed and independent from the samples
(gene network)

Features at each node depend on the sample (=cell) to classify
Only one scalar feature per node (expression levels)
Graph-level task
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Straightforward GNN models

» Nodes are not exchangeable: global pooling does not
work

» Basic structure:
» start with all N genes
» two GNN layers with 16 and 1 features per node
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Straightforward GNN models

» Nodes are not exchangeable: global pooling does not
work

» Basic structure:
» start with all N genes
» two GNN layers with 16 and 1 features per node
» restrict to n nodes (n highest variability genes)
» flatten, then MLP (as before, 1 hidden layer with 64 units)
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» GraphSAGE [Hamilton, Ying, Leskovec, 2017]
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» GraphSAGE [Hamilton, Ying, Leskovec, 2017]
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Common GNN layers

» Graph Aftention Networks [Velickovic et al, 2018]
GATv2 [Brody, Alon, Yahayv, 2021 |

JEN(i)U{i}

oy ;= softmax (aTp(W1z; +Wax;
J= softmax. (aTe( )




BT 3
i el A
I LR g

Common GNI

-
l P

» Nothing works
than MLP



Common GNN layers

Test Accuracy

» Nothing works: be
than MLP :

—@

H:.:.‘

—/ [
v\._—.\.‘:.\.\/.

15% —_— =
0 2000 4000 6000 8000 10000 12000

n (input genes)

14000

—e— R
—o— MLP
—0—gnnl
—8—gnn2
—8—gnn3
—0—gnn4
—0-—gnnb
gnné
agnn7



Common GNN layers

» Nothing works: best performance worse
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» GNN layers average features among
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» In gene networks, neighbours:
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Common GNN layers

» Nothing works: best performance worse
than MLP

» GNN layers average features among
neighbours

» In gene networks, neighbours:
» are correlated with the central node, but
» they are noft similar to each other

» they belong to different families
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» Nothing works: best performance worse
than MLP

» GNN layers average features among
neighbours

» In gene networks, neighbours:
» are correlated with the central node, but
» they are noft similar to each other
» they belong to different families

» they are correlated for different reasons
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Common GNN layers

» Nothing works: best performance worse
than MLP

» GNN layers average features among
neighbours

» In gene networks, neighbours:
» are correlated with the central node, but
» they are noft similar to each other
» they belong to different families

» they are correlated for different reasons

» We should make several averages within
different families
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» Mulli-head GAT

h
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» Still doesn’t work
» (Maybe also because it needs richer input features)







Graph Che at-Att ntion Nefwork

(tentative name)




Graph Cheat-Attention Network

(tentafive name)

I
5

-R

> We add as inp



°

ion Network

GI’CI ph CheOT A
(’ren’rc’rive nOmQ--' Yy

» We add as inpt signatures
y - e ‘ !
» these signc R” D = 64



Graph Cheat-

(tentative name)

-
o

» We add as inpt signatures 1 gene
» these sig_,.-' R” D = 64 o
> they are fr or our task

o=
- F




Graph Cheat-Att

=Yalile N N etwork
(tentative name) ™

» We add as inpu signatures ch gene

» these signa R D = 64 B} -
.‘I < A ‘..
» they are fr or our task
» fo this » Using all genes
§ i
“‘. .\ ] ‘:

-




Graph Cheat-Attention Network

(tentatfive name}

» We add as input features, specific signatures of each gene
» these signatures are vectors in RP (we use D = 64)

» they are frained to be similar for genes that are similar for our task

» to this end, we introduce an auxiliary MLP using all genes




Graph Cheat-Attention Network

(tentatfive name}

» We add as input features, specific signatures of each gene
» these signatures are vectors in RP (we use D = 64)

» they are frained to be similar for genes that are similar for our task

» to this end, we introduce an auxiliary MLP using all genes

» the signatures are the weights of the first fully connected layer

the column Wo(i) Is the signature of gene i
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» The signatures are used only for the affention

» The attention is an atiribute of the node, not the edge

» We use multi-head attention, with K = 64 heads
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» Compare GCAT and GAT
» W is different for i
» either K or dim(Wx) is large
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» Compare GCAT and GAT
» W is different for i
» either K or dim(Wx) is large

» a does not depend on x...
...only on the signatures
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» Compare GCAT and GAT
» W is different for i
» either K or dim(Wx) is large

» a does not depend on x...
...only on the signatures

» sum of a's can be less than 1
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» auxiliary MLP (1 hidden layer with 64 units)
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