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Part I.

Mean-payoff games



Mean payoff games

G = (V ,E ) bipartite graph. V = { states of the game },
E = { moves }. rij ∈ Z price of the move i → j .

Players MAX and MIN move a token, alternatively. n
MIN nodes, m MAX nodes.

MIN always pays to MAX the price of the move (having a
negative fortune is allowed)
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Initial position i1 := ı given. Player MAX wants to maximize his
mean payoff, lim inf of:

ri1,j1 + rj1,i2 + ri2,j2 + · · ·+ rjN ,iN+1

N
when N → +∞

while Player MIN wants to minimize her mean loss, the lim sup.

Theorem (Ehrenfeucht and Mycielski, 1979)

There exists a value χı ∈ R, and positional strategies σ and τ of
Players MAX and MIN such that:

with strategy σ, the mean payoff of Player MAX is at least equal
to χı,

with strategy τ , the mean loss of Player MIN does not exceed χı.
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Problem (Gurvich, Karzanov, Khachyan 88)

Can we solve mean payoff games in polynomial time?

I.e., time ⩽ poly(L)? where L is the bitlength of the input

L =
∑
ij

log2(1 + |rij |)

Mean payoff games in NP ∩ coNP Zwick and Paterson [1996],
still not known to be in P.

A restricted subclass (parity games) can be solved in
quasi-polynomial time, i.e., exp(poly(log(n +m))), Calude,
Jain, Khoussainov, Li, and Stephan [2017]
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Part II.

Operator approach to mean payoff games



v k
i value of the game in horizon k and initial state (i ,MIN).

v k
1 = min(−2 + 1 + v k−1

1 ,−8 + max(−3 + v k−1
1 ,−12 + v k−1

2 ))

v k
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Proposition

The value vector v k of the game in horizon k satisfies

v k = T (v k−1), v 0 = 0

where T : Rn → Rn is the Shapley operator:

[T (x)]j = min
i∈[m], j→i

(
rji + max

k∈[n], i→k
(rik + xk)

)



An abstract Shapley operator is a map T : Rn → Rn such that T is
monotone (or order preserving)

(M) : x ⩽ y =⇒ T (x) ⩽ T (y)

and additively homogeneous

(AH) : T (se + x) = se + T (x), ∀s ∈ R

where e = (1, . . . , 1) is the n-dimensional unit vector.

Proposition

T is monotone and additively homogeneous iff it is nonexpansive:

top(T (y)− T (x)) ⩽ top(y − x)

where top(z) := maxi zi . A fortiori, ∥T (y)− T (x)∥∞ ⩽ ∥y − x∥∞.

Known axioms in non-linear potential theory / game theory / PDE viscosity solutions theory,
e.g. Crandall and Tartar, PAMS 80, also Kolokoltsov, Gunawardena and Keane.



General example of Shapley operator T : Rn → Rn,

Ti(x) = inf
a∈A

sup
b∈B

(
r abi +

∑
j∈[n]

Pab
ij xj

)
where Pab

ij ⩾ 0,
∑

j P
ab
ij = 1.

T is the one day operator of a stochastic repeated game, in which
MIN selects a, MAX selects b, MIN pays r abi in state i , and next
state becomes j with probability Pab

ij .

[T k(0)]i is the value of the standard game in horizon k , starting from
state i .

[T k(u)]i is the value of a modified game, in which MAX receives an
additional payment of uj in the terminal state j .
We allow the inf and sup not to commute, this is the ‘turn based’ situation, MIN plays first, MAX plays next, and each player is
informed of the previous action of the other player. In the original example of Shapley (1953),

Ti (x) = infµ∈∆(A) supν∈∆(B)

∫
dµ(a)dν(b)(rabi +

∑
j∈[n] P

ab
ij xj ), where ∆(·) denotes the set of probability measures on a

space, i.e. players choose measures on actions rather than actions. This models the situations in which MAX and MIN play
simultaneously. This reduces to the general example, replacing A by ∆(A) and B by ∆(B). More generally, every Shapley
operator can be written as in the general example (Kolokoltsov 92), even with deterministic transitions, allowing infinite A
(Rubinov, Singer 01, Sparrow, and Gunawardena 04).



Theorem (Bewley, Kohlberg 76; Mertens, Neyman 01; Neyman 03;
Bolte, SG, Vigeral 14)

Suppose T : Rn → Rn is nonexpansive in an arbitrary norm. Then,
the escape rate vector

lim
k→∞

T k(0)/k

does exist if T is semi-algebraic (or more generally, definable in an
o-minimal structure).

When T is a Shapley operator, this is limk v
k/k (limit of the

normalized value vectors of the finite horizon games) and this
coincides with the value vector of the mean-payoff game.

Eg., for the above deterministic games, T is piecewise linear =⇒
trivially semialgebraic.

Some rigidity (o-minimality) assumption is indispensable, Vigeral 13.

Semi-algebraic is needed when players play simultaneously in randomized strategies (incomplete
information) - Shapley’s original example.
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Let T Shapley Rn → Rn. Consider F := exp ◦T ◦ log,Rn
>0 → Rn

>0,
extends continuously to Rn

⩾0 (Burbanks, Nussbaum, Sparrow)

Theorem (non-linear Collatz-Wielandt, Nussbaum 88)

Suppose C is a closed pointed reproducing cone in a finite

dimensional normed space, equipped with x ⩽ y
def⇐⇒ y − x ∈ C,

F : C → C, continuous, monotone and positively homogeneous,
e ∈ intC;

ρ(F ) := lim
k→∞

∥F k(e)∥1/k

= max{λ ∈ R⩾0 | ∃u ∈ C \ {0}, F (u) ⩾ λu}
= max{λ ∈ R⩾0 | ∃u ∈ C \ {0}, F (u) = λu}
= inf{µ > 0 | ∃v ∈ intC ,F (v) ⩽ µv}

Related with the Donsker-Varadhan characterization of the dominant eigenvalue.
Extensions in Lemmens, Lins, Nussbaum, Wortel (2018). This is a Denjoy-Wolff
type theorem. Remarkably, the nonpositive curvature condition is not needed in
the case of cones. More information in the book Lemmens and Nussbaum (CUP).



Winning certificates

Theorem (“subharmonic vectors” Akian, SG, Guterman, IJAC 2012)

Let T : Rn → Rn be a Shapley operator. The following are
equivalent.

there exists one winning initial state j , meaning that

0 ⩽ lim
k→∞

[T k(0)]j/k

there exists u ∈ (R ∪ {−∞})n, u ̸≡ −∞, and

u ⩽ T (u)

If the game is deterministic and the actions spaces are finite, the
winning states are exactly the j ∈ [n] such that there exists u such
that uj ̸= −∞ and u ⩽ T (u).



Space of subharmonic vectors

x1 x2

x3

x1 x2

x3

states 1,2,3 winning states 2,3 winning



Part III.

Tropical modules / convex cones



Tropical semifield Rmax = R ∪ {−∞}, equipped with

“a + b” = max(a, b) “a × b” = a + b

“0” = −∞, “1” = 0

Dual semifield: Rmin := R ∪ {+∞}, equipped with min as addition,
instead of max.
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The Shapley operator of a mean-payoff game can be written as

[T (v)]j = min
i∈[m], j→i

(
−Aij + max

k∈[n], i→k
(Bik + vk)

)

v ⩽ T (v) ⇐⇒ max
j∈[n]

(Aij + vj) ⩽ max
j∈[n]

(Bij + vj), i ∈ [m]

⇐⇒ Av ⩽ Bv

T (v) = A♯Bv where

(Bv)i = “
∑
k

Bikvk” = max
k

(Bij + vk) tropically linear

(A♯y)j = “
∑
i

Āijyi” = min
i
(−Aij + yi) tropical adjoint .

The sets of subharmonic certificates {v | Av ⩽ Bv} is a tropical
polyhedral cone – intersection of finitely many tropical half-spaces.
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Tropical half-spaces
Given a, b ∈ Rn

max, a, b ̸≡ −∞,

H⩽ := {x ∈ Rn
max | “ax ⩽ bx”}

union of sectors separated by

H= := {x ∈ Rn
max | max

1⩽i⩽n
ci + xi achieved twice}, ci = max(ai , bi)
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Tropical polyhedral cones

can be defined equivalently either as intersections of finitely many
half-spaces or as finitely generated submodules of Rn

max.

x2x1

V

x3

More on external representations: Gaubert and Katz, 2011
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A tropical polytope with four vertices

Structure of a polyhedral complex (Develin, Sturmfels) whose cells C
are alcoved polyhedra of An type (Lam, Postnikov):

C := {x ∈ Rn | xi − xj ⩽ aij ,∀i , j} , for some aij ∈ R ∪ {+∞}



Part IV.

Link between nonarchimedean and tropical

convexity



Let K be an algebraically closed field with a nonarchimedean
valuation having R as the value group.

E.g., generalized Puiseux series:

x = x(t) =
∞∑
i=1

ci t
αi ,

where the sequence (αi)i ⊂ R is strictly decreasing and either finite
or unbounded and ci are complex numbers.

Can take either formal series (Markwig), or rather the subfield series
absolutely converging for t large enough (van den Dries and
Speissegger), so that:

val(x) = lim
t→∞

log |x(t)|
log t

= α1 (and val(0) = −∞) .



Theorem (Kapranov, non archimedean amoebas of hypersurfaces)

Given p =
∑

α pαx
α ∈ K[x1, . . . , xn], and X ∈ Rn,

(∃x ∈ (K∗)n, p(x) = 0, X = val x) ⇐⇒ X ∈ H trop(p)

H trop(p) = {X ∈ Rn | max
α

(val pα + ⟨α,X ⟩) attained twice} .

Theorem (“Fundamental theorem of tropical geometry”, see
McLagan, Sturmfels)

Let I be an ideal of K[x1, . . . , xn]. Then, the image by the valuation
of {x ∈ (K∗)n | p(x) = 0,∀p ∈ I} coincides with⋂

p∈I

H trop(p) .

(The intersection is achieved by a choice of finitely many p.)



Example : The image by the valuation of f1 = 0 where
f1(x) = t + t2x1 + tx2 + tx1x2 is the tropical hypersurface associated
to the polynomial f1 = max(1, 2 + x1, 1 + x2, 1 + x1 + x2).



Fix t = 1 (archimedean case), so that p =
∑

α pαx
α ∈ C[x1, . . . , xn].

Gelfand, Kapranov and Zelevinski defined the amoeba and f to be
{log |x | | x ∈ (C∗)n, ; p(x) = 0}.
the tropical hypersurface approximates the amoeba, Passare,
Rüllgard, metric estimates in Aveñado, Kogan, Nisse, Rojas



Tropical hypersurfaces appear in auction theory, cf. Baldwin and
Klemperer

H trop(p) = {X ∈ Rn | max
α

(val pα + ⟨α,X ⟩) attained twice} .

An agent must choose between different bundles of elementary
objects: α ∈ Nn, αi = number of object i in bundle α, Xi is price of
object i , and pα is the utility.
The tropical hypersurface is the indifference locus
f1 = max(1, 2 + x1, 1 + x2, 1 + x1 + x2).



Part V.

Tropical Regression and best approximation



What is a tropical linear space?
Answer 1. (In Optimization and Control) A tropical linear space is a
tropical module, set V of vectors, or of functions, such that

∀v ,w ∈ V , λ, µ ∈ R ∪ {−∞}, sup(λ+ v , µ+ w) ∈ V .

Complexity = cardinality of a generating family of V
E.g., McEneaney’s maxplus method, the solution v(t, x) of a HJ
PDE is approximated by a supremum

v(t, x) ≃ sup
i∈I

λi(t) + vi(x),

and one looks for a the “best set” of functions vi(x), i ∈ I with a
prescribed cardinality, possibly taken in a restricted class (e.g.
quadratic forms).
Continuous space version of facility location (NP-hard) - SG,
McEneaney, Qu.
Includes the problem of best approximation of a convex function by a
polyhedral convex function with N facets, or of a convex body by a
polytope with N facets. See e.g. Grüber.



Finite dimensional version: tropical low rank approximation, given a
n ×m tropical matrix V , find an approximate factorization V ≃ AB
where A : n × r and B : r ×m, (AB)ij = maxk Aik + Bkj , also
NP-hard.

Analogous to nonnegative matrix factorization.

Answer 2. [In tropical (nonarchimedean) geometry, Speyer,
Sturmfels], more restrictive.
A tropical linear space is a point of the tropical Grassmannian, which
can be identified to the image by the non-archimedean valuation of a
linear space over Puiseux series.
E.g. tropical hyperplanes.



Hilbert’s projective metric

d(x , y) = inf{λ− µ | λ, µ ∈ R, µ+ yi ⩽ xi ⩽ λ+ yi ∀i ∈ [n]} .

Its restriction to Rn is induced by the Hilbert’s seminorm

∥x∥H := max
i∈[n]

xi −min
i∈[n]

xi .

It is a metric on the tropical projective space P(Rmax)
n (mod out

(Rmax)
n by the action of additive constants).

The one-sided Hausdorff distance from a set A ⊂ P(Rmax)
n to a set

B ⊂ P(Rmax)
n is :

distH(A,B) := sup
a∈A

distH(a,B) , with distH(a,B) := inf
b∈B

d(a, b) .

Hilbert’s projective metric is a canonical choice in ntropical geometry.



Hilbert’s metric on an open convex set

a

b

ā

b̄

b̄
b

a
ā

dH(a, b) = log
|b − ā||a − b̄|
|a − ā||b − b̄|

.

disc: Klein model of the hyperbolic space;
simplex: dH conjugate to the metric of Hilbert’s seminorm,
dH(x , y) = ∥ log x − log y∥H .

e1 e2

e3



Tropical linear regression

Given a collection of points V ⊂ P(Rmax)
n, find a hyperplane

Ha := {x ∈ (Rmax)
n | max

i∈[n]
(ai + xi) is achieved at least twice}

minimizing
min

a∈P(Rmax)n
distH(V ,Ha)



Motivation: Repeated invitations to tenders (ITT)
A public decision maker chooses the best offer given by n local
firms.

Secret evaluation/preference fi > 0 (technical quality) of each
firm i

For invitation j ∈ [q], firm i ∈ [n] asks for the price pij

The decision maker minimizes the weighted cost:

min
i∈[n]

pij f
−1
i

Other interpretation:

f −1
i = 1− αiβ

may represent a proportional bribe: firm i promises to secretly
give back αipij to the decision maker.

This is a variant of first-price sealed-bid auction or blind auction.
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Equilibrium in invitation to tenders

The prices yield an equilibrium if :

min
i∈[q]

pij f
−1
i is achieved twice at least

Indeed, if pij f
−1
i < pkj f

−1
k ,∀k ̸= i , then firm i may raise its price and

still wins the offer.

Let Vij = − log(pij) and ai = log(fi), the equilibrium is:

max
i∈[n]

(Vij + ai) is achieved twice at least

i.e. ∀j ∈ [q], V·j ∈ Ha
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Inferring hidden information

Finding the secrete preferences fi , i ∈ [n] (or bribes) reduces to
solving the tropical linear regression problem:

inf
b∈P(Rmax)n

distH(V ,Hb) , (1)

where V := (V·j)j∈[q] ⊂ (Rmax)
n, with Vij = − log(pij).

The value of (1) measures the “distance to equilibrium”, and a
minimizing vector b∗ is the hidden information a = log(f ).



Example

ind. social school road stadium bridge f f reg

houses housing
Firm 1 1.02 3.21 8.72 26.2 69.8 123 1 1
Firm 2 0.81 2.65 7.49 20.3 53.8 106 0.8 0.81
Firm 3 0.6 1.86 5.5 14.7 41.8 76 0.6 0.605



The same example.



A random example with 100 invitations to tenders.



Theorem (Akian, SG, Qi, Saadi)

Solving the regression problem for tropical linear hyperplanes is
equivalent to solving a (deterministic) mean payoff game.



Tit for tat game
Given a matrix V ∈ (Rmax)

n×p, want to solve

min
a

max
k∈[p]

distH(V·k ,Ha) where

Ha := {x ∈ (Rmax)
n | max

i∈[n]
(ai + xi) is achieved (at least) twice}

Associate to V the Shapley operator T : (Rmax)
n → (Rmax)

n,

Ti(x) = min
k∈[p],Vik ̸=−∞

[
− Vik + max

j∈[n],j ̸=i
(Vjk + xj)

]
, i ∈ [n] ,

of the zero-sum two-player deterministic game:

There are two players Min and Max

Starting from a state i , Min chooses k ∈ [q] s.t. Vik ̸= −∞
Then Max chooses the next state j ̸= i

−Vik + Vjk is the instantaneous payment made by Min to Max

Note the asymetry: Min can play tit for tat but Max cannot!
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Proposition (Akian, SG, Guterman IJAC 2012)

The columns V·,k , k ∈ [p] belong to the tropical hyperplane

Ha := {x ∈ (Rmax)
n | max

i∈[n]
(ai + xi) is achieved (at least) twice}

iff
a ⩽ T (a)

where
Ti(x) = min

k∈[p],Vik ̸=−∞

[
− Vik + max

j∈[n],j ̸=i
(Vjk + xj)

]

a ⩽ T (a) ⇐⇒ Vik + ai ⩽ max
j ̸=i

Vjk + aj ,∀k



Let Sp(V ) = {supk λk + V·k , λk ∈ Rmax} denote the set of tropical
linear combinations of the columns of V .

Theorem (Strong duality)

min
a∈P(Rmax)n

max
k

distH(V·k ,Ha) = −ρ(T )

= sup{r ⩾ 0 | ∃b ∈ Rn,B(b, r) ⊂ Sp(V)}.

Moreover,

if T (a) ⩾ ρ(T ) + a, then Ha is optimal

if ρ(T ) is finite and T (c) ⩽ ρ(T ) + c, then B(−c ,−ρ(T )) is
optimal

Corollary

The tropical linear regression problem is polynomial-time equivalent
to mean payoff games.

Indeed, the above shows “regression reduces to MPG”, opposite reduction derived from a result of Grigoriev and Podolski
(tropical polyhedra are shadows of linear prevarieties).



V·1V·2

V·3

V·4

V·5 V·6

V·7

V·8 V·9

x1 x2

x3

0

−a

Ha

V =

 −3 0 0 1 1 −1 0 0 −1
0 −3 0 0 −1 1 1 −1 0
−1 −1 −4 −2 −1 −1 −2 0 0





How we solved tropical linear regression and SVM

Solve T (v) = ρ(T ) + v by projective Krasnoselkii-Mann value
iteration algorithm:
Fix β ∈ (0, 1). Start with v 0 = (0, · · · , 0)⊤, and for k = 0, 1, · · · ,N :

ṽ k+1 = T (v k)− (maxi∈[n] T (v k)i), (2)

v k+1 = (1− β)v k + βṽ k+1. (3)

Special case of Krasnoselskii-Mann iteration for nonexpansive
mappings in Banach spaces.

Converges if and only if there is a finite solution v of
T (v) = ρ(T ) + v (always true if the input points in the regression
problem have finite entries).

Error bound dH(v
k+1, v k) = O(1/

√
k) (follows from Baillon-Bruck),

much faster in practice.



Part VI.

Tropical SVM



Tropical SVM : separate n data sets by a tropical hyperplane;
introduced by Gärtner and Jaggi (2006). Exptime algorithm.
Variant considered by Yoshida et al., motivated by phylogenetic
analysis.

This talk: recent work with Allamigeon, Boité, Molfessis: separating
tropically data sets reduces to mean-payoff games (solvable in a
highly scalable way).









multiclass separation



Binary tropical hard-margin classifiers
We seek to separate two tropical convex hulls of points
V+ = Col(V+) and V− = Col(V−). We choose two diagonal-free
Shapley operators T+ and T− such that
S(T±) := {x | T±(x) ⩾ x} = V±.
We can take

TV (x) :=
[
PDF
V (x)

]
i
:= max

1≤j≤p

{
Vij +min

k ̸=i
(−Vkj + xk)

}
.

We define:
T = min(T+,T−),

Theorem (Allamigeon, Boité, SG, Molfessis 2024)

The best margin of separation of the sets V± by a tropical
hyperplane coincides with −ρ(T ), the opposite of the value of the
mean payoff game with operator T . Any eigenvector of T gives an
apex of a separating tropical hyperplane.



Builds on tropical analogue of Von-Neumann cyclic projections, SG,
Sergeev, Fund. i priklad. mat. 07
If V1 ∩ · · · ∩ Vk = {“0”}, we can find half-spaces Hi such that
Hi ⊃ Vi and H1 ∩ · · · ∩Hk = {“0”}. The apices of these half-spaces
are obtained from an eigenvector u of the cylic projector

“PV1 · · ·PVk
(u) = λu”



Separation by a tropical hypersurface

Given a collection of monomials A ⊂ Zn, find a tropical hypersurface

H trop(p) = {X ∈ Rn | max
α

(pα + ⟨α,X ⟩) attained twice} .

which separates two data clouds.
Problem introduced by Charisopoulos and P. Maragos at ISMM 2017.

We apply the above tropical SVM algorithm to the Veronese
embedding of the data sets

verA(x) := (⟨x , α⟩)α∈A ∈ RA
max,

This provides a constant factor approximation of the hard-margin of
SVM for tropical hypersurfaces (when A ⊂ Nn, the constant is the
degree maxα∈A ∥α∥1). Conditioning is much better than in the
clasical case





Concluding remarks

Equivalence between tropical polyhedra and mean-payoff games

Solves: regression for tropical hyperplanes

Piecewise-linear separation (tropical SVM with hard margin)

soft margin results still to be fully explored

regression for tropical linear spaces of higher rank is unsolved

tropical principal component analysis is exptime to solve optimally;
still very useful in applications (curse of dimensionality free methods
- McEneaney-, phylogenetic analysis- Yoshida et al.-)

advertisement. Current work with Yannis Vlassopoulos, tropical
approach of LLM via directed metric spaces and tropical (alcoved)
polyhedra, see arXiv:2405.12264.

Thank you !
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