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Introduction

In this talk, we will review some basic concepts of mathematical
morphology, with emphasis on vector-valued operators.

Motivated by vector-valued mathematical morphology, we shall
introduce vector-valued neural networks (V-nets), a broad class of
neural networks that takes the intercorrelation between feature
channels beforehand.

Moreover, V-nets can benefit from geometrical concepts of
hypercomplex algebras.

In addition to introducing V-nets, we show how they can be
effectively implemented in deep-learning libraries.
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Lattice Framework for Mathematical Morphology

Mathematical morphology (MM) provides geometrical and
topological framework for the analysis and processing of images.
(Heijmans, 1994; Serra, 1982; Soille, 1999).

The two elementary operators of mathematical morphology are
dilation and erosion. Other operators are obtained by combining the
two elementary operators.

In general, MM can be very well conducted in a mathematical
framework called complete lattice (Birkhoff, 1993; Heijmans, 1995).

Definition (Complete Lattice)

A complete lattice L is a partially ordered set in which every subset
(finite or infinite) has a supremum and an infimum.
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The two elementary operators of mathematical morphology can be
defined using the concept of adjunction (Heijmans, 1995)!

Definition (Adjunction, Erosion and Dilation)

Let L and M be complete lattices. We say that two operators
ε : L → M and δ : M → L form an adjunction if

δ(x) ≤ y ⇐⇒ x ≤ ε(y). (1)

In this case, ε is an erosion and δ is a dilation.

Furthermore, the compositions

γ = δ ◦ ε and ϕ = ε ◦ δ,

represent an opening and a closing, respectively.

Morphological operators can be found in activation functions and
pooling layers in current deep-learning models (Velasco-Forero and
Angulo, 2022).

Marcos Eduardo Valle (Unicamp) Mathematical Morphology and V-nets 4 / 46



The two elementary operators of mathematical morphology can be
defined using the concept of adjunction (Heijmans, 1995)!

Definition (Adjunction, Erosion and Dilation)

Let L and M be complete lattices. We say that two operators
ε : L → M and δ : M → L form an adjunction if

δ(x) ≤ y ⇐⇒ x ≤ ε(y). (1)

In this case, ε is an erosion and δ is a dilation.

Furthermore, the compositions

γ = δ ◦ ε and ϕ = ε ◦ δ,

represent an opening and a closing, respectively.

Morphological operators can be found in activation functions and
pooling layers in current deep-learning models (Velasco-Forero and
Angulo, 2022).

Marcos Eduardo Valle (Unicamp) Mathematical Morphology and V-nets 4 / 46



The two elementary operators of mathematical morphology can be
defined using the concept of adjunction (Heijmans, 1995)!

Definition (Adjunction, Erosion and Dilation)

Let L and M be complete lattices. We say that two operators
ε : L → M and δ : M → L form an adjunction if

δ(x) ≤ y ⇐⇒ x ≤ ε(y). (1)

In this case, ε is an erosion and δ is a dilation.

Furthermore, the compositions

γ = δ ◦ ε and ϕ = ε ◦ δ,

represent an opening and a closing, respectively.

Morphological operators can be found in activation functions and
pooling layers in current deep-learning models (Velasco-Forero and
Angulo, 2022).

Marcos Eduardo Valle (Unicamp) Mathematical Morphology and V-nets 4 / 46



The two elementary operators of mathematical morphology can be
defined using the concept of adjunction (Heijmans, 1995)!

Definition (Adjunction, Erosion and Dilation)

Let L and M be complete lattices. We say that two operators
ε : L → M and δ : M → L form an adjunction if

δ(x) ≤ y ⇐⇒ x ≤ ε(y). (1)

In this case, ε is an erosion and δ is a dilation.

Furthermore, the compositions

γ = δ ◦ ε and ϕ = ε ◦ δ,

represent an opening and a closing, respectively.

Morphological operators can be found in activation functions and
pooling layers in current deep-learning models (Velasco-Forero and
Angulo, 2022).
Marcos Eduardo Valle (Unicamp) Mathematical Morphology and V-nets 4 / 46



A morphological neural network is an artificial neural network whose
neurons perform a morphological operator, possibly followed by an
activation function (Sussner and Esmi, 2011).

Examples of (shallow) morphological neural networks include:
• Morphological and fuzzy morphological associative memories

(Ritter et al., 1998; Santos and Valle, 2018; Sussner and Valle,
2006; Valle and Sussner, 2008),

• Multi-layer morphological perceptron networks (Ritter and
Sussner, 1996; Ritter and Urcid, 2003; Sussner and Esmi, 2011),

• Deep morphological networks Franchi et al. (2020); Mondal et al.
(2019); Nogueira et al. (2021)

Adjunction, greedy algorithms, evolutionary programming, a
difference of convex functions, or variations/adaptations of the
backpropagation are used to train morphological neural networks.
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Gray-Scale Morphological Operators

A gray-scale image is a function f : D → T, where D is the domain,
and T is a chain such as T = [0,1] or T = {0,1, . . . ,255}.

Given a structuring element S ⊂ D, we define flat elementary
morphological operators as follows for x ∈ D:

[εS(f )](x) = inf
s∈S

{f (x + s)} and [δS(f )](x) = sup
s∈S

{f (x − s)}. (2)

Non-flat gray-scale morphological operators are defined as follows
using a structuring function g : D → T:

[εg(f )](x) = inf
s∈S

{f (x + s)− g(s)}, (3)

and
[δg(f )](x) = sup

s∈S
{f (x − s) + g(s)}. (4)
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Vector-Valued Mathematical Morphology

A vector-valued image is a function f : D → V, where D is the
domain, and V is the value set, usually a subset of Rd with d ≥ 2.

Like gray-scale morphology, flat vector-valued morphological
operators are defined as follows using a structuring element S ⊂ D:

[εS(f )](x) = inf
s∈S

{f (x + s)} and [δS(f )](x) = sup
s∈S

{f (x − s)}. (5)

One of the main challenges in vector-valued mathematical
morphology is to determine a suitable ordering so that V is a

complete lattice!
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Non-flat vector-valued morphological operators are defined by
enriching a complete lattice with additional binary operations.

Definition (Quantale (Mulvey, 1986))

A quantale Q is a complete lattice Q together with an associative
binary operation “·” which distributes over arbitrary suprema.

The multiplication of a quantale Q is always residuated. Thus, there
exists a binary operation “/” such that

x · y ≤ z ⇐⇒ x ≤ z/y . (6)

Using a structuring function g : D → Q, the non-flat vector-valued
morphological operators are defined as follows (Stell, 2009):

[εg(f )](x) = inf
s∈S

{f (x + s)/g(s)}, (7)

and
[δg(f )](x) = sup

s∈S
{f (x − s) · g(s)}. (8)
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Marginal Ordering

In RGB space, denoted by CRGB = [0,1]× [0,1]× [0,1], a color
c = (cr , cg , cb) ∈ CRGB is written in terms of the primitives red,
green, and blue.

We can define the marginal ordering as follows

c ≤ c′ ⇐⇒ cr ≤ c′
r , cg ≤ c′

g and cb ≤ c′
b.

In this case, the infimum and supremum of a set of colors are
determined component-wise.
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For example, we have

inf{(1,1,0)︸ ︷︷ ︸
yellow

, (1,0,1)︸ ︷︷ ︸
magenta

} = (1,0,0)︸ ︷︷ ︸
red

, sup{(1,1,0)︸ ︷︷ ︸
yellow

, (1,0,1)︸ ︷︷ ︸
magenta

} = (1,1,1)︸ ︷︷ ︸
white

.

The flat erosion and flat dilation of a color image with marginal order
are determined as follows:

εS(f )(x) =
(
inf
s∈S

{fr (x + s)}, inf
s∈S

{fg(x + s)}, inf
s∈S

{fb(x + s)}
)
,

and

δS(f )(x) =
(
sup
s∈S

{fr (x + s)}, sup
s∈S

{fg(x + s)}, sup
s∈S

{fb(x + s)}
)
,

where f (x) = (fr (x), fg(x), fb(x)) for all x ∈ D.
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Example – Flat Marginal Erosion

Color image f Eroded image εS(f )

• The marginal approach may introduce “false colors”!
• It does not consider the correlation between color channels!
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Lexicographical Ordering

The RGB color space can be endowed with the lexicographic
ordering defined by

c ≤ c′ ⇐⇒


cr < c′

r ,

cr = c′
r e cg < c′

g ,

cr = c′
r , cg = c′

g e cb ≤ c′
b.

For example,

inf{(1,1,0)︸ ︷︷ ︸
yellow

, (1,0,1)︸ ︷︷ ︸
magenta

} = (1,0,1)︸ ︷︷ ︸
magenta

,

and
sup{(1,1,0)︸ ︷︷ ︸

yellow

, (1,0,1)︸ ︷︷ ︸
magenta

} = (1,1,1)︸ ︷︷ ︸
yellow

.
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Example – Flat Lexicographical Erosion

Color image f Eroded image εS(f )
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The lexicographic order is a total order. Thus, we can always
compare two colors.

In a total order, both the supremum and the infimum of a finite set
are elements of the set.

A total order, including the lexicographic order, does not introduce
false colors!

There are many other approaches to vector-valued mathematical
morphology besides the marginal and lexicographical approaches.

Examples include Loewner order (Burgeth and Kleefeld, 2014) and
the approaches based on “color” quaternions (Angulo, 2010).

The following reviews an approach based on reduced ordering
combined with look-up tables (Goutsias et al., 1995).
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Reduced Ordering

A reduced ordering is defined as follows using a surjective mapping
ρ : V → L that maps the value set to a complete lattice:

u ≤ρ v ⇐⇒ ρ(u) ≤L ρ(v). (9)

A reduced ordering is not a partial order but a preorder because
u ≤ρ v and v ≤ρ u do not necessarily imply u = v .

Nevertheless, morphological operators can be defined using
reduced orderings as shown in the next slide (Goutsias et al., 1995):
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Definition (ρ-Increasing Morphological Operators)

Let V be non-empty set, L a complete lattice, and ρ : V → L a
surjective mappings. A mapping ψρ : V → V is an ρ-increasing
morphological operator if there exists an increasing morphological
operator (e.g., dilation, erosion, opening, and closing) ψ : L → L
such that

ρ(ψρ(x)) = ψ(ρ(x)), ∀x ∈ V. (10)

For example, an operator ερ : V → V is a ρ-increasing erosion, or
simply a reduced erosion, if there exists an erosion ε : L → L such
that ρ ◦ ερ = ε ◦ ρ.

Marcos Eduardo Valle (Unicamp) Mathematical Morphology and V-nets 16 / 46



Definition (ρ-Increasing Morphological Operators)

Let V be non-empty set, L a complete lattice, and ρ : V → L a
surjective mappings. A mapping ψρ : V → V is an ρ-increasing
morphological operator if there exists an increasing morphological
operator (e.g., dilation, erosion, opening, and closing) ψ : L → L
such that

ρ(ψρ(x)) = ψ(ρ(x)), ∀x ∈ V. (10)

For example, an operator ερ : V → V is a ρ-increasing erosion, or
simply a reduced erosion, if there exists an erosion ε : L → L such
that ρ ◦ ερ = ε ◦ ρ.

Marcos Eduardo Valle (Unicamp) Mathematical Morphology and V-nets 16 / 46



In practice, ρ-increasing morphological operators can be efficiently
computed using look-up tables (LUT) and gray-scale morphological
operators (Velasco-Forero and Angulo, 2014).

Briefly, each value is indexed by a scalar sorted using the mapping
ρ. A morphological operator is applied to the indexed image, and the
vector-valued image output is retrieved by replacing the indexes with
the corresponding values.

Interestingly, machine learning techniques can be used to determine
the subjective mapping ρ (Velasco-Forero and Angulo, 2014).

Unlike the marginal approach, vectors are treated as single
entities in the reduced ordering approach.
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Vector-Valued Neural Networks

Despite the successful applications of deep learning to
multidimensional signal and image processing, most traditional
neural networks process data represented by (multidimensional)
arrays of real numbers.

The intercorrelation between feature channels is typically expected
to be learned from the training data, requiring numerous parameters
and careful training.

Vector-valued neural networks (V-nets) are designed to process
arrays of vectors and consider the intercorrelation between feature
channels beforehand. (Fan et al., 2020; Valle, 2024).

V-nets typically have fewer parameters and usually undergo more
robust training than traditional networks.
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V-nets encompass hypercomplex-valued neural networks that are
obtained by considering hypercomplex algebras such as Clifford or
Cayley-Dickson algebras (Vieira and Valle, 2022a).

Hypercomplex-valued neural networks can benefit from the
geometric aspects of the hypercomplex algebra, resulting in rotation-
or translation-invariant or -equivariant models (Ruhe et al., 2023a;
Vieira et al., 2023)

However, research on hypercomplex-valued neural networks is
predominantly based on complex numbers and quaternions.

In the following, we consider a broad framework encompassing
hypercomplex-valued models as particular instances.

Furthermore, we point out how to implement vector-valued neural
networks in current deep learning libraries.
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Algebras and Hypercomplex Algebras

Many image and signal processing tasks - such as those related to
multivariate images and 3D audio signals (Grassucci et al., 2023;
Miron et al., 2023; Parcollet et al., 2020) - deal with vector-valued
data.

Since addition and multiplication are essential operations for the
design of neural networks, let us recall the concept of algebra.

Definition (Algebra (Schafer, 1961))

An algebra V is a vector space over a field F equipped with a bilinear
operation called multiplication or product.

In this talk, we will focus on algebras over the field of real numbers;
that is, we will consider only F = R.
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Finite-Dimensional Algebras

We will be concerned only with finite-dimensional vector spaces. We
assume that V is a vector space of dimension n, that is, dim(V) = n.

Let E = {e0,e1, . . . ,en−1} be an ordered basis for V. Given x ∈ V,
there exists a unique tuple (ξ0, ξ1, . . . , ξn−1) ∈ Rn such that

x =
n−1∑
i=0

ξiei . (11)

We will denote by φ : V → Rn the isomorphism (which depends on
the ordered basis) given by the equation φ(x) = [ξ0, . . . , ξn−1]

T .

In computational applications, x ∈ V is given by its coordinates
relative to the ordered basis E .
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Multiplication Table

Given an ordered basis E = {e0, . . . ,en−1} of V, multiplication is
completely determined by the n3 parameters pijk ∈ R that appear in
the products

eiej =
n−1∑
k=0

pijkek , ∀i , j = 0,1, . . . ,n − 1. (12)

The products in (12) can be organized into a multiplication table:

e0 ej en−1
...

ei · · ·
n−1∑
k=0

pijkek · · ·

...
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Hypercomplex Algebra

A hypercomplex algebra, denoted by H, is a finite-dimensional
algebra in which the product has an identity bilateral (Catoni et al.,
2008; Kantor and Solodovnikov, 1989).

A hypercomplex algebra H is equipped with a (unique) element e0
such that xe0 = e0x = x for all x ∈ V.

The identity is usually the first element of the ordered basis. Thus,
E = {e0,e1, . . . ,en−1} is an ordered basis of a hypercomplex
algebra.

We often consider the canonical basis τ = {1, i1, . . . , in−1}. Thus, a
hypercomplex number is given by

x = x0 + x1i1 + . . .+ xn−1in−1. (13)
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Example – Quaternions

Quaternions, introduced by Hamilton in the late 19th century, are
hypercomplex numbers that generalize complex numbers.

Using the canonical basis τ = {1, i , j ,k}, a quaternion is given by
x = x0 + x1i + x2j + x3k and the quaternion multiplication table is

1 i j k
1 1 i j k
i i −1 k −j
j j −k −1 i
k k j −i −1

Quaternions are adequate for describing rotations in 3D space.

They have also been used effectively to develop neural networks
(Arena et al., 1997; Parcollet et al., 2020).
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Matrix Representation of the Product

The left multiplication by a =
n−1∑
i=0

αiei yields a linear operator

AL : V → V defined by AL(x) = ax , for all x ∈ V.

The matrix representation of AL with respect to an ordered basis
E = {e0, . . . ,en−1} yields a mapping ML : V → Rn×n given by

ML(a) =

 | |
φ(ae0) . . . φ(aen−1)

| |

.
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Effectively, we can write

ML(a) =
n−1∑
i=0

αiPT
i: , PT

i: =


pi00 pi10 . . . pi(n−1)0
pi01 pi11 . . . pi(n−1)1

...
...

. . .
...

pi0(n−1) pi1(n−1) . . . pi(n−1)(n−1)

 .
(14)

Using matrix representation, we have

φ(ax) = ML(a)φ(x) =
n−1∑
i=0

αiPT
i: φ(x). (15)

Concluding, we can compute the product of a and x as follows:

ax = φ−1

(
n−1∑
i=0

αiPT
i: φ(x)

)
(16)
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Example – Quaternions

Consider the quaternions with the canonical basis τ = {1, i , j ,k}.
The product of x = 1+2i +3j +4k and y = 5+6i +7j +8k satisfies

φ(xy) = ML(x)φ(y) =


1 −2 −3 −4
2 1 −4 3
3 4 1 −2
4 −3 2 1




5
6
7
8

 =


−60
12
30
24

 .
Thus, xy = −60 + 12i + 30j + 24k .

Note that
ML(x) = 1P0: + 2P1: + 3P2: + 4Pn:,

where P0: = I4×4 is the identity matrix and

PT
1: =


0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

 ,PT
2: =


0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0

 ,PT
3: =


0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0

 .
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The product of x = 1+2i +3j +4k and y = 5+6i +7j +8k satisfies

φ(xy) = ML(x)φ(y) =


1 −2 −3 −4
2 1 −4 3
3 4 1 −2
4 −3 2 1




5
6
7
8

 =


−60
12
30
24

 .
Thus, xy = −60 + 12i + 30j + 24k .

Note that
ML(x) = 1P0: + 2P1: + 3P2: + 4Pn:,

where P0: = I4×4 is the identity matrix and

PT
1: =


0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0
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Computing with Vector-Valued Matrices

Matrix computation is a key concept for developing V-nets because
some fundamental building blocks, such as dense and convolutional
layers, compute affine transformations followed by a nonlinear
function.

Let V be an algebra over the real numbers. The product of two
vector-valued matrices A ∈ VM×L and B ∈ VL×N results in a new
matrix C ∈ VM×N with entries defined by

cij =
L∑

ℓ=1

aiℓbℓj , ∀i = 1, . . . ,M and j = 1, . . . ,N. (17)
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We compute the above operation using real-valued matrix
operations to take advantage of scientific computing software.

Let E = {e0, . . . ,en−1} be a basis for V. Using the isomorphism
φ : V → Rn defined by

φ(x) =

 ξ0
...

ξn−1

 , ∀x =
n−1∑
i=0

ξiei ∈ V,

we have

φ(cij) = φ

(
L∑

ℓ=1

aiℓbℓj

)
=

L∑
ℓ=1

φ
(
aiℓbℓj

)
=

L∑
ℓ=1

ML(aiℓ)φ(bℓj),

where ML : V → Rn×n is the matrix representation of the left

multiplication by a =
n−1∑
i=0

αiei .
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Equivalently, using real-valued matrix operations, we have

φ(C) = ML(A)φ(B), (18)

where ML and φ are given by

ML(A) =

ML(a11) ML(a12) . . . ML(a1L)
...

...
. . .

...
ML(aM1) ML(aM2) . . . ML(aML)

 ∈ RnM×nL, (19)

e

φ(B) =


φ(b11) . . . φ(b1N)
φ(b21) . . . φ(b2N)

...
. . .

...
φ(bL1) ldots φ(bLN)

 ∈ RnL×N . (20)
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Rearranging the elements φ(C), we have

C = φ−1 (ML(A)φ(B)) , (21)

which allows the computation of vector-valued matrix products using
the real-valued matrix computation often available in scientific
computing software.

To further reduce the computational effort, the real-valued matrix
ML(A) ∈ RnM×nL can be computed using the Kronecker product.
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Kronecker product

The Kronecker product of two real matrices A = (aij) ∈ RN×M and
B ∈ RP×Q, denoted by A ⊗ B, yields the block matrix defined by

A ⊗ B =


a11B a12B . . . a1MB
a21B a22B . . . a2MB

...
...

. . .
...

aN1B aN2B . . . aNMB

 ∈ RNP×MQ. (22)

For example, Stenger (1968) and Loan (2000) describe basic
properties and some applications of the Kronecker product.

Following Zhang et al. (2021) and Grassucci et al. (2022), we use
the Kronecker product to compute ML(A) as follows.
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The matrix representation of left multiplication by aij =
n−1∑
k=0

αijkek

satisfies

ML(aij) =
n−1∑
k=0

αijkPT
k :, PT

k : =


pk00 pk10 . . . pk(n−1)0
pk01 pk11 . . . pk(n−1)1

...
...

. . .
...

pk0(n−1) pk1(n−1) . . . pk(n−1)(n−1)

 .

Therefore, we have

ML(A) =
n−1∑
k=0

α11kPT
k : α12kPT

k : . . . αiLkPT
k :

...
...

. . .
...

αM1kPT
k : αM2kPT

k : . . . αMLkPT
k :

 .
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Let Ak ∈ RM×L, for k = 1, . . . ,n, be real matrices such that

A =
n−1∑
k=0

Akek ,

that is, Ak is the “matrix” component associated with the base
element ek of A.

Using Ak ∈ RM×L, we conclude that

ML(A) =
n−1∑
k=0

Ak ⊗ PT
k :. (23)

Therefore, C = AB can be efficiently calculated by the equation

C = φ−1

(( n−1∑
k=0

Ak ⊗ PT
k :

)
φ(B)

)
. (24)
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Example - Quaternions

Consider the matrix

A =

[
1 + 2i 3i + 4j 5j + 6k
7 + 8j 9 + 10k 11 ii + 12k

]
∈ Q2×3,

and the column vector

x =

 1 + 2i + 3j + 4k
5 + 6i + 7j + 8k

9 + 10i + 11j + 12k

 ∈ Q3×1.

Using quaternion matrix algebra, we obtain

y = Ax =

[
−176 + 45i + 96j + 11k
−306 − 3i + 140j + 363k

]
.
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Using left multiplication, we compute

ML(A) =
[

1 0 0
7 9 0

]
⊗

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

+ . . .+ A3 ⊗ PT
3:

=


1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
7 0 0 0 9 0 0 0 0 0 0 0
0 7 0 0 0 9 0 0 0 0 0 0
0 0 7 0 0 0 9 0 0 0 0 0
0 0 0 7 0 0 0 9 0 0 0 0

+ . . .+ A3 ⊗ PT
3:

=


1 −2 0 0 0 −3 −4 0 0 0 −5 −6
2 1 0 0 3 0 0 4 0 0 −6 5
0 0 1 −2 4 0 0 −3 5 6 0 0
0 0 2 1 0 −4 3 0 6 −5 0 0
7 0 −8 0 9 0 0 −10 0 −11 0 −12
0 7 0 8 0 9 −10 0 11 0 −12 0
8 0 7 0 0 10 9 0 0 12 0 −11
0 −8 0 7 10 0 0 9 12 0 11 0
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Thus, we have

φ(y) =


1 −2 0 0 0 −3 −4 0 0 0 −5 −6
2 1 0 0 3 0 0 4 0 0 −6 5
0 0 1 −2 4 0 0 −3 5 6 0 0
0 0 2 1 0 −4 3 0 6 −5 0 0
7 0 −8 0 9 0 0 −10 0 −11 0 −12
0 7 0 8 0 9 −10 0 11 0 −12 0
8 0 7 0 0 10 9 0 0 12 0 −11
0 −8 0 7 10 0 0 9 12 0 11 0





1
2
3
4
5
6
7
8
9

10
11
12


=
[
−176 45 96 11 −306 −3 140 363

]T
.

Recall that

y = Ax =

[
−176 + 45i + 96j + 11k
−306 − 3i + 140j + 363k

]
.
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Vector-Valued Neural Networks (V-Nets)

Dense layers, also known as fully connected layers, are the building
blocks of several neural network architectures (Géron, 2019).

In particular, the famous multilayer perceptron (MLP) network is
given by the composition of a sequence of dense layers.

The output y = (y1, . . . , yM) ∈ VM of a dense layer with
vector-valued neurons M in parallel is

y = ψ(s + b) with s = Wx , (25)

where x = (x1, . . . , xN) ∈ VN is the input vector, W = (wij) ∈ VM×N

is the matrix containing the synaptic weights, b = (b1, . . . ,bM) ∈ VM

is the bias vector, and ψ : VM → VM is the activation or transfer
function.
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In practice, we work with the real representation of inputs and
outputs because current deep learning libraries operate almost
exclusively with floating point numbers.

A vector-valued dense layer can be emulated by a real dense layer
defined by

φ(y) = ψR
(
φ(s) + φ(b)

)
with φ(s) = ML(W )φ(x), (26)

where φ(x) ∈ RnN is a real input vector,

ML(W ) =
n−1∑
k=0

W k ⊗ PT
k : ∈ RnM×nN , (27)

is a real synaptic weight matrix, φ(b) ∈ RnM is a real bias vector, and
φ(y) ∈ RnM is the real output.

Therefore, a vector-valued dense layer can be computed using a real
dense layer by appropriately rearranging and reusing the elements.
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A vector-valued dense layer has nM(N + 1) parameters, while an
equivalent traditional dense layer has nM(nN + 1) parameters.

Vector-valued dense layers can be interpreted as traditional
constrained dense layers, where the synaptic weights are obtained
by imposing a structure that depends on the algebra.

The constraints imposed by the algebra arise from the assumption
that there are intercorrelations between feature channels.
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Convolutional layers are important building blocks in today’s deep
learning models.

The vector-valued convolution of W and x , denoted by W ∗ x , is
given by the sum of the cross-correlation of W(:, c, k) and x(:, c) on
all channels c = 1, . . . ,C as follows:

(W ∗x)(p, k) =
C∑

c=1

∑
q∈D

W(q, c, k)x(p+S(q), c), p ∈ Dy , ∀k , (28)

where p + S(q) denotes a translation that can take into account the
feeds, and Dy denotes the domain of y .

The output y of a convolutional layer is given by y = ψ(W ∗ x + b),
where the activation function ψ : V → V is typically applied
pixel-by-pixel, layer-by-layer.
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Like dense layers, vector-valued convolutional layers can be
emulated using traditional convolutional layers.

In effect, we have

φ
(
W ∗ x

)
=

(
n−1∑
ℓ=0

Wℓ ⊗ PT
ℓ:

)
∗ φ(x) =

n−1∑
ℓ=0

(Mℓ ∗ φ(x)) , (29)

where W = W0e0 + . . .+ Wn−1en−1 is the representation of the
filters with respect to the base E = {e0, . . . ,en−1}, Mℓ = Wℓ ⊗ PT

ℓ: are
real filters obtained using the Kronecker product, and φ(x) is
obtained by concatenating the components x0, . . . ,xn−1 of
x = x0e0 + . . .+ xn−1en−1 in the feature channel.

Examples of vector-valued convolutions and their implementations
can be found in (Gaudet and Maida, 2018; Grassucci et al., 2022;
Vieira and Valle, 2022b).
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n−1∑
ℓ=0

(Mℓ ∗ φ(x)) , (29)

where W = W0e0 + . . .+ Wn−1en−1 is the representation of the
filters with respect to the base E = {e0, . . . ,en−1}, Mℓ = Wℓ ⊗ PT

ℓ: are
real filters obtained using the Kronecker product, and φ(x) is
obtained by concatenating the components x0, . . . ,xn−1 of
x = x0e0 + . . .+ xn−1en−1 in the feature channel.

Examples of vector-valued convolutions and their implementations
can be found in (Gaudet and Maida, 2018; Grassucci et al., 2022;
Vieira and Valle, 2022b).
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In addition to convolutional layers, modern deep learning models
use other structures, such as layer pooling, batch normalization, and
others (Géron, 2019).

While vector-valued versions of these structures are a topic of future
research, we can currently use a simple approach.

This approach involves combining traditional structures with
real-valued emulation of vector-valued convolutional and dense
layers, as described in (26) and (29).

Although it may seem overly simplistic, this approach can provide
valuable insights into vector-valued blocks.
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Concluding Remarks

In this talk, we revised the basic concepts of mathematical
morphology on complete lattices.

Elementary morphological operators can be found, for example, in
activation functions and pooling layers in current deep-learning
models (Velasco-Forero and Angulo, 2022).

Furthermore, we addressed vector-valued morphology and noted
the relevance of considering the intercorrelation between features for
some image processing and analysis tasks.

This remark motivated us to develop V-nets, which naturally
incorporate intercorrelation between features through algebra (Valle,
2024).
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The broad framework of V-nets also includes hypercomplex-valued
neural networks.

The use of hypercomplex algebras can result in additional geometric
and algebraic properties to the network (Hirose, 2012; Lee et al.,
2022; Parcollet et al., 2020; Ruhe et al., 2023b).

Successful applications of V-nets include:
• localization and detection of sound events (Grassucci et al.,

2023),
• ultrasound image enhancement (Lei et al., 2023),
• acute lymphoblastic leukemia detection (Vieira and Valle, 2022b),
• fluid dynamics simulations (Ruhe et al., 2023b).
V-nets outperformed traditional networks in these applications.
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In this talk, we present the relationship between V-nets and
traditional neural networks.

Specifically, we show how dense, vector-valued convolutional layers
can be emulated using traditional layers, which allows the
implementation of V-nets using current deep learning libraries such
as tensorflow and pytorch.

Future research includes:
• Selecting the appropriate algebra for an application.
• Efficient techniques for learning algebra
• Studying vector-valued activation functions and structures used in

deep learning.

Thank you very much!
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