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Applications, 212 pages, Habilitation Thesis, Lille University, 9.12.2022.

http://tel.archives-ouvertes.fr/tel-00012012

Alice Barbara T (Infinite-Dii ional) Gauge Symmetries in Al Algorithms



http://tel.archives-ouvertes.fr/tel-00012012

Why infinite-dimensional geometry?

@ because most shape spaces are infinite-dimensional
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Why infinite-dimensional geometry?

@ because most shape spaces are infinite-dimensional

@ natural objects on a finite-dimensional manifold are elements of an
infinite-dimensional space (vector fields, Riemannian metrics,
mesures...)
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Why infinite-dimensional geometry?

@ because most shape spaces are infinite-dimensional

@ natural objects on a finite-dimensional manifold are elements of an
infinite-dimensional space (vector fields, Riemannian metrics,
mesures...)

@ existence of geodesics on a finite-dimensional manifold is an
infinite-dimensional phenomenon

e initial value problem or shooting : geodesic is a solution of a Cauchy
problem, i.e. a fixed point of a contraction in an appropriate
infinite-dimensional space of curves

e 2 boundary value problem: geodesic is a curve minimising an energy
functional on a infinite-dimensional space of curves
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Why infinite-dimensional geometry?

@ because most shape spaces are infinite-dimensional

@ natural objects on a finite-dimensional manifold are elements of an
infinite-dimensional space (vector fields, Riemannian metrics,
mesures...)

@ existence of geodesics on a finite-dimensional manifold is an
infinite-dimensional phenomenon

e initial value problem or shooting : geodesic is a solution of a Cauchy
problem, i.e. a fixed point of a contraction in an appropriate
infinite-dimensional space of curves

e 2 boundary value problem: geodesic is a curve minimising an energy
functional on a infinite-dimensional space of curves

o Each time one wants to vary the geometry of a finite-dimensional

manifold, one ends up with a infinite-dimensional manifold (of
Riemannian metric, of connexions, of symplectic forms....)
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Why infinite-dimensional geometry?

@ Some geometric structures of finite-dimensional manifolds are
constructed using infinite-dimensional quotients
example: hyperkahler structures of complex coadjoint orbits of
complex Lie groups are constructed using quotient of the space of
solutions of Nahm's equations by the action of the gauge group
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Why infinite-dimensional geometry?

@ Some geometric structures of finite-dimensional manifolds are
constructed using infinite-dimensional quotients
example: hyperkahler structures of complex coadjoint orbits of
complex Lie groups are constructed using quotient of the space of
solutions of Nahm's equations by the action of the gauge group

[2] A. B. Tumpach, Hyperkihler structures and infinite-dimensional Grassmannians,
Journal of Functional Analysis, https://doi.org/10.1016/]j.jfa.2006.05.019
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Why infinite-dimensional geometry?

@ time-dependant feature maps lead to infinite-dimensional feature
spaces

@ the correlations between time-dependant feature maps lead to
infinite-dimensional covariance operators that one can study using
the HS affine invariant metric

[3] H.Q. Minh, V. Murino, Covariances in Computer Vision and Machine Learning,
Synthesis Lectures on Computer Vision, Morgan & Claypool Publishers

[4] A.B. Tumpach, Mostow’s Decomposition Theorem for L*-groups and Applications
to affine coadjoint orbits and stable manifolds, Journal of Geometry and Physics 191
(2023). https://doi.org/10.1016/j.geomphys.2023.104881

[5] A.B.Tumpach, Gabriel Larotonda, Totally geodesic submanifolds in the manifold
SPD of symmetric positive-definite real matrices, to appear in Information Geometry
https://arxiv.org/abs/2405.20784
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PLAN
© Quotient spaces
© Riemannian structures on Quotient spaces: 3 Methods

o Riemannian Submersions
o Riemannian Immersions
o Gauge Invariant Metrics

© Examples
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Shape spaces

Pre-shape space 7 := {f embedding :S? — R3} C €>°(S?,R3)
Shape space .7 := 2-dimensional submanifolds of R3
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Shape spaces are non-linear manifolds

Pre-shape space .7 := {f immersion :S! — R2} C ¥>°(S!,R?)
Shape space .7 := 1-dimensional immersed submanifolds of R?
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Riemannian submersion

(I) Quotient Riemannian metric. The first way to endow the quotient
space S := F /G with a Riemannian metric is through the quotient Riemannian
metric. We recall the following classical Theorem of Riemannian geometry | ][ ]

Theorem 1 (Riemannian submersion Theorem). Let F be a manifold en-
dowed with a Riemannian metric gr, and G a Lie group acting on F in such
a way that F/G is a smooth manifold. Suppose gr is G-invariant and TpF
splits into the direct sum of the tangent space to the fiber and its orthogonal
complement, i.e.,

97 (X,Y)=gr(g-X,9-Y),VX,Y e TF, Vg€ G,
TrF = Ker(dp)r @ Ker(dp),VF € F,

then there exists a unique Riemannian metric g, s on the quotient space S =
F/G such that the canonical projection p : F — S is a Riemannian submersion,
i.e. such that dp : Ker(dp)* — TS is an isometry.

Alice Barbara Tumpach
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Riemannian immersion

(IT) Riemannian metric induced on a smooth section. Now suppose
that we have chosen a preferred smooth section s : S — F of the fiber bundle p :
F — 8§ = F/G, for instance the space of arc-length parameterized curves in the
case where G is the the group of orientation-preserving reparameterizations, or
the space of centered curves when G is the group of translations. The smoothness
assumption means that the range of s is a smooth manifold of F, like the space
of arc-length parameterized curves in the space of parameterized curves. We will
denote it by A := s(S). By construction, there is a isomorphism between S and
A which one can use to endow the quotient space S with the induced Riemannian
structure on A by F.

Theorem 2 (Riemannian immersion Theorem). Given a smooth section
s5:8 — F, there exists a unique Riemannian metric g4 on A := s(S) such that
the inclusion ¢ : A < F is an isometry. Using the isomorphism s : § — A,
there exists a unique Riemannian metric go.s on S such that s : § — F is an
isometry.
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Gauge Invariant metrics

(ITII) Gauge invariant metric. Here we suppose that we have a vector
bundle Nor over F which is a G-invariant subbundle of T'F transverse to the
vertical bundle Ver := Ker(dp). Using any G-invariant metric g on F, one can
define a G-invariant metric gy on F that is degenerate along the fiber of the
projection p : F — 8. We will explain the meaning of “gauge invariance” later.

Theorem 3. Let g be a G-invariant metric on F and Nor C TF be a G-
invariant subbundle of TF such that

TpF = Ker(dp) ¢

5 Norg, YF € F. (6)

There exists a unique metric gy on TF which coincides with g on Nor and is
degenerate exactly along the vertical fibers of p : F — S. It induces a Riemannian
metric g3 s on shape space S such that dp : Nor — T'S is an isometry.
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ci(l) = {y € c(l) /w )jds = 1}.
() ={yecll) :|y(s)| =1, Vs e I} C Ci(I).

Theorem (A.B.T, S.Preston)

Given a curve v € C1(I), let p(vy) € <#(l) denote its
arc-length-reparameterization, so that p(y) = -y o 1 where

1
I ((s)) I

Then p is a smooth retraction of C1(I) onto ().

¥'(s) = $(0) = 0. (1)

Theorem (A.B.T, S.Preston)

<% ([0, 1]) is diffeomorphic to the quotient Fréchet manifold
C1([0,11)/#([0, 1]).-

A\
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Examples

Riemannian submersion

We will consider the 2-parameter family of elastic metrics on C1(/)
introduced by Mio et al. :

Go(w, w) fo( (Dsw - v)? +b(DSW,n)2) V(D) dt,  (2)

where a and b are positive constants, 7y is any parameterized curve in
Ci1(/), w is any element of the tangent space T,Ci(/), with Dsw = B

denoting the arc-length derivative of w, v =+'/|7/| and n = v*.

Since the reparameterization group preserves the elastic metric G°, it
defines a quotient elastic metric on the quotient space

¢1([0,1])/([0, 1]), which we will denote by G=°

G (). [w]) = inf _ G**(w+ u.w+ u)
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Since 24 ([0, 1]) is diffeomorphic to the quotient Fréchet manifold

C1([0,1])/9([0,1]), we can pull-back the quotient elastic metric G to
the space of arc-length parameterized curves <% ([0, 1]) and define

~a,b __ rab . a,b
Go*(w,w) = G*H([wl, [w]) = inf | G*4(w +uw+0)

where w is tangent to 4 ([0, 1]).

If T,C1([0,1]) decomposes as T,C1([0,1]) = T, & & Hor,, this minimum
is achieved by the unique vector Py(w) € [w] belonging to the horizontal
space Hor,, at . In this case:

G>P(w, w) = G*P(Ph(w), Po(w)), (3)

where P,(w) € T,C1([0,1]) is the projection of w onto the horizontal
space.
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Examples

Theorem (A.B.T, S.Preston)

Let w be a tangent vector to the manifold <#([0,1]) at v and write

w' = ®n, where ® is a real function in €>°([0,1],R). Then the
projection Pn(w) of w € T,2#([0,1]) onto the horizontal space Hor,
reads Py(w) = w — mv where m € €°°([0, 1], R) is the unique solution of

- Zm” +w2m=r®,  m0)=0, m(l)=0 (4)

where K is the curvature function of .
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Examples

N J

. > TN < N
Figure: Toy example: initial path joining a circle to the same circle via an ellipse. The 5 first
shapes at the left correspond to the path at time t =0, t = 0.25, t = 0.5, t = 0.75 and t = 1.
The right picture shows the entire path, with color varying from red (t = 0) to blue (t = 0.5)
to red again (t = 1).

et g ‘ P p
5\ A \. 2
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. . - » / » 7 7
alb=13 alb =20 a/b =30 alb = 50 alb =100

Figure: Gradient of the energy functional at the middle of the path depicted in Fig. 1 for

b = 1 and different values of the parameter a/b.
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Examples

Curvature-length Parameterization

Arc-length parameterization is used to compute the curvature function.
One can integrate the absolute value of the curvature along the curve
and renormalized to have a total integral equal to 1. The resulting
function is used to define the curvature-length parameterization of the
curve and resample the curve accordingly.

Figure: Integral of the (renormalized) absolute value of the curvature (left), and
corresponding resampling of Elie's Cartan head (right).
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Examples

From Curvature-length Parameterization to Arc-length Parameterization

The draw-back of curvature-length parameterization is that it does not
put points at all on flat pieces of the curve. In order to fix this, instead of
integrating the curvature, one can integrate A + curvature, where X is a
parameter.

Figure:

Resampling of the statue of Liberty proportional to the intergral of A\ + curvature, for (from
left to right) A = 0; A = 0.3; A = 1; A = 2; A = 100.
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Examples

Curvarc-length Parameterization

_ Jo(LHIr(s)l)ds
Jo (L+]5(s)])ds
where L is the length of the curve, and & the curvature function.

The Curvarc-length parameterization is defined by u(s)

ulsh

09

o
0 o1 02 03 04 05 06 07 08 09

Figure: Integral of the (renormalized) curvarc length (left), and corresponding resampling of
Elie’s Cartan head (right).
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WHAT TO REMEMBER IN ORDER TO DEFINE A
MANIFOLD OF CANONICALLY PARAMETERIZED
CURVES?

the only invariant of plane curves in arc-length parameterization is
the curvature

Any strictly increasing function applied to the absolute value of the
curvature defines a canonical parameterization of plane curves

finding the right parameterization adapted to a given application =
finding the right strictly increasing function (physical considerations
have their space here)
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EXERCICE

@ Prove that the set of smooth curves parameterized proportionnally
to the curvature is a smooth submanifold of the manifold of
parameterized curves

e Compute the tangent space

@ Compute the projection of a arbitrary parameterized curve to a curve
parameterized proportionnal to curvature-length

@ Compute the induced elastic metric
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Parameterization of infinite-dimensional manifolds

(0@
°4 8¢
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Parameterization of infinite-dimensional manifolds

0
QILLIPIO) S
O

Figure: Examples of extracted boundary curves for Swedish Leaf Dataset [1].
An element of each class is represented.
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Infinite-dimensional manifolds of leaves

Figure:
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Examples
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Examples

Infinite-dimensional manifolds of leaves
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Figure: One leaf of Acer parameterized by the curvature and on top of it the
same leaf parameterized by arc-length
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Examples

Infinite-dimensional manifolds of leaves
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Figure: 2 leaves of Acer parameterized by arc-length
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Examples

Infinite-dimensional manifolds of leaves
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Figure: 3 leaves of Acer parameterized by arc-length

Alice Barbara Tumpach (Infinite-Dimensional) Gauge Symmetries in Al Algorithms



Examples

Infinite-dimensional manifolds of leaves

25

Figure: 5 leaves of Acer parameterized by arc-length
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Examples

Infinite-dimensional manifolds of leav

Figure: 75 leaves of Acer parameterized by arc-length
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Examples

What is the best parameterization of a leave?

Figure: One candidate: Clock parameterization
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Pre-shape space 7 := {f embedding :S? — R3} C €>°(S?,R3)
Shape space .# := 2-dimensional submanifolds of R3
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Examples

Figure: Scalar product on the tangent plan to the tip of the middle finger of a hand.

Genus-0 surfaces of R3 are Riemann surfaces. Since they are compact
and simply connected, the Uniformization Theorem says that they are
conformally equivalent to the unit sphere. This means that, given a
spherical surface, there exists a homeomorphism, called the
uniformization map, which preserves the angles and transforms the unit

sphere into the surface. The uniformization maps are parameterized by
PSL(2,C).
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A.B.Tumpach, H. Drira, M. Daoudi, A. Srivastava, Gauge invariant
Framework for shape analysis of surfaces, IEEE TPAMI.

A.B.Tumpach, Gauge invariance of degenerate Riemannian metrics,
Notices of AMS.
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Figure: Pairs of paths projecting to the same path in Shape space, but with
different parametrizations. The energies of these paths, as computed by our
program, are respectively (from the upper row to the lower row):
En = 225.3565, Ep = 225.3216, EA = 180.8444, EA = 176.8673.
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