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COST Action CaLISTA Events 2024-2025

July 1-5, 2024. Training School ”Integrable System”, Lisbon.

Sept 2-5, 2024. Training School ”Geometry Informed Machine
Learning”, Paris.

Sept 25-26, 2024. Worshop on ”Lie and Quantum GLq”, Zagreb.

October 4, 2024. Workshop ”Women and Nonbinary Researchers of
CaLISTA”, Bratislava.

June 2-5, 2025. Workshop ”Integrable Systems”, Leeds

June 17, 2025. Workshop ”Geometry and Machine Learning”,
Toulouse.

June 30-July 1, 2025. Workshop ”Quantum Groups”, Cambridge.

mid September 2025. General Meeting of CaLISTA, Corfu’.
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Plan of the Talk

1 Deep Learning and Geometric Deep Learning

2 Information Geometry

3 Fisher matrix and Data information matrix

4 Foliation in Deep Learning (Joint work with Tron)

5 Thermodynamic inspired parameter pruning in (Geometric) Deep
Learning (Joint work with Lapenna, Faglioni)
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1. Deep Learning and Geometric Deep Learning
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Introduction to (Geometric) Deep Learning

Deep Learning: Convolutional Neural Networks (CNN)

Deep Learning for Supervised Classification Tasks e.g. classification of
images

Geometric Deep Learning: CNN on non Euclidean domains, i.e. data
naturally organized as a graph(s).

Rita Fioresi, University of Bologna Learning Manifold and dimensionality reduction in Deep Learning and Geometric Deep LearningSeptember 5, 2024 Paris 7 / 38



Ingredients for (Geometric) Deep Learning

Score function: it is a function of the weights w (es. linear classifier)
It gives a score for a data x and weights w : e.g. s(x ,w) =

∑
wijxj .

Loss function: measures error
(Li datum i loss, yi correct label)

Li = −log
efyi∑
j e

fj
= −fyi + log

∑
j

efj , L =
∑
i

Li

Optimizer: for weights update “minimizes” the Loss

wij(t + 1) = wij(t)− α∇ Lstoc, ∇Lstoc =
32∑
i=1

∇Lrand(i)
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Training

Divide the dataset (ex. CIFAR10):
80% Data for training
10% Data for validation
10% Data for test (ONCE)

1 Learning: determine weights parameters

2 Validation: determine net structure.
Example: choose loss function, number of layers, learning rate
Goal: find best hyperparameters.

3 Test: once at the end.

Accuracy: percentage of accurate predictions on tests set.
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2. Information Geometry
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Information Geometry

Information Geometry: studies geometrical structures on manifolds in
the parameter space (space of probability distributions) and the data
domain.

Amari, S.-I. Natural gradient works efficiently in learning. Neural
computation, 10(2):251-276, 1998.

Amari Loss: I (x ,w) = − log(p(y |x ,w)) (Loss function)

Loss function: L(x ,w) = Ey∼q[I (x ,w)] (Empirical loss)

L(x ,w) = Ey∼q[− log(p(y |x ,w))] = KL(q(y |x)||p(y |x ,w)) + constant

p(y |x ,w) = (pi (y |x ,w))i=1,...,C : discrete probability distribution of data x
q(y |x): mass discrete probability distribution.
C : classification labels y .
w : parameters.
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Loss Function

The empirical Loss function as expected value of the Amari Loss:

L(x ,w) = Ey∼q[− log(p(y |x ,w))] =

=
C∑
i=1

qi (y |x) log
qi (y |x)

pi (y |x ,w)
−

C∑
i=1

qi (y |x) log qi (y |x) =

= KL(q(y |x)||p(y |x ,w))−
C∑
i=1

qi (y |x) log qi (y |x). (1)

The Kullback-Leibler divergence measures the “difference” between the
two probability distributions the “empirical distribution” p and the “true
distribution” q.
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Loss Landscape
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3. The Fisher matrix F and the data information matrix G
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The Fisher matrix F and the data information matrix G

F (x ,w) = Ey∼p[∇w log p(y |x ,w) · (∇w log p(y |x ,w))T ]

G (x ,w) = Ey∼p[∇x log p(y |x ,w) · (∇x log p(y |x ,w))T ].

Key Facts:

KL(p(y |x ,w + δw)||p(y |x ,w)) ∼= 1
2(δw)TF (x ,w)(δw) +O(||δw ||3)

KL(p(y |x + δx ,w)||p(y |x ,w)) ∼= 1
2(δx)

TG (x ,w)(δx) +O(||δx ||3)

The Fisher matrix F provides a natural metric on the parameter space
during dynamics of the stochastic gradient descent.
The data information matrix G provides a natural metric on the data
domain.
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The data information matrix G during optimization

This is why we do not want a fully trained model: the information is lost
at equilibrium!
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Properties of the Fisher matrix F and data information
matrix G

1 F (x ,w) and G (x ,w) is a positive semidefinite symmetric matrix.

2 ker F (x ,w) = (spani=1,...,C{∇w log pi (y |x ,w)})⊥;
3 kerG (x ,w) = (spani=1,...,C{∇x log pi (y |x ,w)})⊥.
4 rank F (x ,w) < C , rank G (x ,w) < C .

Dataset G (x ,w) size rank G (x ,w) bound
MNIST 784 10
CIFAR-10 3072 10
CIFAR-100 3072 100
ImageNet 150528 1000

C : is the number of classes for our classification task
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The Geometric Structure of Data: Distributions
Two orthogonal distributions emerge spontaneously:

D = ImG (x ,w) = spani=1,...,C{∇x log pi (y |x ,w)}

D⊥ = kerG (x ,w) = (spani=1,...,C{∇x log pi (y |x ,w)})⊥
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4. Foliations on the data domain
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The Geometric Structure of Data: Foliations

Deep Learning and classification tasks:

Data occupies a domain in Rn

(e.g. MNIST in R784, n = 784 = 28× 28 pixels)

The data domain is mostly composed of meaningless noise:
data occupy a thin region of it!

Main result:

1 A partially trained neural network decomposes the data domain in Rn

as the disjoint union of submanifolds (the leaves of a foliation).

2 The dimension d of every submanifold (every leaf of the foliation) is
bounded by the number of classes C of our classification model:
d << n (e.g. MNIST d = 9 << 784).
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Data domain and noise

The data domain is the disjoint union of subdomains (foliation).
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Data domain as foliation
Main Result/1. Let w be the weights of a deep ReLU neural network
classifier, p given by softmax, G (x ,w) the data information matrix.
The distribution in an open set of the data domain:

x 7→ Dx = (kerG (x ,w))⊥

is involutive i.e.
[X ,Y ] ∈ D, ∀ X ,Y ∈ D.

Main result/2.

1 At each point in the dataset in Rn, kerG (x ,w)⊥ is tangent to a
submanifold (data leaf) of dimension rank G (x ,w) < C

2 G defines a foliation on Rn of rank at most C − 1 (Frobenius Thm).

Remark: This is not true for the distribution via the Fisher matrix!

w 7→ D′
w := (ker F (w))⊥

is not involutive (e.g. MNIST, lenet).
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Riemannian Structure on the Data domain

Facts

The matrix G (x ,w), restricted to the subspace (kerG (x ,w))⊥ gives a
sub Riemannian metric to each leaf of the foliation.

Its rank is not constant even when restricted to a leaf!
(singular foliation theory)

For a ReLU CNN, the distribution D defined by the data information
matrix G (x ,w) is NOT smooth (smooth only on an open set).

Data leaf: a leaf of the foliation containing some data points.
We perform dimensionality reduction!

Extra difficulty: data is contained in a cube (manifold with border
and corners!)
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Foliation Structure on the Data domain

GeLU (left): gives a smooth but not involutive distribution.
ReLU (right): gives a non smooth but involutive distribution.
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Applications: Denoising, Adversarial Attacks

When moving away from a given data leaf, noise is added, but the
accuracy remain high.

Experiments performed on MNIST with Lenet architecture.
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Applications: Knowledge Transfer/1

Eigenvalues for the Data Information Matrix (MNIST dataset)
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Applications: Knowledge Transfer/2
Measuring “distance” between datasets

(n) (n 1) (n 2) (n 3) (n 4) (n 5) (n 6) (n 7) (n 8) (n 9)
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Applications: Knowledge Transfer/3
Measuring “training distance” between datasets

Loss Accuracy
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Dataset Highest evalue Lowest evalue ∆ DIM Trace Val. Acc.

MNIST -1.78 -8.58 6.70 -1.52 98%
KMNIST 0.49 -7.75 7.76 0.37 75%
Letters 0.11 -7.99 7.82 0.48 80%
Fashion-MNIST 0.14 -8.08 7.76 0.12 81%
CIFARMNIST 0.41 -6.90 6.75 0.27 33%
Noise 0.24 -5.36 5.49 0.27 NA
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Conclusions

Using a partially trained model we can construct low dimensional
submanifolds the data leaves of Rn related with the data the model
was trained with.

We can navigate the data leaves and obtain either data or points with
similarities to our data.

Moving orthogonally to the data leaves will add noise to data, but the
model will not change its accuracy.

Applications:
▶ Denoising of images: Project a noisy data point on the data leaves to

perform denoising.
▶ Knowledge transfer: Use the datamatrix to define the distance between

datasets.
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Future Directions

We need to understand the geometry and the metric structure of the data
leaves.

It not a riemannian and not a subriemannian manifold:
protosubriemannian geometry, Lie algebroids language.

The involutive distribution defining the data leaves is not constant
rank: we have a singular foliation!

What are the geodesics in this geometry? (proto-sub riemannian
geometry)

Navigating the data leaves can lead to data augmentation and
efficient denoising algorithms.

Measuring dataset distance for effective Knowledge Transfer.
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5. Thermodynamic inspired parameter pruning in DL and GDL
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Thermodynamics and SGD

The SGD update of the weights of a (geometric) deep learning model:

w → w− η∇BL(w) ∇BL :=
1

|B|
∑
i∈B

∇Li

η: learning rate.
Stochastic differential equation (Ito formalism):

dw(t) = −η∇L(w)dt +
√

2ζ−1D(w)dW (t) (2)

W (t) models the stochasticity of the SGD
D(w) diffusion matrix controls the anisotropy
ζ = η/(2|B|) temperature captures the amount of noise due to SGD.

Reference. Pratik Chaudhari and Stefano Soatto. Stochastic gradient
descent performs variational inference, converges to limit cycles for deep
networks. 2018 ICLR.
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Temperature of Filters of a Neural Network

T (t) =
K(t)

kB d
=

1

kB d

d∑
k=1

1

2
mk vk(t)

2 (3)

where vk(t) is the instantaneous velocity of the parameter wk :

vk(t) =
wk(t)− wk(t − 1)

∆t
(4)

mk is the mass of parameter wk and it is set to 1.
The thermodynamic temperature is then the time average of T (t):

T =
1

τ

∫ τ

0
T (t) dt =

1

τkB d

∫ τ

0
K(t) (5)
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Pruning Hot and Cold Filters in Deep Learning

Model: Lenet
Dataset: MNIST

Model Test Accuracy Test Loss

Original model 98.80± 0.13 % 0.084± 0.022

Without the two ”hottest” filters 98.52± 0.32 % 0.94± 0.36

With only the three ”hottest” filters 19.60± 5.66 % 5.23± 1.61

Without the two ”coldest” filters 65.40± 13.77 % 2.83± 2.22

With only the three ”coldest” filters 88.88± 6.86 % 0.62± 0.48

Table: Accuracy and loss on the test set after cropping different filters from the
first CNN on MNIST, in absence of regularization.
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Weights and Features in Geometric Deep Learning
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Pruning Hot and Cold Features in Geometric Deep
Learning

Pruning ratio (%) “cold” features “hot” features

0 95.18± 0.61 % 95.18± 0.61 %

7 95.14± 0.35 % 84.36± 1.14 %

14 95.12± 0.36 % 78.17± 1.81 %

28 95.11± 0.64 % 67.12± 2.95 %

35 95.07± 0.40 % 63.28± 2.12 %

42 95.00± 0.51 % 61.08± 2.08 %

63 94.66± 0.71 % 55.70± 1.92 %

70 94.44± 0.60 % 55.00± 1.00 %

88 92.43± 0.60 % 51.31± 1.63 %

95 86.03± 1.00 % 50.46± 1.60 %
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