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Introduction

In this talk, we will review some basic concepts of mathematical
morphology, with emphasis on vector-valued operators.

Motivated by vector-valued mathematical morphology, we shall
introduce vector-valued neural networks (V-nets), a broad class of
neural networks that takes the intercorrelation between feature
channels beforehand.

Moreover, V-nets can benefit from geometrical concepts of
hypercomplex algebras.

In addition to introducing V-nets, we show how they can be
effectively implemented in deep-learning libraries.
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Lattice Framework for Mathematical Morphology

Mathematical morphology (MM) provides geometrical and
topological framework for the analysis and processing of images.
(Heijmans, 1994; Serra, 1982; Soille, 1999).

The two elementary operators of mathematical morphology are
dilation and erosion. Other operators are obtained by combining the
two elementary operators.

In general, MM can be very well conducted in a mathematical
framework called complete lattice (Birkhoff, 1993; Heijmans, 1995).

Definition (Complete Lattice)

A complete lattice L is a partially ordered set in which every subset
(finite or infinite) has a supremum and an infimum.
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The two elementary operators of mathematical morphology can be
defined using the concept of adjunction (Heijmans, 1995)!

Definition (Adjunction, Erosion and Dilation)

Let L andM be complete lattices. We say that two operators
" : L !M and � :M! L form an adjunction if

�(x) � y () x � "(y): (1)

In this case, " is an erosion and � is a dilation.

Furthermore, the compositions

 = � � " and � = " � �;

represent an opening and a closing, respectively.

Morphological operators can be found in activation functions and
pooling layers in current deep-learning models (Velasco-Forero and
Angulo, 2022).
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A morphological neural network is an arti�cial neural network whose
neurons perform a morphological operator, possibly followed by an
activation function (Sussner and Esmi, 2011).

Examples of (shallow) morphological neural networks include:
� Morphological and fuzzy morphological associative memories

(Ritter et al., 1998; Santos and Valle, 2018; Sussner and Valle,
2006; Valle and Sussner, 2008),

� Multi-layer morphological perceptron networks (Ritter and
Sussner, 1996; Ritter and Urcid, 2003; Sussner and Esmi, 2011),

� Deep morphological networks Franchi et al. (2020); Mondal et al.
(2019); Nogueira et al. (2021)

Adjunction, greedy algorithms, evolutionary programming, a
difference of convex functions, or variations/adaptations of the
backpropagation are used to train morphological neural networks.
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Gray-Scale Morphological Operators

A gray-scale image is a function f : D ! T, where D is the domain,
and T is a chain such as T = [ 0; 1] or T = f 0; 1; : : : ; 255g.

Given a structuring element S � D , we de�ne �at elementary
morphological operators as follows for x 2 D :

["S(f )]( x) = inf
s2 S

f f (x + s)g and [� S(f )]( x) = sup
s2 S

f f (x � s)g: (2)

Non-�at gray-scale morphological operators are de�ned as follows
using a structuring function g : D ! T:

["g(f )]( x) = inf
s2 S

f f (x + s) � g(s)g; (3)

and
[� g(f )]( x) = sup

s2 S
f f (x � s) + g(s)g: (4)
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Vector-Valued Mathematical Morphology

A vector-valued image is a function f : D ! V, where D is the
domain, and V is the value set, usually a subset of Rd with d � 2.

Like gray-scale morphology, �at vector-valued morphological
operators are de�ned as follows using a structuring element S � D :

["S(f )]( x) = inf
s2 S

f f (x + s)g and [� S(f )]( x) = sup
s2 S

f f (x � s)g: (5)

One of the main challenges in vector-valued mathematical
morphology is to determine a suitable ordering so that V is a

complete lattice!
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Non-�at vector-valued morphological operators are de�ned by
enriching a complete lattice with additional binary operations.

De�nition (Quantale (Mulvey, 1986))

A quantale Q is a complete lattice Q together with an associative
binary operation “�” which distributes over arbitrary suprema.

The multiplication of a quantale Q is always residuated. Thus, there
exists a binary operation “=” such that

x � y � z () x � z=y: (6)

Using a structuring function g : D ! Q , the non-�at vector-valued
morphological operators are de�ned as follows (Stell, 2009):

["g (f )]( x) = inf
s2 S

f f (x + s)=g(s)g; (7)

and
[� g (f )]( x) = sup

s2 S
f f (x � s) � g(s)g: (8)
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Marginal Ordering

In RGB space, denoted by CRGB = [ 0; 1] � [0; 1] � [0; 1], a color
c = ( cr ; cg ; cb) 2 CRGB is written in terms of the primitives red,
green, and blue.

We can de�ne the marginal ordering as follows

c � c0 () cr � c0
r ; cg � c0

g and cb � c0
b:

In this case, the in�mum and supremum of a set of colors are
determined component-wise.
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For example, we have

inff (1; 1; 0)
| {z }
yellow

; (1; 0; 1)
| {z }

magenta

g = ( 1; 0; 0)
| {z }

red

; supf (1; 1; 0)
| {z }
yellow

; (1; 0; 1)
| {z }

magenta

g = ( 1; 1; 1)
| {z }
white

:

The �at erosion and �at dilation of a color image with marginal order
are determined as follows:

"S(f )(x) =
�

inf
s2 S

f fr (x + s)g; inf
s2 S

f fg(x + s)g; inf
s2 S

f fb(x + s)g
�

;

and

� S(f )(x) =
�

sup
s2 S

f fr (x + s)g; sup
s2 S

f fg(x + s)g; sup
s2 S

f fb(x + s)g
�

;

where f (x) = ( fr (x); fg(x); fb(x)) for all x 2 D .
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Example – Flat Marginal Erosion

Color image f Eroded image "S(f )

� The marginal approach may introduce “false colors”!
� It does not consider the correlation between color channels!
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Lexicographical Ordering

The RGB color space can be endowed with the lexicographic
ordering de�ned by

c � c0 ()

8
><

>:

cr < c0
r ;

cr = c0
r e cg < c0

g ;

cr = c0
r ; cg = c0

g e cb � c0
b:

For example,

inff (1; 1; 0)
| {z }
yellow

; (1; 0; 1)
| {z }

magenta

g = ( 1; 0; 1)
| {z }

magenta

;

and
supf (1; 1; 0)

| {z }
yellow

; (1; 0; 1)
| {z }

magenta

g = ( 1; 1; 1)
| {z }
yellow

:
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