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Abstract. In this paper, nonlocal mathematical morphology operators
are introduced as a natural extension of nonlocal-means in the max-plus
algebra. Firstly, we show that nonlocal morphology is a particular case
of adaptive morphology. Secondly, we present the necessary properties to
have algebraic properties on the associated pair of transformations. Fi-
nally, we recommend a sparse version to introduce an efficient algorithm
that computes these operators in reasonable computational time.

1 Introduction

Mathematical morphology is an approach to image analysis that characterises
an image by transformations with simple geometrical interpretation [23]. The
original image, denoted by I, is studied by its interaction with small subsets,
named structuring elements (SEs), obtained by convolution in the max-plus al-
gebra [9]. It has been applied successfully to a large number of fields including
biomedical microscopy, material science, remote sensing, and medical imaging.
The classical approach is characterised by two main properties [21]: (1) SE is
fixed, i.e., does not depend on the spatial position at which it is centred; (2)
the basic morphological operations are invariant under translation. This idea
has been extended to grey scale images, using a complete lattice formulation
[23]. This paper deals with a case of adaptive mathematical morphology. Adap-
tive mathematical morphology refers to morphological filtering techniques that
adjust the SE to the local context of the image. The approach in this paper is
based on the adaptive morphology framework, but where the local structuring
element is “estimated” taking into consideration the whole image. We thus re-
fer it as a “nonlocal” approach, following the terminology initiated in [1]. The
term of “nonlocal morphology” has been already considered in previous works.
On the one hand, Salembier in [22] proposed a straightforward generalisation of
nonlocal means filter to morphological filters. As we will discuss, our starting
point is similar, however the proposed non local structuring function as well as
the proposed algebraic framework is totally coherent with classical morphologi-
cal adjunction theory. On the other hand, Ta et al. [25] introduced a formalism
of graph-based nonlocal morphology by generalising the PDE of dilation and
erosion. The nonlocal PDE is solved using numerical methods which includes
nonlocal distances as weights. It is obvious that such PDE-based approach does



not induces a couple of adjoint dilation and erosion, and consequently their prod-
ucts do not involve openings and closings in the algebraic sense. We begin with
a review of the extensive literature on adaptive mathematical morphology in
Section 2. Section 3 covers the development of the nonlocal mathematical mor-
phology. We introduce a simple concept of neighbour system for an image, which
allow us to have algebraic morphological transformations. Section 4 introduces
the idea of sparse nonlocal morphology and efficient implementations. Finally,
Section 5 concludes the paper with some examples and relevant conclusions.

2 Adaptive mathematical morphology

Basic Definitions. Mathematical morphology considers an image I as a nu-
merical function from the “spatial” space E to a “spectral” space F. In the case
of grey-level images, E is a subset of the Euclidean Rn or the discrete space Zn

(n=2 for 2D images, n=3 for 3D images), considered as the support space of the
image, and F is a set of grey-levels, corresponding to the space of values of the
image. It is assumed that F = R = R ∪ {−∞,+∞} or Z = Z ∪ {−∞,+∞}, or
more specifically F is a closed subset of R, for instance F = [a, b] for a, b ∈ R.
Thus, a grey-level image is represented by a function,

I :

{
E → F
x 7→ I(x)

(1)

i.e., I ∈ Fun(E,F), where Fun(E,F) denotes the functions from the discrete
support E onto the space of values of the image F. Accordingly, I maps each
pixel x ∈ E into a grey-level value t ∈ F, I(x) = t. Note that F with the natural
order relation ≤ is a complete lattice. It is important to remark that if the F is
a complete lattice, then Fun(E,F) is a complete lattice too [24]. Morphological
operators aim at extracting relevant structures of the image. This is achieved
by carrying out an inquest into the image through a set of known shape called
structuring element (SE). The two basic words in the mathematical morphology
language are erosion and dilation. They are based on the notion of infimum and
supremum. For the case of flat structuring element (SE), the flat erosion and
dilation operators are defined as follow,

εSE (I) (x) =
∧

y∈SE(x)

I(y) and δSE (I) (x) =
∨

y∈ŜE(x)

I(y), x ∈ E (2)

where SE(x) ⊆ E denote the spatial neighbourhood induced by the structuring
element SE centred at x, and ŜE is the transposed structuring element (i.e.,
reflection w.r.t. the origin).

2.1 Types of adaptivity in mathematical morphology

The formulation contained in previous subsection is translation invariant in the
space and in the intensity, i.e., the same processing in considered for each pixel x



in the image I. Several ways have been analysed to define local characteristics of
the image in order to locally design the SE at each point of the product space (x×
t) ∈ E×F. There are different ways to define a hierarchy of approaches proposed
on adaptive morphology. We use the scheme introduced by [21]. According to the
adaptivity considered by the construction of the structuring element, we have
two main types:

1. Location-adaptive structuring elements (variability on E [2]): The structuring
element SE(x), depends on the location x in the image. It does not depend
on the input image I(x). One of the earliest application that required the use
of variable size SEs is the traffic control camera system [5]. This application
inspired [5] to consider the perspective effect in the morphological analysis.
Vehicles at the bottom of the image are closer and they appear larger than
those higher in the camera. Thus, the SE should follow a law of perspective,
for instance, vary linearly with its vertical position in the image. Other ex-
ample is the term “locally adaptable” used in [10], for SEs as disk where the
radius depend on the position of the image.

2. Input-adaptive structuring elements (variability on F [2]): The shape of the
SE(x) at x depends on the local features of an image I. We denote this
kind of structuring element by SEI(x). Examples of this type of adaptive
are morphological amoebas [16], intrinsic structuring elements [11], region
growing structuring element [20] and morphological bilateral filtering [3]. An
example of this type of adaptivity is shown in Fig.1.

(a) Classical Structuring Elements (b) Adaptive Structuring Ele-
ments

Fig. 1. SE vs SEI for some pixels.

2.2 Flat Input-Adaptive morphology

In this subsection, we limit ourselves to the case of flat input-adaptive structuring
elements. Let L = Fun(E,F) denote the complete lattice of grey-scale functions
with domain E, whose range is a complete lattice F of grey values. Consider the



mappings δ : L → L and ε : L → L defined by:

δSEI(I)(x) :=
∨

y∈SEI(x)

I(y), and εSEI(I)(x) :=
∧

y∈ŜEI(x)

I(y), x ∈ E (3)

As noted by Roerdink [21], since the neighbourhoods depend on the input I
the mappings in (3) are in general not a dilation and erosion, i.e., they do not
form an adjunction [14], hence products δε and εδ are not guaranteed to satisfy
the algebraic properties of opening and closing. Additionally, in [21] is given an
essential conclusion: “one has to fix the adaptive neighbourhood SEI(x) once
they have been derived from an initial input image I. The one can apply the
operations in (3) to any input image J, and also use combinations of them to
construct adaptive opening, closing, alternating sequentiality filters, etc.” Thus,
in order to have algebraic morphological operators, we need to define a set of
adaptive neighbourhoods from a given image I. That is the motivation for the
first definition

Definition 1 A structuring elements system on I : E → L is a family SEI =
{SEI(x)}x∈E such that for all x, y ∈ E,

1. x ∈ SEI(x),
2. y ∈ SEI(x)⇒ x ∈ SEI(y).

The subset SEI(x) is called the structuring element of x on the image I.

Note that the structuring element system includes the flat symmetric structuring
elements [23], intrinsic structuring elements [11], location-adaptive structuring
element [21], and spatially-variant morphology [6]. A fundamental concept in
mathematical morphology which plays a role of pseudo-inverse in mathemat-
ical morphology, is the adjunction [23]. The adjunction concept associated to
adaptive morphology is a misleading concept. See for instance [21] for a pleasant
description of this problem. The main advantage of Definition 1 is that allows
to formulate the Theorem 1.

Theorem 1. If SEI is a structuring element system on I then δSEI(J1) ≤ J2 ⇐⇒
J1 ≤ εSEI(J2), for all I,J1,J2 ∈ L

Proof. Note that the structuring element system depends only on I. Thus, the
proof is straightforward from [21].

Corollary 1. γSEI(J) := δSEI(εSEI(J)) is an opening in the algebraic sense, i.e.
γSEI(J) ≤ J and γSEI(J) = γSEI(γSEI(J)), for all I and J in L. Additionally, the
dual operator ϕSEI(J) := εSEI(δSEI(J)) is a closing in the algebraic sense.

Particular cases of this algebraic opening/closing definition can be found in the
literature, for instance, Lerallut et al. in [16] proposed the computation of the
adaptive structuring element called amoeba from a pilot image, which includes
always the central pixel (origin). Adaptive geodesic neighbourhoods in [13] and
bilateral flat structuring element [3] uses respectively a threshold over geodesic



distances or convex combination of spatial distance and a pixel value distance
to induce a spatial adaptive structuring element.
Remark 1: Note that SEI is fixed. That important issue, illustrated in [21],
involves that if J = δSEI(I), the operator εSEJ(J) is not an opening in the algebraic
sense. In our notation, that means that in general εSEJ(J) 6= γSEI(I). In practice,
you cannot apply adaptive dilation followed by adaptive erosion to obtain an
adaptive opening in the algebraic sense.

3 Non-flat nonlocal morphology

In order to fully understand how and why nonlocal morphology works, we will
begin with a detailed description of nonlocal means and the theory which support
the approach. Nonlocal processing refers to the general methodology of designing
energies using nonlocal comparison of patches extracted in the image. Starting
from the initial paper by Baudes et al. [1], nonlocal energies have proved to
be efficient for many imaging problems, including denoising [1], semi-supervised
classification [12] and segmentation [7]. Recently, nonlocal schemes for image
processing have received a lot of attention [8]. Rather than considering only the
vector associated to one pixel to compute pixel similarities, patches around these
pixels are considered. These patches capture the dependencies of neighbouring
pixels and thus can distinguish textural patterns. Nonlocal means filters have
been proposed in [8] mainly for denoising applications. The filtering idea consists
in computing a weighted average of the input image in a neighbourhood of size
k:

NLM(I, k)(x) =
∑
y∈I

I(y)
W̃I(x, y)∑
z∈I W̃I(x, z)

, x ∈ E

=
∑
y∈I

I(y)WI(x, y), x ∈ E (4)

where the weight WI(x, y) is defined by computing the similarity between a
patch P centred around the pixel x and a patch around y ∈ SEI,k(x)

W̃I(x, y) := W̃I(P(x),P(y))) = exp

(
−||P(x)−P(y)||2

σ2

)
, x ∈ E (5)

Here, ||P|| is the Euclidean norm of the patch P of size l× l as a vector in Rl×l

and σ is a smoothing parameter. Thus, pixels with similar neighbourhoods are
given larger weights compared to pixels whose neighbourhoods look different.
The algorithm makes explicit use of the fact that repetitive patterns appear in
most of the natural images. The idea is illustrated in Fig. 2. For a review of the
evolution of nonlocal modelling in imaging we recommend [15]. The “natural”
morphological extension of the nonlocal means defining (4) is the version on the



(a) Original image (b) Equation (5) for a pixel centred at the
left-eye of the koala.

Fig. 2. Example of nonlocal-functional based on the grey-patch information. The centre
pixel is marked by a red-cross. Original image has 384× 512 pixels.

max-plus algebra3, which involves replacing the convolution (i.e.
∑

y∈I) by the
supremum or infimum (i.e.,

∨
y∈I or

∧
y∈I) and the kernel weights WI by their

component-wise logarithm WI = log(WI), i.e., :

δSEI,WI
(I)(x) =

∨
y∈SEI(x)

(I(y)+WI(x, y)), and εSEI,WI
(I)(x) =

∧
y∈SEI(x)

(I(y)−WI(x, y)),

(6)
for x ∈ E. A similar expression to (6) was presented by Salembier in [22] with-
out including the logarithmic transformation on WI. To justify this logarithmic
connection between the standard algebra (+,×) and (max,+) algebra underly-
ing morphological operators, the reader is referred to [18, 9, 4]. At this point, a
question arise, is the pair (εSEI,WI

(I), δSEI,WI
(I)) an adjunction in the algebraic

sense?

Definition 2 A morphological weight system WI : E× E 7→ R+ on I is a weight
function such for all x, y ∈ E,

1. WI(x, x) = 0 ∀x ∈ E,
2. WI(x, y) =WI(y, x) ∀x, y ∈ E,
3. −∞ ≤ WI(x, y) ≤ 0 ∀x, y ∈ E.

In fact, we note that all conditions in Definition 2 are valid for the nonlocal
weights in (4) due to the facts that 0 ≤ WI ≤ 1 and WI is a 1-diagonal and
symmetric matrix.

Theorem 2. If SEI is a structuring element system and WI a weight system on
I then δSEI,WI

(J1) ≤ J2 ⇐⇒ J1 ≤ εSEI,WI
(J2), for all I,J1,J2 ∈ L

3 A max-plus algebra is a semiring over the union of real numbers and −∞, equipped
with maximum and addition as the two binary operations instead of + and × oper-
ators as in standard algebra.



Proof. Firstly, note that the structuring elements system depends only on I. The
proof is straightforward from [21], however it is included to make this article
globally self-contained, and then more comprehensible for the reader.

δSEI,WI
(J1) ≤ J2 ⇐⇒ δSEI,WI

(J1)(x) ≤ J2(x),∀x ∈ E by (6)

⇐⇒
∨

y∈SEI(x)

J1(y) + log(WI(x, y)) ≤ J2(x),∀x ∈ E by max and log −∞ and 0.

⇐⇒ J1(y) + log(WI(x, y)) ≤ J2(x),∀x ∈ E,∀y ∈ SEI(x) by 2 in Definition 2

⇐⇒ J1(y) ≤ J2(x)− log(WI(x, y)),∀y ∈ E,∀x ∈ SEI(y) by min and log

⇐⇒ J1(y) ≤
∧

x∈SEI(y)

J2(x)− log(WI(x, y)),∀y ∈ E by 3 in Definition 2

⇐⇒ J1(y) ≤
∧

x∈SEI(y)

J2(x)− log(WI(y, x)),∀y ∈ E by (6)

⇐⇒ J1(y) ≤ εSEI,WI
(I)(y),∀y ∈ E

⇐⇒ J1 ≤ εSEI,WI
(I),∀y ∈ E

(a) Local structuring element. (b) Sparse nonlocal structuring element.

Fig. 3. Local (SE(x)) vs nonlocal structuring element (SEk,I(x)) for the some pixels.

Corollary 2. γSEI,WI
(J) := δSEI,WI

(εSEI,WI
(J)) is an opening in the algebraic

sense, i.e., γSEI(J) ≤ J and γSEI,WI
(J) = γSEI,WI

(γSEI,WI
(J)), for all I and J in

L. Additionally, the dual operator, ϕSEI,WI
(J) := εSEI,WI

(δSEI,WI
(J)) is a closing

in the algebraic sense.

Definition 3 The matrix representation W of a morphological weight system
WI given an image I with n pixels x1, x2, . . . , xn ∈ E is the square matrix of size
n× n defined by W = [WI(xi, xj)] = [log WI(xi, xj)], ∀i, j = 1, . . . , n.

Remark 2: From Definition 2, it is easy to see thatW in Definition 3 should be
symmetric and with diagonal equal to zero. Additionally, W is not forced to be
positive semi-definitive as in most of the linear kernel based filtering [19]. How-
ever, any positive definitive kernel induce a weight system in E. In this section it
was shown how nonlocal morphology is a particle case of adaptive morphology
and a relevant conclusion was presented about this misleading term. However,



the implementation of this approach requires the computation of a max-plus
convolution with a full matrixW which in computationally intractable. We pro-
pose a solution to this bottleneck by modifying the neighbourhood connectivity
mapping to connect only a small number of neighbours. Thus, it is possible to
implement with almost linear complexity, as it is presented in the next section.

4 Sparse nonlocal morphology

In the original formulation of nonlocal morphology in [22], dilation and erosion
are analysed by incorporating only the information from the k-nearest neigh-
bours (kNNs) according to the patch distance in (5). We denote this as SEI,k.
By simply plug-in SEI,k in (6), we obtain:

δSEI,k,WI
(I)(x) =

∨
y∈SEI,k(x)

(I(y) + (WI(x, y))), x ∈ E (7)

It is important to note that the proposal in [22] fails to identify the importance
issue of Properties 2 and 3 in Definition 2, i.e., the symmetry of WI and loga-
rithmic relationship between WI and WI. Note that the kNN is not a reflexive
relation, i.e., given a set of vectors X = {x1,x2, . . . ,xn}, if x1 is a kNN of x2 on
X does not imply that x2 is a k-nearest neighbours of x1 on X . So, the structur-
ing element system SEI,k does not follow the Property 2 in the Definition 1. To
have the symmetric property, a simple approach is to define the xi as a k-NN
of xj based on the metric d if d(xi,xj) is among the k smallest elements of the
set {d(xi,xj)|j = 1, . . . , i − 1, i + 1, . . . , n} or viceversa. A illustrative example
of sparse structuring element is show in Fig 3. Implementation. A large part
of the success of mathematical morphology in the imaging engineering commu-
nity is due to the algorithmic developments. Very efficient algorithms have been
proposed for translation invariant morphological operators for both binary and
grey scale images. However, algorithms addressing the case of adaptive SEI are
still very limited. Here, we proposed an efficient implementation for the case of
sparse nonlocal morphology (SEI) based on sparse matrices. Basically, we solve
the matrix product directly in the algebra (max,+) taking advantage of the
sparsity of the structuring element system. So, we define a square matrix of size
n × n denoted by ẆSEI,k or by abuse of notation Ẇ = [W(i, j)] if j ∈ SEI,k(i)
and 0 otherwise. Thus, an adaptive dilation (erosion) may be solved efficiently
as it is presented in Algorithm 1. In sparse matrices only the non-zero entries
are stored. We denote as findnonzero(W) the function to obtain the non-zero
entries of a sparse matrix W. Each entry in the output represents an element
wi,j of the matrix and can be accessed by the two indices i and j. Accordingly,
max.row(X) denotes the vector of the maximum of each row of X, and vec(X)
the vectorization of X, i.e., the linear transformation to convert the matrix into
a column vector.

Theorem 3. Every adaptive dilation(erosion) based on a sparse matrix Ẇ can
be computed in time O(nk log(k)) and space O(nk), where n is the number of
pixels of the image and k > 0.



Algorithm 1 Sparse Max-Plus Dilation

Require: I ∈ Rn1×n2 , and a sparse square matrix Ẇ ∈ Rn1n2×n1n2 .
I = vec(I) Vectorization of the original image.
[i, j,v]=findnonzero(Ẇ) Find nonzero elements in Ẇ.
for k = 1 to |v| do

O(i(k), j(k)) = I(i(k)) + log(v(k)) Parenthesis operation in (7).
end for
O = max.row(O) Maximum operation in (7).
return O

Proof. To compute a dilation, we multiply n times the original image I as a
vector to each of the rows of the sparse matrix Ẇ of size n× n with k values
different of zeros (O(kn)). A maximum operation should computed in rows, i.e.,
O(k log(k)n). Thus, the complexity of Algorithm 1 is O(k log(k)n). However,
note that usually k � n then the computation time tends to be linear O(n).

Connections to graph theory. To warm up, let us start by recalling some
graph-theoretic definitions.

– A graph G is pair of sets G = (V, E), where the elements of E , called edges,
are unordered pairs of elements from V, called vertices.

– A sequence x1, x2, . . . , xk of distinct vertices of a graph G = (V, E) is called
a path between x1 and xk if {xi, xi+1} ∈ E whenever 0 ≤ i < k. The length
of the path is k, which is the number of edges in the path.

– A graph G = (V, E) is said to be connected if there is a path between every
pair of vertices in V.

– The adjacency matrix AG of a graph G with n vertices is a n × n matrix
AG = (aij) in which the entry aij = 1 if there is an edge from the vertex i
to vertex j and is 0 if there is no edge from vertex i to vertex j.

The follows definitions are valid for connected graphs.

– The distance d(x, y) between a pair of vertices x, y ∈ V is the length of the
shortest path between these vertices.

– The eccentricity e(x) of a vertex x is the maximum distance from x to any
other vertex, i.e. e(x) = maxy∈V d(x, y).

– The maximum eccentricity among all vertices of a graph G = (V, E) is called
the diameter, i.e. diam(G) = maxx∈V e(x)

– Given a set of data points X = {x1,x2, . . . ,xn} with xi ∈ Rd. Gk(X) =
(V, E) is a directed graph, where V = X, and the vertex 〈xi,xj〉 ∈ E if and
only if d(xi,xj) is among the k smallest elements of the set {d(xi,xj)|j =
1, . . . , i− 1, i+ 1, . . . , n} or viceversa, where d is a metric.

For a disconnected graph G, the diam(G) is defined to be the diameter of the
largest connected component in G. From a digital image I, we define G = (V, E)
as an undirected graph with vertex set V matching the image pixels and edge
set E consisting of unordered pairs of vertices indicating the adjacency between



the image pixels according to the adaptive structuring element SEI (or SEI,k for
sparse nonlocal morphology). As the graph only depend on I and SEI, we use
the notation G(SEI) (or G(SEI,k)). Some links between the nonlocal formulation
and classical graph theory are easily perceived.

– G(SEI,k) is a Gk(PI), by the metric (5), where PI denotes the patch infor-
mation of the image I.

– The element-wise product between AG(SEI,k) and WI is exactly the sparse

matrix ẆSEI,k used in Algorithm 1.

Finally, we enunciate a less intuitive link between morphological operators and
graph properties (proof is not included because of space constrains).

Theorem 4. δi+1
SEI

(I) = δiSEI(I) for i ≥ diam(G(SEI)).

(a) I (b) δ1SEI,k (I) (c) δ2SEI,k (I) (d) δ5SEI,k (I)

(e) ε1SEI,k (I) (f) ε2SEI,k (I) (g) ε5SEI,k (I) (h) CC of G(SEI,k)

Fig. 4. Half-chessboard pattern example is a 48×96 binary image where each square has
144 pixels. The original image (a) is corrupted by impulse noise (σ = .3). Flat nonlocal
morphology operators, where patches are square 3 × 3, and k = 5 are illustrated in
(b)-(g). CC in (h) denotes connected components.

5 Experiments and Conclusions

To illustrate the effect of nonlocal morphological operators, we firstly analyse
the simple geometrical case of Fig. 4. Nonlocal morphological operators perform
quite well due to the connected components of G(SEI,k), displayed in Fig.4(h),
are coherent with the geometric structures of the original image. In the sec-
ond example, given in Fig. 5, parameters are set to have an unique connected
component. We can see that the simplification by nonlocal morphology affects
only flat zones of the image, in comparison with classical morphology. However,
it is important to remark that the important geometrical interpretation of the
classical morphological operators is missing in the nonlocal case. Finally, visual
comparison between local and nonlocal dilations and erosions can be performed
in a complex image depicted in Fig. 6. To summarise, we studied a class of
morphological filters which operate based on patch distance information. We
also analysed in detail the requirements to have genuine adaptive morphological



transformations and, as conclusion, the symmetry and logarithmic connection
turns out to be the most relevant properties. Finally, we provided a fast imple-
mentation in the case of sparse nonlocal morphology which can be used in any
adaptive morphology. Future work includes the comparison of our approach with
nonlocal total ordering by manifold learning introduced by [17].

(a) I (b) δ3SEI,k (I) (c) γ2
SEI,k

(I) (d) γ2
SE(I)

(e) ε3SEI,k (I) (f) ϕ2
SEI,k

(I) (g) ϕ2
SE(I)

Fig. 5. House pattern example is a 110 × 130 image. Patches are squares of 5 × 5,
σ = 200 and k = 5. The k-graph contains only one connected component.

References

1. A. Baudes, B.C., Morel, J.: A review of image denoising algorithms with a new
one. Multiscale Modeling and Simulation 4(2), 490–530 (2005)

2. Angulo, J., Velasco-Forero, S.: Structurally adaptive math. morph. based on non-
linear scale-space decomp. Image Analysis & Stereology 30(2), 111–122 (2011)

3. Angulo, J.: Morphological bilateral filtering and spatially-variant adaptive struc-
turing functions. In: ISMM’11, LNCS, vol. 6671, pp. 212–223. Springer (2011)

4. Angulo, J., Velasco-Forero, S.: Stochastic morphological filtering and bellman-
maslov chains. In: Proceeding of ISMM’13 (2013)

5. Beucher, S., Blosseville, J.M., Lenoir, F.: Traffic spatial measurements using video
image processing. In: Proc. Intelligent Robots and Computer Vision. SPIE (1988)

6. Bouaynaya, N., Charif-Chefchaouni, M., Schonfeld, D.: Theoretical Foundations of
Spatially-Variant Mathematical Morphology Part I: Binary Images. IEEE Trans.
Patt. Ana. Mach. Lear. 30(5), 823–836 (2008)

7. Bresson, X., Chan, T.F.: Non-local unsupervised variational image segmentation
models. Tech. rep., UCLA CAM (2008)

8. Buades, A., Coll, B., Morel, J.M.: Image denoising methods. a new nonlocal prin-
ciple. SIAM Review 52(1), 113–147 (Feb 2010)

9. Burgeth, B., Weickert, J.: An explanation for the logarithmic connection between
linear and morph. system theory. Int. J. Comp. Vision 64(2-3), 157–169 (2005)

10. Cuisenaire, O.: Locally adaptable mathematical morphology using distance trans-
formations. Pattern Recognition 39(3), 405–416 (Mar 2006)



(a) ε2SE(I) (b) ε5SE(I) (c) δ2SE(I) (d) δ5SE(I)

(e) ε2SEI,k (I) (f) ε5SEI,k (I) (g) δ2SEI,k (I) (h) δ5SEI,k (I)

Fig. 6. Examples of classical (top) and sparse nonlocal (bottom) erosion and dilations,
where patches are squares 5× 5, σ = 200 and k = 5. Original image in Fig. 2.

11. Debayle, J., Pinoli, J.C.: Spatially adaptive morphological image filtering using
intrinsic structuring elements. Image Analysis and Stereology 39(3), 145–158 (2005)

12. Gilboa, G., Osher, S.: Nonlocal Linear Image Regularization and Supervised Seg-
mentation. Multiscale Modeling & Simulation 6(2), 595–630 (2007)

13. Grazzini, J., Soille, P.: Edge-preserving smoothing using a similarity measure in
adaptive geodesic neighbourhoods. Pattern Recognition 42(10), 2306 – 2316 (2009)

14. Heijmans, H.: Theoretical aspects of gray-level morphology. IEEE Trans. Patt.
Ana. Mach. Lear. 13(6), 568–582 (1991)

15. Katkovnik, V., Foi, A., Egiazarian, K., Astola, J.: From local kernel to nonlocal
multiple-model image denoising. Inte.Journal of Comp. Vision 86, 1–32 (2010)

16. Lerallut, R., Decencière, E., Meyer, F.: Image filtering using morphological amoe-
bas. Image and Vision Computing 4(25), 395–404 (2007)
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